
Acta Cybernetica 15 (2002) 669-682.

Recognizing Design Patterns in C + + Programs
with the Integration of Columbus and Maisa

Rudolf Ferenc* Juha Gustafssoní
László Müllerf and Jukka Paakki§

Abstract

A method for recognizing design patterns from C + + programs is pre-
sented. The method consists of two separate phases, analysis and reverse
engineering of the C + + code, and architectural pattern matching over the
reverse-engineered intermediate code representation. It is shown how the
pattern recognition effect can be realized by integrating two specialized soft-
ware tools, the reverse engineering framework Columbus and the architectural
metrics analyzer Maisa. The method and the integrated power of the tool set
are illustrated with small experiments.

Keywords: design patterns, reverse engineering, source code parsing, C + + ,
object-oriented design

1 Introduction
Due to the increase of size and complexity of software systems, the importance
of being able to comprehend and assess the quality of (legacy) software code has
been steadily rising. Traditional software metrics, such as complexity, cohesion,
and coupling have not fully met the requirements of industrial software develop-
ment, mostly because they are rather low-level concepts and do not capture the
high-level design decisions actually made by the designers and programmers when
constructing the software.

A more high-level view over a software system can be created by modern tech-
niques commonly known as reverse engineering. In reverse engineering, the ob jec-
tive is to extract the static structure and the dynamic behavior of tlfe code into
some abstract representation, so as to make it easier to explore the essential aspects
of the system by ignoring insignificant implementation details. In the idealistic case

"University of Szeged. Aradi Vértanuk tere 1, H-6720 Szeged, e-mail: ferencacc.u-szeged.hu
+ University of Helsinki. P.O. Box 26, FIN-00014 Helsinki, e-mail: g u s t a f s s f l c s . h e l s i n k i . f i
^University of Szeged. Aradi Vértanuk tere 1, H-6720 Szeged, e-mail: muller- iafreemail .hu
^University of Helsinki. P.O. Box 26, FIN-00014 Helsinki, e-mail: paakki f l c s .he l s ink i . f i

669

670 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

the low-level code is reverse-engineered backwards into its original design - or at
least to a form that might have been the intent of the software designers.

Reverse engineering methods and tools produce a wide variety of abstract soft-
ware representations. A natural and currently quite popular strategy of abstracting
object-oriented programs is to extract them into a set of UML diagrams [11]. Un-
der the assumption that UML is not just a general-purpose modeling language but
also a language for describing software architectures, the generated diagrams can
indeed be regarded as representing the architectural design of the system.

While the automatic generation of UML diagrams from software code is already
supported by a number of reverse-engineering tools, it is somewhat surprising that
one of the cornerstones of contemporary object-oriented software engineering, de-
sign patterns [5], is in almost total lack of advanced tool support. By abstracting
practical solutions to frequently occurring design problems into an object-oriented
format, design patterns are a most natural and useful asset when recovering the
architectural design and the underlying design decisions from the software code.

In this paper we present a technique for automatically recognizing design pat-
terns from object-oriented (C++) code. The method relies on two software tools,
Columbus [1][3] and Maisa [10][12], Columbus is a versatile reverse-engineering
system that transforms C + + programs into a number of abstract representations,
including UML class diagrams. Maisa is a metrics tool that analyzes the quality
of a software architecture given as a set of UML diagrams. Since one of the func-
tionalities of Maisa is the mining of design patterns from the input architecture,
Columbus and Maisa together provide the combined effect of recognizing design
patterns from C + + code: the code is first transformed by Columbus into UML
class diagrams, which are then traversed and matched against a set of predefined
design patterns by Maisa. The integration of Columbus and Maisa is technically
straightforward: Columbus exports its UML diagrams into Maisa using its textual
input format. .

The Columbus-Maisa couple can be used both to document and analyze a soft-
ware system implemented in C + + . In addition to that, since the foremost ap-
plication area of Maisa is the software design phase and that of Columbus is the
implementation (coding) phase, the tools can be used to verify that the archi-
tectural design decisions (Maisa) are followed in the implementation phase and
actually realized in the code (Columbus). This makes it possible to assess more
closely the software development process as well as track the evolution of design
decisions during it.

We proceed as follows. The metrics analyzer Maisa is presented in Chapter
2, concentrating especially on its pattern mining facility. The reverse-engineering
system Columbus is presented in Chapter 3, followed by a short description of the
tool integration in Chapter 4. In Chapter 5 we discuss our experiments on design
pattern recognition. Finally, conclusions and future directions are addressed in
Chapter 6.

Recognizing Design Patterns in C++ Programs 671

2 Maisa
Maisa [10][12] is a software tool for the analysis of software architectures, developed
in an ongoing research project at the University of Helsinki. The key idea in Maisa
is to analyze design level UML diagrams and compute architectural metrics for
early quality prediction of the software system.

In addition to calculating traditional (object-oriented) software metrics such as
Number of Public Methods [2], Maisa looks for instances of design patterns (either
generic ones such as the well-known GoF patterns [5] or user-defined special ones)
from the UML diagrams representing the software architecture. According to the
experiences gained so far with industrial cases, the level of abstraction is crucial for
the success of the analysis: the more detailed the diagrams are, the more accurate
are the results. Therefore design pattern mining at the detailed level of source
code, as presented in this paper, is a most promising way of improving the practical
usability of Maisa.

Maisa also incorporates metrics from different types of UML diagrams and ex-
ecution time estimation through extended activity diagrams [15]. Additionally,
we are currently studying the possibility of using dynamic information (such as
sequence diagrams) for defining patterns more accurately.

2.1 Constraint satisfaction in pattern mining
Constraint satisfaction [6] [7] is a generic technique that can be applied to a wide
variety of tasks, in our case to mining patterns from software architectures or
software code. A constraint satisfaction problem (CSP) is given as a set of variables
and a set of constraints restricting the values that can be assigned to those variables.
Unary constraints (denoted as Pi) restrict the values for a single variable, while
binary constraints (denoted as Pij) represent a condition for a pair of variables.
The CSP is often modeled as a graph, where the nodes represent the variables and
the arcs represent the constraints.

Formally, a CSP can be stated as follows [6]:
(3a:i € Di)(3i2 e £> 2)-(3x n E D^P^n) A P2{x2) A ... A Pn(xn) A ̂ 12(11,12) A
Pi3(xi,x3) A ... A Pn-in{xn-i,xn),
with Pij included for all i < j.

In practical terms, variable domains (Dj) must consist of a finite number of
discrete values. Evén so, the solution of trying out all combinations would be too
slow. In addition, most combinations would make no sense, so it's no use to try
them at all. We may try a particular value several times, even if there is no way
that the value could be a solution for a given variable. Therefore we must find a
way to effectively prune out impossible candidates.

It is not always possible or practical to find a complete solution. If we allow
partial satisfiability, we may accept those solutions that violate (to a certain extent)
some of the constraints. In this situation, the constraints do not offer just exclusive
alternatives. We may define our criteria separately for each case. A disadvantage
of this technique is that the number of potential solutions may go up quite rapidly.

672 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

Some research has been done regarding the case of partial satisfiability [4] and it
may suit our problem quite well, as the patterns themselves are not always well-
defined (discussed further in Chapter 2.3).

We define our pattern mining problem as a CSP in the following way:

• The variables (nodes) represent the roles of a pattern.

• The variable domains are initialized to contain all the names (identifiers) in
the diagram(s) in question.

• Unary constraints represent conditions for a single role (e.g. the element in
role X must be of type abstract class).

• Binary constraints represent conditions between two roles (e.g. the class in
role X must be a subclass of the class in role Y).

For each pattern we compute a result, i.e. the role bindings that describe this par-
ticular pattern. The number of these bindings depends on the pattern in question.
A binding is a pair {role,element], where role is the name of the role and element
is the diagram element that appears in that role, e.g. in the Factory M e t h o d
pattern [5] two of the roles are Product and Creator.

2.2 Reducing the search space
A simple and useful way of testing the candidate values is backtracking, where the
conditions are tested for each value. If the conditions are not met, that value is
discarded. Before backtracking, we must make sure that there are no unsuitable
values in the domain of each variable. This means that if we require that a certain
variable can only have ciass-typed values, then we can prune all attributes, methods
etc. from its domain. This way we can make the number of candidates as small
as possible. Currently we use the AC-3 algorithm [6] in Maisa, but the algorithm
can be easily replaced. This implementation has originally been designed by Pauli
Misikangas [8].

2.2.1 AC-3 a lgor i thm

The first and most trivial requirement is node consistency. Node i is node consistent,
iff Vx 6 Di,Pi(x) holds. The following algorithm ensures node consistency.

procedure NC-1:
begin

for i 1 until n do
begin

Di <- {x G Di\Pi{x)}
end

end

Recognizing Design Patterns in C++ Programs 673

Thus, for example, all attribute-entities will be pruned by NC-1 from the domain
of a variable having a constraint that allows only solutions of type class.

Arc consistency is defined in a similar fashion: Arc (i,j) is arc consistent, iff
Vx € Di such that Pi(x) holds, 3y £ Dj such that Pj(y) and Pij(x,y). A more
detailed discussion of arc consistency can be found in [9].

A single arc can be revised using-the following procedure REVISE that returns
a boolean value. The idea is similar to that behind node consistency. We delete all
values from the domain of the originating node Di, for which there axe no 'legal'
arcs:

procedure REVISE((i,j)):
begin

DELETE false
for each x G Di do
if $y G Dj such that Pij(x,y), then

begin
delete x from Di
DELETE true

end
return DELETE

end

The AC-3 algorithm first utilizes the node consistency algorithm and then the
arc consistency revision algorithm as follows. We denote the entire CSP graph
with G and the respective set of arcs (constraints) with arcs(G). Additionally
we denote the current (non-consistent) set of arcs with Q, which means that the
algorithm halts as soon as Q is empty.

procedure AC-3:
begin

NC-1
Q { (m) I (m) 6 arcs{G),i ^ j}
while Q not empty do

begin
select and delete any arc (k ,m) from Q
if REVISE ((k ,m)) then

Q Q U {(i, k)\(i, k) G arcs(G),i ± k,i ± m }
end

end

After the domains have been made consistent, we search for correct bindings
among the remaining values that satisfy the current set of constraints. In the simple
case we have only one value for each variable.

674 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

2.2.2 Auxiliary facts

Many design patterns are 'related' to each other in the sense that they have com-
mon elements (see e.g. metapatterns in [13]). These relationships may be taken
advantage of in two ways: the ordered search of patterns and the use of auxiliary
facts [8]. When a particular pattern is being searched for, new facts are added.
These facts can then be utilized later when searching for other patterns. Con-
sider, for example, that we are searching for instances of the Observer pattern
[5] which has both the 1:1 Connection and the 1 :N Connection pattern [13]
among its prerequisites. We would now take advantage of new facts 1:1 Connec-
tion and 1:N Connection that have been added while searching for instances of
the respective patterns.

Most of this hierarchy consists of low-level relationships. As a consequence,
we get better results by using facts extracted from source code instead of design
diagrams. We can overcome some of the limitations of design diagrams (see Chap-
ter 2.3). Nevertheless, the Maisa method is particularly well-suited to be used
together with a reverse engineering tool such as Columbus.

2.3 Interaction
The AC-3 (and generally any other purely syntactic) algorithm may still produce a
large number of false positives, when we have a non-trivial task like finding vaguely
defined design patterns. To make matters worse, several fairly common design
patterns have features that are very difficult or even impossible to model as a set
of constraints. In these cases human intuition and insight is essential for verifying
the potential bindings generated by the algorithm.

Many design patterns are too abstract to be easily represented syntactically
[5]. The situation becomes even more complex if we require a fine-grained classi-
fication of separate pattern instances. Consider, e.g., the situation where finding
instances of the metapattern 1:1 Connection [13] is not enough, but we want to
make the distinction between the patterns Bridge and Command. Their syntac-
tic structure is alike so an attempt to automatically separate them would not be
realistic.

Another related problem is that in many cases the design diagrams simply do
not contain enough information. (UML) associations are a typical example. This
concept has quite a lot of expressive power. An association can be implemented in
a number of different ways. A common case would be to include an attribute in one
of the classes containing a reference to the other class, or to have a class that calls a
method of another class. During the design phase the more general representation
is usually enough: either we do not know the implementation details, or we do not
wish to fix them yet. However, in order to recognize some common design patterns
(such as Abstract Factory and Builder), we need to know these connections
explicitly. In these cases we either have to include more detailed information in
the UML diagrams or try to find the patterns using incomplete information. The
former alternative is not viable in practice, as in most cases we simply do not have

Recognizing Design Patterns in C++ Programs 675

(or even need) the required level of detail in the design phase. As a solution to the
latter case partial satisfiability techniques might be worth investigating.

Even when dealing with correct positive instances of design patterns, the number
of possible bindings can become large (e.g. when searching for Compos i t e or
Med ia to r patterns), since the number of elements that can participate in a certain
role in a pattern is not limited. The basic CSP algorithm would try to find them
all. This is also a situation, where human interaction is quite helpful.

An important issue is that the rules describing the patterns are correct. This
is even more important, if the semantics of the pattern are complex. Missing or
false constraints may either produce a number of false positives (which can be
frustrating) or false negatives (which is what we want to avoid). This issue might
seem obvious, but considering the small semantical subtleties many patterns have,
finding the correct representation for a pattern is not necessarily trivial.

To be of any use this kind of interaction naturally requires a highly knowl-
edgeable user (knowledge of both the design patterns and the problem domain is
essential). It must be emphasized, though, that interaction is usually not required,
and the AC-3 algorithm produces results relatively fast even when working with
larger domains.

Many features discussed here, such as the verification of potential bindings or
the presentation of design patterns, require to extend the current user interface of
Maisa. For the time being, only a textual presentation is available. In the future,
more usable alternatives will be developed.

3 Columbus

Columbus is a reverse engineering framework [1][3], which has been developed in
cooperation between the Research Group on Artificial Intelligence in Szeged and
the Software Technology Laboratory of Nokia Research Center. Columbus is able
to analyze large C / C + + projects and to extract their UML class model [11] as well
as conventional call graphs.

The main motivation for developing the Columbus system has been to create
a general framework for combining a number of reverse engineering tasks and to
provide a common interface for them. Thus, Columbus is a framework tool which
supports project handling, data extraction, data representation, data storage, fil-
tering, and visualization. All these basic tasks of the reverse engineering process
for the specific needs are accomplished by using the appropriate modules (plug-ins)
of the system. Some of these plug-ins are provided as basic parts of Columbus,
while the system can be extended to serve other reverse engineering requirements
as well. This way we have got a really versatile and easily extendible tool for reverse
engineering.

676 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

3.1 Overview of the Columbus System
The basic operation of Columbus is performed by three types of plug-ins:

• Extractor plug-ins (currently an extractor for C / C + +) , whose task is to ana-
lyze a given input source file and to create an output file, which contains the
extracted information.

• Linker plug-ins, whose task is to build up and filter the merged internal
representation of the project. This process is carried out based on the files
created by the extractor plug-in.

• Exporter plug-ins, whose task is to export the internal representation built up
and filtered by the linker plug-in into a specific output format. (Currently:
Maisa, TDE Mermaid 2.2, TED 1.0, Rational Rose, Microsoft Jet Database,
HTML, XML and ASCII.)

In addition to the built-in plug-ins, the user can write and add his/her own new
plug-in DLLs to the Columbus system using the plug-in API.

3.2 Columbus projects
The extraction process is based on the concept of a Columbus project. A project
stores the input files (and their settings: precompiled header, preprocessing, out-
put directories, message level, etc.) displayed in a tree view, which represents a
real software system. The project can simultaneously contain source files in dif-
ferent programming languages. Non-source code files can be added to the project
as well (e.g. documents, spreadsheets), to be displayed by Columbus using OLE
technology.

3.3 The Extraction Process
The extraction process (Figure 1) itself is very similar to compilation. The first
stage is data extraction. Columbus takes the input files one by one and passes
them to the appropriate extractor, which creates the corresponding internal repre-
sentation files. In the second stage the linker plug-in is automatically invoked in
order to link (merge together) the internal representation files in the memory. In
the third stage the data is transformed into a given export format, usually based
on a filtered internal representation. An important advantage of Columbus is that
it'fc&n incrementally perform all these steps, that is, if the partial results of certain
stages are available and the input of the current stage has not been changed, the
partial results will not be recreated.

3.4 CAN - The C / C + + Analyzer
Parsing of the input source code is performed by the C / C + + extractor plug-in of
Columbus, which invokes a separate program called CAN (C + + ANalyzer). CAN

Recognizing Design Patterns in C++ Programs 677

STAGE 1 I STAGE 2 I STAGE 3
(extraction) | (linking) | (exporting)

Figure 1: The extraction process

is a command-line (console) application for analyzing C / C + + code. This allows its
integration into the user's makefiles and other configuration files, thus facilitating
automated execution in parallel with the software build process.

Basically, CAN accepts one complete translation unit at a time (a preprocessed
source file). For files that are not preprocessed a preprocessor will be invoked. The
actual results of CAN are the internal representation files, which are the binary
saves of the internal representations built up by CAN during extraction.

One of the greatest assets of CAN is probably the handling of templates and
their instantiation at source level, which is accomplished using a two-pass technique
in program analysis. The first pass only recognizes the language constructs in
connection with the templates (like a "fuzzy" parser) and instantiates them. The
second pass then performs the complete analysis of the source code and creates its
internal representation.

The C + + language processed by the analyzer covers the ISO/IEC standard from
1998 [14]. Furthermore, this grammar is extended with the Microsoft extensions
used in Microsoft Visual C + + .

4 Integration of Columbus and Maisa
As mentioned in the previous chapter, Columbus offers an Application Program-
ming Interface to access the information extracted from a C / C + + program. This
API establishes a direct connection to the ASG (Abstract Semantic Graph) of the
analyzed project, which is the common internal representation for all the informa-
tion generated by the C / C + + extractor. This way it is very easy to create an

678 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

exporter plug-in for Columbus that can transform the ASG into any desired da ta
format.

Because Maisa is implemented entirely in Java, it cannot access Columbus's
ASG directly, so we have instead chosen a trivial way for connecting the two tools:
an exporter plug-in in Columbus creates a file in Maisa's input file format, which
can then be opened and processed further with Maisa.

The file created by Columbus contains the reverse-engineered information in
PROLOG format, as facts over the main program elements (classes, at tr ibutes,
etc.) and their relationships (subclassing, etc.) This information is detailed enough
to support, most notably, the automatic recognition of design patterns from the
underlying C + + source code.

5 Experiments
The design pat tern recognition approach described above has been tested with a set
of small experiments. For this purpose we have implemented some of the s tandard
design patterns [5] in C + + . After that we have used Columbus to analyze the
code and to extract high-level structural information from it into the input format
of Maisa. Finally, Maisa has been applied to recognize design patterns from the
structural information (and, indirectly, from the original C + + code).

We demonstrate this process with the S i n g l e t o n [5] design pattern as an ex-
ample. The intent of this pattern is to ensure tha t a class has only one instance.
One possible implementation of Singleton in C + + is as follows:

class MySingleton {

public:

static MySingleton* getlnstanceO;

protected:

MySingletonO {};

private:

static MySingleton* instance;

>;

MySingleton* MySingleton::instance = 0;

MySingleton* MySingleton::getlnstance() {

if (instance==0) {

instance=new MySingletonO;

>
return instance;

>

The semantic intent of S i n g l e t o n is realized by a static field that holds the
only instance of the class. The constructor of this class is not accessible for other

Recognizing Design Patterns in C++ Programs 679

classes. The static getlnstance method creates the single instance, if necessary, and
returns it. The only way to access the instance of the class is through this method.

When analyzing this piece of code with Columbus, we obtain (UML specific)
information over class relations, such as generalizations, aggregations, associations,
as well as the calling dependencies. This information is generated by Columbus
into the following PROLOG-like format:

class("MySingleton").

method("MySingleton.getlnstance()").

public("MySingleton.getInstance()").

static("MySingleton.getInstance()").

has("MySingleton","MySingleton.getlnstance()").

returns("MySingleton.getlnstance()","MySingleton").

method("MySingleton.MyS ingleton()").

protected("MySingleton.MySingleton()").

has("MySingleton","MySingleton.MySingletonO").

attribute("MySingleton.instance").

private("MySingleton.instance").

static("MySingleton.instance").

has("MySingleton","MySingleton.instance").

typeof("MySingleton.instance","MySingleton").

On Maisa's side, the S ing le ton pattern candidates are specified by the following
facts:

class("Singleton").

attributeC'Singleton.instance").

has("Singleton","Singleton.instance").

typeof("Singleton.instance","Singleton").

static("Singleton.instance").

This description states that a S ing le ton candidate (class) must have a static
at tr ibute whose type is the same as the class itself. When matching this pattern
description with the high-level description of the C + + fragment, as produced by
Columbus, Maisa produces the following output:

Solution 0

Singleton.instance = MySingleton.instance

Singleton = MySingleton

According to this, Maisa has found an instance of the S ingleton pat tern. The
equations on the last two lines give the bindings generated by the AC-3 constraint
satisfaction algorithm, with the name of the pattern role on the left-hand side of
the equation, and the class, attribute, or method taking that role in the C + + code
on the right hand side.

680 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

The following table summarizes the findings of our experiments. The table
gives the names and brief descriptions of the design patterns [5] that have been
recognized with the Columbus-Maisa couple.

Pattern name . Description Missing facts
Singleton Ensures that a class has

only one instance
-

Visitor Represents an operation
on the elements of an
object structure

-

Builder Separates the creation of
a complex object from its
representation

reads (method, attribute)
writes(method,attribute)

Factory Method Defines an interface for
creating subclass-specific
objects

-

Prototype Creates objects by cloning
prototypical instances

-

Proxy Provides a placeholder for
an object to control
access to it

reads(method, attribute)

Memento Captures the state of an
object

-

There are certain facts that are required for some design patterns but that
Columbus does not generate yet. These facts are listed in the third column of the
table. In the experiments, the additional facts were added manually to the output
which was then exported to Maisa. By this, Maisa was able to correctly recognize
the corresponding patterns.

The facts r e a d s (m e t h o d , a t t r i b u t e) and w r i t e s (m e t h o d , a t t r i b u t e) both
mean that the specified method accesses the specified attribute. The fact w r i t e s
has the additional meaning that the state of the attribute changes in some way.

6 Conclusion and further work
We have presented a method and tool set for recognizing design patterns from
C + + code. The method can be used for reverse-engineering purposes to study the
structure, behavior and quality of the code, as well as for tracking the evolution of
design decisions between the architectural level and the implementation level of a
software system written in C + + .

In our experiments it was noticed that some design patterns, like Iterator
and Observer, cannot be recognized with the current method. The reason for
this is that in the Maisa pattern library the descriptions of such patterns contain
generated facts, i.e., structural facts that are dynamically pushed to the input by

Recognizing Design Patterns in C++ Programs 681

Maisa when it recognizes a particular kind of pattern or a special kind of a common
class relation. In order to recognize these kinds of design patterns, our combined
method must be extended with matching of the generated facts as well.

While our initial tiny experiments show the potential capability of the pattern
recognition approach, more extensive experiments with real cases must be carried
out to verify the real power of the method. Such larger-scale experiments have been
made with another design pattern tool [8] (using the same pattern mining algorithm
as Maisa), and the results show that the technique is capable of detecting most
standard design patterns quit'e efficiently - even those that the original programmer
did not explicitly design into the code. On the other hand, it was noticed that some
very abstract and fuzzy patterns (such as Interpreter) cannot be reliably detected
by automatic means and that the performance degrades with large software systems
(consisting of hundreds of thousands of program lines).

Further work is also needed for separately improving the tools. The most im-
portant improvement on the Columbus side is extending the set of generated UML
diagrams beyond the currently supported class diagrams, while the main devel-
opment trends in Maisa are performance analysis with extended UML activity
diagrams and the use of statistical design information to predict the . quality of the
final system.

Acknowledgements
Maisa is being developed in a research project financed by the Finnish National
Technology Agency (Tekes), Academy of Finland, Nokia Research Center, Nokia
Mobile Phones, Space Systems Finland, and Kone. In addition to the Finnish
co-authors of this paper, the Maisa research group includes Lilli Nenonen, Minna
Majuri, and Inkeri Verkamo.

Columbus is being developed in cooperation with Nokia Research Center. In
addition to the Hungarian co-authors of this paper, the Columbus research group
includes Árpád Beszédes, Ferenc Magyar, and Tibor Gyimóthy.

References
[1] Beszédes, A., Ferenc, R., Magyar, F. and Gyimóthy, T. Columbus Setup

and User's Guide. ©1998-2000 Nokia Research Center.

[2] Chidamber, S.R., Kemerer, C.F. A Metrics Suite for Object-Oriented De-
sign. IEEE Transactions on Software Engineering 20,6(1994), 476-493.

[3] Ferenc, R., Magyar, F., Beszédes, A., Kiss, A. and Tarkiainen, M. Colum-
bus - Tool for Reverse Engineering Large Object Oriented Software Sys-
tems. In Seventh Symposium on Programming Languages and Software
Tools (SPLST 2001), Szeged, Hungary, 2001, 16-27.

[4] Freuder, E., Wallace, R. Partial Constraint Satisfaction. Artificial Intelli-
gence 58,1-3(1992), 21-70.

682 Rudolf Ferenc, Juh a Gustafsson, László Müller, and Jukka PaaJcki

[5] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Mackworth, A. Consistency in Network of Relations. Artificial Intelligence
8,1 (1977), 99-118.

[7] Mackworth, A. The Logic of Constraint Satisfaction. Artificial Intelligence
58,1-3 (1992), 3-20.

[8] Misikangas, P. Automatic Recognition of Design Patterns in Object-
Oriented Programs (in Finnish). Master's Thesis C-1998-1, University of
Helsinki, Department of Computer Science, 1998.

[9] Mohr, R., Henderson, T. Arc and Path Consistency Revisited. Artificial
Intelligence, 28 (1986), 225-233.

[10] Nenonen, L., Gustafsson, J., Paakki, J. and Verkamo, A.I. Measuring
Object-Oriented Software Architectures from UML Diagrams. In Proc. 4th
International ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering. Sophia Antipolis, France, 2000, 87-100.

[11] OMG Unified Modeling Language Specification. Version 1.3, ©1999 Object
Management Group, Inc.

[12] Paakki, J., Karhinen, A., Gustafsson, J., Nenonen, L. and Verkamo, A.I.
Software Metrics by Architectural Pattern Mining. In Proc. International
Conference on Software: Theory and Practice (16th IFIP World Computer
Congress). Beijing, China, 2000, 325-332.

[13] Pree, W. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[14] Programming languages - C++. ISO/IEC 14882:1998(E).

[15] Verkamo, A.I., Gustafsson, J., Nenonen, L. and Paakki, J. Measuring De-
sign Diagrams for Product Quality Evaluation. In Proc 12th European
Software Control and Metrics Conference. London, England, 2001, 357-
366.

