
Acta Cybernetica 15 (2002) 669-682.

Development of a Communication Environment
between IPv6 and IPv4

Gábor Fóris* László Sógor} Péter Hendlein*
Krisztián Notaisz^ and Márta Fidrich^

Abst rac t

The aim of this paper is to present the design, specification, implementa-
tion and testing of a demonstration environment for examining a genuinely
new communication technique. This technique ensures that 3G mobile net-
works can communicate with legacy Internet phones. More than one levels of
the TCP/IP protocol family aire necessary for the communication, so we had
to develop device drivers and user level applications too. The different levels
require various development techniques and tools, whose efficiently combined
usage is emphasized.

Keywords: SIP, SDP, MEGACO, IPv6, NAPT-PT

1 Motivation
The Internet Protocol version 4 (IPv4) [1] has been available since 1981. As it can
be seen today, its success is indisputable. However, the rapid growth of the Inter-
net has created a number of problems for the administration and operation of the
global network, such as the quite limited address space, which will be exhausted
in the near future. The new version 6 of the Internet Protocol (IPv6) [2] includes
expanded addressing capabilities, header format simplification, improved support
for extensions and options, plug and play services, authentication and privacy ca-
pabilities, native mobility support, and also real-time and quality services [3]. As
the world continuously moves to IPv6, it is essential to solve the communication
problems between the two network-layer protocols.

"GE Medical Systems, Lajos u. 48-66, H-1036 Budapest Hungary,
e-mail: gabor,foris®med.ge.com

*GE Medical Systems, Lajos u. 48-66, H-1036 Budapest Hungary,
e-mail: laszlo.sogorfimed.ge.com

' Axelero Tiszanet, Fekete Sas u. 28, H-6720 Szeged Hungary, e-mail: hendleinGtiszanet .hu
§GE Medical Systems, Lajos u. 48-66, H-1036 Budapest Hungary,

e-mail: kriszt ian.notaiszSmed.ge .com
'Research Group on Artificial Intelligence, Hungarian Academy of Sciences,

Aradi vértanuk tere 1, H-6720 Szeged Hungary, e-mail: f i d r i c h a s o l . c c . u - s z e g e d . h u .

683

684 Gâbor Fôris et. ai.

Since IPv6 was chosen to be the network protocol for Third Generation (3G)
Mobile Networks, an urgent demand appeared in connecting the existing IPv4-
based networks to the new one. Although IPv6 was designed to extend IPv4, the
extension incorporates so many fundamental changes having far-reaching impacts,
that IPv6 is not compatible with IPv4. It means that the IPv4-based programs
need to be modified and recompiled to support IPv6 and there is no way of direct
communication between IPv4-only and IPv6-only systems.

Because of the large installed base of IPv4 hosts and routers, the changeover
of protocols will take still some years. During the long process of transition -
which is agreed to be not easy - it is needed that programs in both realms can
communicate with each other. IP-level gateways only are not enough for successful
communication, since IP addresses may also be important information carried in
application layer protocols, as in FTP, SIP and SDP. That is, the change of the
two protocols inherently affects applications, so different level gateways (network,
transport and application) have to be developed between them.

2 Networking description of the task
The 3G networks use SIP [4] (Session Initiation Protocol) as their call control
protocol and IPv6 as network layer protocol for wireless communication. Currently
IPv4 is used as network protocol for the Internet. There are two ways to ensure
the communication (see [15]) : SIP-ALG (SIP-Application Level Gateway) and IP-
level gateway remotely controlled by a SIP proxy. The remotely controlled IP-level
gateway is a better solution, because rewriting the IP translator is not needed when
the SIP protocol changes, it is sufficient to modify only the SIP implementations.

The goal of our work is to create a demonstration system, which connects a
mobile SIP User Agent based on IPv6 and another SIP User Agent based on IPv4
via two SIP proxies (IPv6 and IPv4) and NAPT-PT [5] (Network Address Port
Translator - Protocol Translator). Indeed, the real SIP communication between the
IPv4 and the IPv6 networks means the communication between the two proxies via
the NAPT-PT. When, a media connection is created by the SIP server and client
(with the help of SIP proxies), the IPv6 SIP proxy (Media Gateway Controller)
sends a command using the MEGACO [7] (MEdia GAteway COntrol) protocol to
add a binding to the NAPT-PT (Media Gateway). This binding helps the NAPT-
P T to convert the packets transporting the media connection.. When the media
connection is terminated, the IPv6 SIP proxy sends a message to the NAPT-PT
to release the binding. The NAPT-PT also has a DNS-ALG [8] (DNS-Application
Level Gateway) extension to convert DNS queries and responses between the IPv4
and IPv6 networks.

3 Concepts of development
Due to its free source code and available documentation, the Linux operating system
was chosen as a development and test platform. We worked on five computers

Development of a Communication Environment between IPv6 and IPv4 685

Figure 1: Test environment for multimedia call initiation between IPv4 and IPv6

having Intel Celeron processor at speed of 466 MHz using 128 MB of SDRAM
at speed of 66 MHz. Each computer had two 3com 905 lO/lOOMb/s Ethernet
cards, providing an IPv4 and an IPv4 / IPv6 interface. (Linux has dual stack IPv6
implementation, that is why we mentioned the latter interface to be dual, although
we used it as a "pure" IPv6 interface.) All the PCs run GNU / Debian Linux; we
relied on the last stable kernel version 2.2.17. We used the C / C + + programming
languages (C for kernel level development and C + + for others).

The communication environment introduced in Section 2 requires the devel-
opment of three entities, thus our work was divided into three parts: the SIP-
specific NAPT-PT with DNS-ALG, the SIP proxies, and the NAPT-PT control-
ling MEGACO daemon were developed parallelly. Please see the table below for a
summary.

part program, level and
networking layers

connections

NAPT-PT

with
DNS-ALG

kernel level in C

network, transport
and application layer

MEGACO daemon (IOCTL calls)
SIP proxies (SIP commands)
SIP user agents (media streams)

IPv4
SIP proxy

user level in C + +
application layer

NAPT-PT (SIP commands) .
IPv4 SIP user agents (media & SIP)

IPv6
SIP proxy

user level in C + +

application layer

NAPT-PT (SIP commands)
IPv6 SIP user agents (media & SIP)
MEGACO daemon (MEGACO prot.)

MEGACO
daemon

user level in C + +
application layer

NAPT-PT (IOCTL calls)
IPv6 SIP proxy (MEGACO protocol)

686 Gabor Foris et. al.

1. Media Gateway
It is a special router that knows both IPv4 and IPv6 protocols. It converts
the IPv6-based TCP / UDP packages into IPv4-based packages (exchanging
address and port) with the help of its inner table, and also handles SIP
and DNS queries passing through. Since NAPT-PT is an IP-level packet
translation mechanism and it requires kernel-level programming, we had to
develop it in C programming language.

2. Media Gateway Controller
Media connections are initiated by SIP, and it is the IPv6-based SIP
proxy that controls package conversion of the NAPT-PT. SIP proxies are
application-level daemons. These daemons were developed in C + + because
we could use some ready-made object libraries developed for SIP over IPv4.

3. Way of Controlling
MEGACO protocol ensures the controlling commands between NAPT-PT
and IPv6-based SIP proxy at two different levels: MEGACO library aiming
language recognition is used directly by the SIP proxy, while its application,
the MEGACO daemon controls NAPT-PT with the help of IOCTL calls.
MEGACO is a heavy protocol with highly complex grammar which we trans-
formed into LL(k) grammar to make it consumable for the ANTLR parser
generator. The object oriented programming technique is very suitable for
modeling this grammar. We chose the C + + programming language because
controlling of NAPT-PT requires IOCTL calls, which are available only in
C / C + + .

As it can be seen by now, our communication environment is a fairly complex
system composed of three related yet distinct entities. Our software engineering
task was not usual: we had to develop parts from kernel to user level, from network
to application layer of the TCP / IP protocol family, in C and C + + languages.
Indeed, communication of our software pieces required novel solutions and expert
techniques. We could make good use of various development tools, whose roles
are emphasized. The contribution of our work is not only the summary of a gen-
uinely new technique to ensure communication between 3G mobile networks and
legacy Internet phones. It also comes from the presentation of various software
development concepts based on our consensus.

Although Internet phone programs [18] are available presently, they are based
on IPv4. As far as we know, there is no software for IPv6-based phone. Also,
we do not know about any implemented system (either already working or under
research), which connects 3G mobile and Internet phones.

The rest of this article is organized as follows. We briefly describe commonly
used tools in Section 4. After that we present the three development parts: the
NAPT-PT, MEGACO and SIP. Finally, we give a conclusion, also future research
is highlighted.

Development of a Communication Environment between IPv6 and IPv4 687

4 Commonly used tools
All the three groups used CVS [9] for managing the parallelly developed code. CVS
is the Concurrent Versions System, the dominant open-source network-transparent
version control system. CVS is useful for everyone from individual developers to
large distributed teams:

• Its client-server access method lets developers access the latest code from
anywhere using Internet connection.

• The management of conflicts, which can be caused by the unreserved check-
out model to version control, is supported.

• Its client tools are available on most platforms.

We made good use of UML, the Unified Modeling Language at the planning of
the classes. For the UML modeling we have chosen Together [10], a JAVA based
development program, because it is available on various platforms, including Linux.
The core features of Together are:

• Simultaneous round-trip engineering: Java, EJBs, IDL, and C + +
• Multi-level, flexible documentation generation
• Multi-user team support across the enterprise
• Large project support

We needed a network traffic analyzer program for testing the conversion algo-
rithms (NAPT-PT and DNS-ALG) and monitoring the network traffic. We chose
Ethereal [16], a "sniffer" available on Unix-like operating systems. It uses GTK+,
a graphical user interface library, and libpcap, a packet capture and filtering li-
brary. Ethereal knows both IPv4 and IPv6 network-layer protocols, TCP and
UDP transport-layer protocols and some application-layer protocols, for example
DNS and HTTP. For an Ethereal snapshot, see Fig 2.

5 NAPT-PT
5.1 Implementation form of NAPT-PT
Unlike a typical monolithic kernel, the Linux kernel has a feature to be able to
load and run kernel extensions (for example device drivers) without re-linking the
kernel and restarting the system. These extensions are called modules. Loading
and removing of modules can be controlled manually (the system administrator
may load and remove modules using insmod, rmmod and modprobe programs) and
automatically (when the system needs it, it is loaded).

As NAPT-PT (Network Address Port Translator - Protocol Translator) is a
special IP packet conversion algorithm that needs services of the kernel (functions,
data structures, etc.), it has been implemented at kernel-level. We chose the module
form because it is not necessary to reboot the system when we want to run our new
code, it is enough to remove the old module and load the new one.

688 Gabor Foris et. al.

Figure 2: The Ethereal network traffic analyzer

5.2 NAPT-PT as network device
We implemented NAPT-PT as a pseudo network device, because in this way pack-
ets that needs conversion can be simply routed to it using the standard r o u t e
procedure. Moreover, network devices can be easily configured with the i f conf ig
utility. All utilities used to manipulate pseudo network devices are part of stan-
dard Linux distributions; direct interaction between a user-level application and
the loaded module is also possible with the i o c t l system call. More details about
networking in the Linux kernel can be found in [22].

5.3 Parts of NAPT-PT
Our NAPT-PT implementation consists of the following parts: packet conversion,
conversion database, configuration interface and DNS-ALG.

• Packet conversion: every IPv4 and IPv6 packets that need to be converted go
through this part. First this code determines the type of the packet: DNS,
SIP or media stream. If the packet is a DNS one, the conversion procedure
will pass it to the DNS-ALG module which translates is. The handling of
a SIP packet is trivial, it does not require special algorithm just forwarding.

Development of a Communication Environment between IPv6 and IPv4 689

So as to convert a media stream packet (IPv4 packets to IPv6, and vica
versa), data are needed from the conversion database. The actual IPv4 -
IPv6 conversion procedure is described in our previous article [17].

• The conversion database contains records with the following fields: IPv6 ad-
dress / port, IPv4 address / port and protocol id. It is important to find the
record having the requested properties quickly, so we had to find a data struc-
ture which could be easily implemented at kernel level and was fast enough.
The static hash of chained lists has been chosen.

• Configuration interface: configuration data (addresses of IPv6 DNS server
and SIP proxy as well IPv4 address pool of NAPT-PT) must be given to
NAPT-PT for the proper operation. In addition to this, IPv6 address / port
/ protocol triplets have to be given to NAPT-PT as a binding requests and the
NAPT-PT has to response with IPv4 address / port pairs. The configuration
and binding data must be given by user level processes (configuration utility
and MEGACO daemon). On UNIX systems, the user-level programs can
control kernel-level drivers via the IOCTL interface. The user-level process
has to send the kernel a triplet mentioned before, which takes 19 bytes (16
+ 2 + 1). The type of IOCTL, which is to be used for network devices, can
carry 16 bytes of data, so we have to use a pointer. Another difficulty is
that the kernel- and user-level memories are separated: a user-level memory
cell cannot be reached form kernel-level directly and vica versa. There is
only one possibility to copy data between kernel- and user-level: usage of
copy_f rom_user and copy_to_user functions.

• DNS-ALG: this extension converts the DNS queries and responses between
IPv4 and IPv6 using the configuration data of NAPT-PT. Its base functional-
ity is to convert the DNS payload, which contains the following parts: header,
questions and resource records; see [8]. The IPv4 addresses are stored in A
resource records, while the IPv6 ones are stored in AAAA resource records.
We assume that the length of the DNS payload is less than or equal to 512
bytes, (because of using only UDP)
Only the IPv6 DNS server and only the IPv6 SIP proxy can be reached from
the IPv4-side of the NAPT-PT using the first usable address of the IPv4
address pool of the NAPT-PT. So in the case of IPv6 IPv4 and AAAA
A RR-conversion, the RDATA of the A RR will be first_addr (32 bit, network
byte order).
We note that source DNS question / Resource Record / domain / header
means the DNS question / RR / domain / header that we convert. Destina-
tion DNS question / RR / domain / header means the result of the conversion.
When NAPT-PT recognizes a DNS packet, it passes the DNS payload to
DNS-ALG module that does the conversion. The DNS payload is a rather
complex structure with lots of variable length parts.
The payload of a DNS packet contains the following parts:

690 Gabor Foris et. al.

1. header, this contains some fields and numbers of queries and
Resource Records (RR)

2. queries
3. answer RRs
4. authority RRs
5. additional RRs

The DNS-ALG has to convert the header, the questions and RRs.

During the planning and implementation of NAPT-PT we created the entry
points of DNS-ALG, so we had to design only the conversion procedure itself.
There are two main conversion functions, one for IPv6 —> IPv4 and another
one for IPv4 —> IPv6 direction: convert-dns-64 and convert-dns^6.

5.4 Restrictions
• The NAPT-PT uses an IPv4 address pool and distribute ports from this to the

media connections. This pool will be set by an IPv4 network address/netmask
pair.

• The network and broadcast addresses will not be distributed by NAPT-PT.

• The IPv6 DNS server and SIP proxy can be reached from IPv4 network using
the first IPv4 address of the NAPT-PT's address pool, that is:
-if its netmask is 255.255.255.255, then this IPv4 address is'supposed to be
used for DNS and SIP queries
-if the netmask is 255.255.255.254(2 addresses), then we return a configura-
tional error, because we did not get an effective address
-otherwise, we use the first effective address (the one after the network ad-
dress) for DNS/SIP queries

• The distribution goes as follows:
-ports between 6000-65531 will be handed out for TCP and UDP connections
alike
-first the ports between 6000-65535 of the first effective address will be handed
out, the the next, ... and after the last one we use the first one again.

• The handling of media packages is special:
-in case of UDP, the first effective address/port 5999 will be the source ad-
dress/port in the 6 4 direction; in the other direction there is no such
problem.

• There is no restriction upon the IP addresses
We do not use a table for storing the free ports. If needed, we look up a free
port in the NAPT-PT table.

• In case of RTP protocol, we need a double entry and for this we will always
use even ports together with the next odd one.

Development of a Communication Environment between IPv6 and IPv4 691

6 MEGACO daemon

6.1 Base problem

MEGACO protocol (MEdia GAteway COntrol) is used to control a media gateway
(MG) by a media gateway controller (MGC). In our project, the NAPT-PT is a
MG (converts packets of the media from IPv4 to IPv6 and vica versa) and the SIP
proxy is a MGC (sends requests to NAPT-PT to reserve or free IPv4 address/port
in MG). Indeed, the SIP proxy uses MEGACO protocol to control the NAPT-PT,
or in other words, the communication of NAPT-PT and SIP proxy is resolved by
MEGACO.

We decided to separate the language recognition arid the controlling parts, be-
cause the language recognition functionality is the same in the NAPT-PT and SIP
proxy as well. To do so, we first created a C / C + + library, whose basic task is the
recognition of the language. It handles MEGACO messages and also provides a
flexible data structure (like C + + class hierarchy). Control of the MG by a MGC
is achieved with the help of this MEGACO library. The library can be used in
two ways depending whether the NAPT-PT or the SIP proxy wants to use it.
NAPT-PT works at the network and transport layer, so it needs a daemon at the
application layer, which is the layer of the MEGACO-based communicatibn. Thus
we had to develop a MEGACO daemon as well. This daemon handles MEGACO
requests & answers and controls NAPT-PT by IOCTL calls. SIP proxy is capable
of application-layer communication, thus it does not need any further utility. It
makes use the MEGACO library directly in its media controlling part.

6.2 Design of MEGACO library

The MEGACO library is composed of three parts: • •

1. The core contains a manageable data structure instead of messages having
difficult grammar.

2. The message parser analyzes an arrived message and creates data structure
from it.

3. The data transformer generates message from the data structure.

The most important feature of the core is to ensure the manageable data struc-
ture (C++ class hierarchy) with handler functions. Each class matches to one item
of the MEGACO grammar in such a way that the hierarchy of grammar elements
are modeled. These classes are needed to be filled up with given values (during
message parsing) and this is the task of the handler functions. Handler functions
are also used to generate messages from the data structure.

The classes are grouped in some packages like

692 Gábor Fóris et. al.

MegacoMain: this is the base class
- Messages: classes, which realize main MEGACO messages
- Transactions: classes, which implement MEGACO transactions
- Actions: classes implementing MEGACO actions

Commands: classes, which implement MEGACO commands
- Descriptors: classes implementing MEGACO descriptors

SDP: this contains the simplified SDP [6] data, because
in MEGACO some grammar elements may include SDP payload.

Now let us see how to generate MEGACO message from a data structure. We
obtain the message string by calling the generator function of the MegacoMessage
class. The final result is a string, which will be sent in the message. Traversing the
attributes of the data structure makes the generation easy: concat (in this order)
the start text of an object, the attributes and the end text. If an attribute is an
object, call its generator function to get the value of the object. If the attribute
of an object is not a further object, we put its own specific text (for example
"id=value") instead of calling the generator function of attribute.

In the message analysing part we have to decide about each message whether it
is an implemented MEGACO message or not. That is, the Media Gateway (MG)
- or on the other side: the Media Gateway Controller (MGC) - is able to process
it (i.e. to create data structure from it) or not. Since it is the most complex (and
that is why the longest) part of the library, we describe its development separately
in the next subsections.

6.2.1 Parser

The base problem, we had to solve, was creating a message analyzer, which has
to process all incoming messages and handle the commands these contain. Our
solution relies on the core of the library, which implements an object structure by
covering the graph of all recognizable messages. The analyzer itself is called by the
MEGACO daemon (see later), and it has to fill the object structure that represents
the construction of the received message. We decided to use a parser generator to
make the system more flexible and easy-to-modify.

Every code generator needs an input grammar, which mostly published in some
kind of BNF form. The Backus-Naur Form (BNF) is a convenient means for writing
down the grammar of a context-free language. Augmented Backus Naur Form
(ABNF) [23] differs from BNF in naming rules, repetition, alternatives, order-
independence, and value-ranges. The Extended Backus-Naur Form (EBNF) [24]
adds the regular expression syntax of regular languages to the BNF notation, in
order to allow very compact specifications.

There are lots of parser generators (YACC, ANTLR, etc.), which differ in the
expectation of the type of the input grammar and the programming language of
the generated code. We chose ANTLR [14] version 1.33 - also known as PCCTS -
to recognize MEGACO messages because this tool can generate C + + source code,
and it expects an LL(k) grammar, given in EBNF syntax, as input.1 The generated

'We note that YACC expects an LALR(l) grammar: it generates a quite fe ist parser; however,

Development of a Communication Environment between IPv6 and IPv4 693

source code is capable to decide whether its input is an element of the language or
not — this feature is indeed used for examining the syntactical correctness of the
input text.

In the input file of ANTLR we have to define tokens — for the lexical analyzer
— and we have to give rules - for the syntactic analyzer. To implement a code
analyzer, first a lexical analyzer is used to filter the input data and to eliminate
those parts of it that will not be used further on. The valuable parts can be packed
into tokens, and passed on to the syntactic analyzer, which is the parser itself.
The parser contains the rules of the input grammar. These rules are identified
by non-terminals, and the analyzing process consists of fitting these rules. From
these non-terminals ANTLR generates functions, which can receive parameters by
value or by address. There is an ability in this tool to specify actions for each
recognized part of the grammar. This is useful, because we can put code into the
parser directly, by invoking formerly implemented functions or adding own code
written in the target programming language. (The latter one generates the proper
data structure about each received message.)

6.2.2 Problems and solutions

The first task we had to solve is to convert the MEGACO grammar from ABNF
(in which it is published) into EBNF required by ANTLR. ABNF has such rules
that could not be easily transformed into EBNF form (eg. when a non-terminal's
number of repetitions is limited). These rules were extended and further checking
were implemented in the source code. In this process we also had to face how
annoying to replace all the arguments signed in ABNF form with its real sequence.
After finishing this part, compiling by ANTLR resulted in tremendous ambiguous
rule errors. This problem occurred because the input grammar was not LL(k).

To overcome this problem, we constructed new rules and transformed the al-
ready stated rules and tokens as well to get an LL(k) grammar.

6.2.3 Resolving S D P payload

The message analyzer is composed of two parts. The MEGACO parser, which rec-
ognizes all MEGACO valid messages, and a smaller one, the SDP parser, which
is invoked from the MEGACO parser when needed. SDP stands for Session De-
scription Protocol, its roles are describing properties of multimedia sessions, for
example protocol, port, origin and description. Although the grammar of the SDP
protocol is much smaller and less complicated than the one of MEGACO, we had to
follow the same way an "LL(k)-ization" process for SDP grammar as for MEGACO
grammar.

LALR(l) means some restrictions on the input grammar (or expects transferring work from the
programmer).

694 Gâbor Fôris et. al.

6.3 Design of MEGACO daemon
First, we extended the MEGACO library with network managing interface, which
sends and receives MEGACO messages. According to the RFC, MEGACO has to
ensure message transfer, that is: in case of successful reception, it has to acknowl-
edge it. In case of (possible) loss, it has to resend the message and it also has to
drop the repetitions. We included this functionality in the network interface, which
is needed for the SIP proxy and for the MEGACO daemon (controlling NAPT-PT).
This interface calls the parser in the MEGACO library and if the analysed message
is wrong, that is, not an element of the language generated by the'MEGACO gram-
mar, it replies an error message. If the analysed message is accepted, the interface
sends an acknowledgment.

Now, let us suppose that the incoming message is accepted, i.e. element of the
language. In this case the network interface passes the message to the daemon.
It interprets and processes the message: e.g. it registers a new binding in thé
NAPT-PT or resolves a binding. If the requested action was successful, the daemon
stores / removes information on binding and makes a reply message for the network
interface. Otherwise, the daemon makes an error message for the network interface.

6.4 Functionality of MEGACO daemon
We had to separate the MEGACO daemon into several independent parts. The first
part is the "Listener". Listener is waiting for incoming TCP sockets, and handles
them: The second part is the MEGACO library extension, the MEGACO commu-
nication unit, we call it the " 'Handler". It works with an incoming socket, reads
the package from it, sends an acknowledgment to it, and forwards the MEGACO
data to the Processor unit. The "Processor" analyzes this data and registers the
resources in NAPT-PT. The result of registration is sent back to "Handler", and
data is saved to the "Central data" unit. The core part is the "Daemon". It ini-
tializes NAPT-PT and "Listener", sends registration to IPv6 SIP proxy (using a
"Handler").

Figure 3 presents the above introduced units and operations between them.
Dotted-line rectangles are modeling one thread in the daemon. Here is the descrip-
tion of communication signaled by numbered operational arrows:

l . I O C T L
2. Initialization
3. Request to MGC (eg. Service-Change command)
4. Reply from MGC (eg. reply to Service-Change command)
5. Accepting connection, creates thread (parameter: the socket)
6. Request from MGC (eg. Add command)
7. Reply to MGC (eg. reply to Add command)
8. IOCTL
9. Reads from and writes to central data

Development of a Communication Environment between IPv6 and IPv4 695

Figure 3: Main operations

10. Reads from and writes to central data

6.5 Main Restrictions
• The connection between MG (Media Gateway = NAPT-PT) and MGC (Me-

dia Gateway Controller = IPv6 SIP proxy) is based on either TCP or UDP.
We have chosen TCP for the simplification of the implementation.

• We implement the text-encoding version of MEGACO.

• We formalize the grammar with PCCTS grammar analyzer, thus the not
implemented commands can be inserted easily.

• We create a library, which can be used both at the implementation of
MEGACO daemon and at the implementation of SIP proxy.

7 SIP proxy
The SIP protocol is used to control media sessions described by SDP [6]. We had
to develop two SIP proxies, an IPv4 and an IPv6 one, the latter with MEGACO
support to control the media gateway (NAPT-PT). The media connections are ini-
tiated by SIP, and the IPv6-based SIP proxy controls the NAPT-PT package con-
version through adding / releasing bindings for media sessions using the MEGACO
protocol.

To build the two proxies we deployed some freely available programs and li-
braries to reduce the development time. For example, we modified and extended

696 Gabor Foris et. al.

the Dissipate library - a basic SIP implementation - and Kphone [18], a SIP tele-
phone program built on the top of Dissipate, to fit for our purposes.

7.1 Qt
Both the Dissipate library and the Kphone use the Qt library [19]. QT is a cross-
platform C + + GUI framework. It provides a number of classes, for example data
structures (queue, stack, list), advanced string handler functions, pattern matching
functions and functions to make the building of a GUI easier.

This library indeed provided us a lot of useful classes. For example, we could
make very good use of the QString class, with plenty of pattern matching functions.
The parsing of the configuration file of the proxy is built on these functions. We
also used some higher level data structure, like QList and QFile.

7.2 Dissipate and Kphone
Since the size of the two libraries are huge, we had to find a way to make the
browsing and the understanding of the operation of the source code easy. This
problem was solved by Doxygen [20]. Doxygen is a documentation system for C + + ,
Java, IDL and C2. It can help you in several ways but the most useful feature of
the program is that it can generate an on-line documentation (in HTML) and / or
an off-line reference manual (e.g. in PDF, LaTeX) from a set of documented source
files. The key to make this program really valuable is that the programmer has to
put very telling comments in the source!

We also had to port the Kphone program and the Dissipate library to IPv6.
This process went like this:

• Making a _v6 tagged duplicate of the original directories:
Renaming the files and rewriting the references in the files. Browsing and
rewriting the Makefiles, to enable proper compilation and installation of the
Dissipate.v6 library and Kphone_v6. After this, the Kphone used the Dissi-
pate library, the Kphone_v6 used the Dissipate_v6 library, although the code
in the two libraries were yet the same.

• Locating the parts relevant to IPv6 sockets and appropriating it to IPv6
standards.

• For the cooperation with NAPT-PT and for the compatibility with
RTP/RTCP [21], we had to reserve two ports for the media. However,
Kphone, originally, reserves only one port.

• Correcting a bug in the Dissipate source: in extreme cases, the original code
does not releases certain ports. For further details see [25].

2Doxygen is developed under Linux, but is set-up to be highly portable. As a result, it runs
on most other UNIX flavors as well. Furthermore, an executable for Windows 9 x / N T is also
available.

Development of a Communication Environment between IPv6 and IPv4 697

7.3 IPv4 SIP proxy
Thinking in advance, we decided to build the IPv4 SIP proxy in a rational way to
ease our work for creating the IPv6 SIP proxy. This meant that we developed a
basic stateless SIP proxy to handle SIP requests and responses. Care was taken to
structure the proxy in small reusable functions that might occur in other parts of
the source or even in the IPv6 proxy. The proxy also makes use of the dissipate
library, just as Kphone does.
We designed several classes to store and handle SIP registrations. The careful
planning resulted in the following:

• The real data structure, a doubly-linked list, together with the related func-
tions are hidden from the user of the class.

• The structure of the class makes the implementation of further functions easy.

7.4 IPv6 SIP proxy
Although, the IPv4 SIP proxy is a stateless proxy and IPv6 SIP proxy is also
supposed to be stateless, the v6 version has to hold and maintain some information
about SIP calls and MEGACO transactions. Furthermore, we had to use threads,
because the proxy have to handle parallel MEGACO transactions and SIP calls.
The connection between the two main threads (MEGACO and SIP handling) were
a queue-like data structure and a state information database.

7.4.1 The functionality of SIP proxies

The v4 proxy is the base of the proxies. It was designed first and then the v6 proxy
was built on top of it. Thus the functionality of the v4 proxy is a subset of the v6
proxy. A common feature is that both proxies handle registrations.

All the possible actions of the proxies are presented in Fig 4, where the meaning
of the numbers are:

1. Incoming SIP message
2. Registration message
3. Registration response
4. Normal message
5. Message which does not require MEGACO
6. Message which requires MEGACO (pushed into the queue)
7. Message which requires MEGACO (popped form the queue)
8. Message with modified SDP
9. Outgoing SIP message

Note: To be precise, in case of the v4 proxy you can only have actions numbered
as: 1,2,3,9 and 4,5 without the TestMegaco function.

698 Gabor Foris et. al.

Figure 4: The functionality of SIP proxy on IPv6

7.4.2 Thread handling

Careful synchronization were needed for the reading and writing of the queue (simi-
lar to the well-known consumer / producer problem) to prevent incorrect operation
and high system load. For blocking the access to data structures, mutexes and sig-
nals were used. In case of the queue, threads were put on hold while other processes
read or write it, or the queue was empty. As for the state information database,
it was enough to block its usage when a thread used it. We implemented some
threads to clean up the data structure by erasing the expired data. One thread
was necessary for waiting registrations from media gateways (MG), this was sepa-
rated from the MEGACO thread that handle MEGACO transaction, because the
registrations were special transactions.

Development of a Communication Environment between IPv6 and IPv4 699

Main Restrictions
No dual-stack implementation.

SIP server / client and the proxy must be able to handle only unicast con-
nections, no multicast is needed.

SIP proxy supports UDP only.

SIP proxy is a stateless-proxy. (It stores data about the IP address conversions
and the registration only.)

Kphone supports UDP only.

Kphone ensures RTP/RTCP compatibility.

Conclusion
Our study is about a novel way of connecting 3G mobile networks based on IPv6
and legacy Internet phones based on IPv4. The main idea is to connect a mobile
IPv6 SIP User Agent and another SIP User Agent based on IPv4 via two SIP
proxies (IPv6 and IPv4) and NAPT-PT; where the SIP communication between
the IPv4 and the IPv6 networks is in fact between the two proxies via NAPT-PT.
To control NAPT-PT by the IPv6 SIP proxy MEGACO protocol is used, which
has good capabilities but also a highly complex syntax. NAPT-PT plays the role
of Media Gateway: it converts packets of the media from IPv4 to IPv6 and vica
versa; while the IPv6 SIP proxy corresponds to the Media Gateway Controller: it
sends requests to NAPT-PT to reserve or free IPv6 - IPv4 address/port bindings.
NAPT-PT also has a DNS-ALG extension to convert DNS queries and responses
between the IPv4 and IPv6 networks.

We decided to develop a system demonstrating this communication technique.
To do so, first we identified the main parts of the system: the SIP-specific NAPT-PT
with DNS-ALG extension, the IPv4- and IPv6-based SIP proxies and the MEGACO
daemon. After that we specified, implemented and verified these development
units. Several tests were executed to find out the performance of these units,
and additionally, the conformance and robustness of our implementation.

We would like to emphasize that at the time of system analysis we did not find
any implementation of the previous techniques (although we could use some freely
available development libraries), thus we had to develop our own pieces of software.
We are still not aware of any open source implementation - which could be used
for test purposes - at the time of writing. As far as we know, we are the first, who
have analysed such a communication system and created a demonstration version
of it.

Our communication environment is a fairly complex system composed of three
related yet distinct entities. Thus our software engineering task was not usual: we
had to develop parts from kernel to user level, from network to application layer of

7.5

8

700 Gábor Fóris et. a1.

the TCP / IP protocol family, in C and C + + languages. Indeed, communication
of our software pieces required novel solutions and expert techniques. We could
make good use of several development tools, whose roles are emphasized. The
contribution of our work is not only the summary of a genuinely new technique,
but also comes from the presentation of various software development concepts.

We have several ideas for future research in this topic. Definitely it is worth
examining the case of a more general SIP User Agent capable e.g. transporting not
only voice but video images thus making a real multimedia IPv6 - IPv4 session.

9 Acknowledgment
This article presents the results of a research work initiated and financed by Nokia
Hungary as a joint project between University of Szeged and Nokia Hungary.

We would like to thank Gábor Bajkó, György Wolfner and László Martonossy
for drawing our attention to this topic and also for their help in some technical
questions. Thanks also to Dénes Bátri for his participation in the parser develop-
ment and Mihály Bohus for his useful comments. Last but not least, thanks to
Gergő Kiss for his valuable participation in the translator development.

10 Appendix: Configuration

10.1 Installation
Kphone is an Internet telephone program, which uses Dissipate, QT and KDE.
KDE (stands for K Desktop Environment) is a free desktop system for UNIX-like
systems.

Dissipate is a SIP implementation over IPv4. Kphone uses libdissipate to man-
age media connections. We ported libdissipate and kphone to IPv6, the name of
the IPv6 library and program is libdissipate-v6 and kphone_v6.

QT is a cross-platform C + + GUI framework. The creator of QT is Trolltech
(www.trolltech.com). There is an edition called 'QT/X11 Free', it is free and has
available source code. The QT version 2.2.1 was used for the development, but all
versions above 2.2.1 should work properly. All of the QT versions are available via
FTP at 'ftp://ftp.trolltech.com/qt/source/'.

10.2 Network environment
The test environment (see Figure 5) contains 5 computers: 2 for only IPv4, 2 for
only IPv6 and one for connect the IPv4 and IPv6 networks.

Network topology and IP addresses is described below:

• v4 client: IPv4 capable host, SIP UA
• v4 proxy: IPv4 capable host, IPv4 SIP proxy and master DNS server of

zones '.', 'hu' and 'nokia.hu'

http://www.trolltech.com
ftp://ftp.trolltech.com/qt/source/'

Development of a Communication Environment between IPv6 and IPv4 701

Figure 5: Network topology

• N A P T - P T : knows both IPv4 and IPv6 protocols, implements NAPT-PT
and runs MEGACO daemon

• v6 proxy: IPv6 capable host, IPv6 SIP proxy, master DNS server of zone
'operator.hu' and controls NAPT-PT using MEGACO

• v6 client: IPv6 capable host, SIP UA

10.3 NAPT-PT
NAPT-PT is a special router that knows both IPv4 and IPv6 protocols. Because
of it, NAPT-PT had to be developed in kernel level. The implementation form of
the NAPT-PT is a network device. This means that you can handle it similarly to
other network devices, for example the loopback (lo) or an ethernet (ethx) device.
10.3.1 Configuring the 'naptpt' network, device

NAPT-PT comes as a kernel patch for Linux v2.2.17. This means you must apply
this patch to the kernel. The kernel v2.2.17 can be downloaded from any official
kernel mirrors, for example: ftp://ftp.[hu.]kernel.org/pub/linux/kernel/v2.2/linux-
2.2.17.tar.gz

In Linux the network devices must be IPv4 and IPv6 addresses assigned to make
it processing packets. We suggest that you use private, unused addresses for this
purpose.

i f c o n f i g naptp t 1 0 . 0 . 0 . 1 netmask 255.255.255.255

Route IPv4 address pool to 'naptpt' device:

702 Gabor Foris et. al.

it r o u t e add - n e t 192 .168 .100 .0 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0 dev n a p t p t

Do the same with IPv6:

ifconfig naptpt add 3ffe:ffff::1/128

Route the IPv4-mapped-IPv6 addresses to 'naptpt ' device:

route -A inet6 add ::ffff:0:0/96 dev naptpt

Turn on IPv4 and IPv6 packet forwardings:

echo 1 >/proc/sys/net/ipv4/ip_forward

echo 1 >/proc/sys/net/ipv6/conf/all/forwarding

Now, the 'naptpt ' device is up and ready to work.

10.3.2 A d d i n g / r e m o v i n g bindings

Adding/removing bindings is basically the task of the MEGACO daemon, but it is
possible to add/remove a binding using 'naptconf' utility for testing purposes.

There are two types of bindings, single and double. To add both bindings, you
need an IPv6 address/port /protocol triplet, for example: 3ffe:2700:70:l::l/13654/6,
where the last component means the transport protocol(6 for TCP, 17 for UDP).

To add a single binding, you must do:

naptconf 5 3ffe:2700:70:1::1 13654 6

If the NAPT-PT has unallocated IPv4 address/port pairs, it returns an IPv4
address/port pair, for example 192.168.100.1/6000. This means, if an IPv6 packet
is sent through the NAPT-PT which has source address 3ffe:2700:70:l::l, port num-
ber 13654 and protocol number 6 (TCP), the NAPT-PT will translate it to IPv4
and the new source address/port will be 192.168.100.1/6000 with the same trans-
port protocol than the original (TCP). The reverse direction: if an IPv4 packet is
sent through the translator which has address 192.168.100.1, port 6000 and pro-
tocol number 6, it will be translated and the new IPv6 address/port pair will be
3ffe:2700:70:l::l/13654. This is really a binding between address pairs which have

addr: 3ffe:2700:70:l::l 192.168.100.1
a given protocol number: port: 13654 6000

prot: 6 6
To release this binding, you must do:

naptconf 6 3ffe:2700:70:1::1 13654 6

Let's see the difference between a single and a double binding: a double one
makes two bindings between two address/port pairs, using the previous example:

naptconf 7 3ffe:2700:70:1::1 13654 6

Development of a Communication Environment between IPv6 and IPv4 703

The result will be two bindings:
addr: 3ffe:2700:70:l::l
port: 13654
prot: 6

and
addr: 3ffe:2700:70:l::l
port: 13655
prot: 6

192.168.100.1
6000
6

192.168.100.1
6001
6

The second binding has the almost the same properties than the first one but
both IPv4 and IPv6 port numbers are increased by one.

You can add/remove double bindings using the 7/8 functions of naptconf instead
of 5/6.

References
[1] J. Postel: Internet Protocol. RFC 0791 September 1981.

[2] S. Deering and R. Hinden: Internet Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460 December 1998.

[3] C. Huitema: The new Internet Protocol. Prentice Hall 1996.

[4] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg: SIP: Session
Initiation Protocol. RFC 2543 March 1999.

[5] G. Tsirtsis and P. Srisuresh: Network Address Translation - Protocol
Translation (NAT-PT). RFC 2766 February 2000.

[6] M. Handley and V. Jacobson: Session Description Protocol (SDP). RFC
2327 April 1998.

[7] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen and J. Segers:
Megaco Protocol 1.0. RFC 3015 November 2000.

[8] P. Srisuresh, G. Tsirtsis, P. Akkiraju and A. Heffernan: DNS extensions
to Network Address Translators (DNS-ALG). RFC 2694 September 1999.

[9] CVS: Concurrent Versions System, (http://www.cvshome.org/).

[10] Together is the product of TogetherSoft (http://www.togethersoft.com/).

[11] Terence John Parr: Language Translation Using PCCTS and C + + A Ref-
erence Guide, Automata Publishing Company, San Jose, CA 1993.

[12] Hossam Afifi, Laurent Toutain: Methods for IPv4-IPv6 transition, The
Fourth IEEE Symposium on Computers and Communications 6 - 8 July,
1999 Red Sea, Egypt.

http://www.cvshome.org/
http://www.togethersoft.com/

704 Gabor Foris et. al.

[13] Alain Durand: Deploying IPv6 IEEE Internet Computing Vol. 5, No. 1,
February 2001.

[14] ANTLR: Another Tool for Language Recognition,
(http://www.antlr.org/).

[15] Gábor Bajkó, Balázs Bertényi, SIP sessions between a 3G network and a
SIP-proxy traversing NAT-PT (NOKIA internal report). 2000 August.

[1-6] Ethereal, (http://www.ethereal-.com/).

[17] L. Sógor, L. Martonossy,. M. Fidrich, G. Somlai, G. Dikán, P. Hendlein,
T. Tarjányi and M. Bohus: Test of inter-working and translation mecha-
nisms between IPv4 and IPv6, Conference of PhD Students on Computer
Sciences, July 20-23, 2000, Szeged.

[18] Dissipate,, a SIP implementation library and Kphone, an internet telephone
program (http://www.div8.net/dissipate/).

[19] QT, the crossplatform C + + GUI framework (http://trolltech.com/).

[20] Dimitri van Heesch: Doxygen (http://www.stack.nl/~dimitri/doxygen/).

[21] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson: A Transport
Protocol for Real-Time Applications (RTP). RFC 1889 January 1996.

[22] The Linux Kernel (http://www.linux.org/).

[23] D. Crocker and P. Overell: Augmented BNF for Syntax Specifications
(ABNF). RFC 2234 November, 1997.

[24] R. S. Scowen: Extended BNF - A generic base standard (EBNF). ISO
14977

[25] L. Sógor, P. Hendlein, K. Notaisz, M. Fidrich, G. Fóris, G. Kiss, D. Bátri,
Gy. Horváth and M. Bohus: Development of a Communication Environ-
ment between IPv6 and IPv4 SZTE Internal Report, April 2001, Szeged.

http://www.antlr.org/
http://www.div8.net/dissipate/
http://trolltech.com/
http://www.stack.nl/~dimitri/doxygen/
http://www.linux.org/

