
Acta Cybernetica 15 (2002) 601-620.

Experiences in Modelling Feature Interactions with
Coloured Petri Nets

Louise Lorentsen* Antti-Pekka Tuovinen} and Jianli Xu*

A b s t r a c t

A modern mobile phone supports many features: voice and data calls, text
messaging, personal information management like phonebooks and calendars,
WAP browsing, games, alaxm clock, etc. All these features are packaged
into a handset with a small display and a special purpose keypad. The lim-
ited user interface and the seamless intertwining of logically separate features
cause many interactions between the software components in the UI of mobile
phones. In this paper, we present an overview of our approach to modelling
feature interactions in Nokia's mobile phones with explicit behavioral models
of features. We use Coloured Petri Nets as the modeling language and the
tool Design/CPN that provides a graphical, interactive user interface for con-
structing and simulating Coloured Petri Nets. We describe at a general level
how we have created a graphical user interface for controlling and observing
the simulations of models through an on-screen mock-up of a mobile phone.
Then, we discuss the conrete results we have achieved by using our approach.

1 Introduction
The context of this work is the development of the user interface (UI) software
for Nokia's mobile phones. In this domain, the term feature means functionality
of the phone that is accessible or visible to the user via the UI of the phone.
The features are implemented as UI applications in a proprietary mobile phone
software architecture. Feature interaction means afunctional or behavioral (logical)
dependency between features. That is features depend on other features to fulfill
a service request, or the state of some feature may affect the default behavior or
availability of another feature. Interactions between features are necessary and
unavoidable, biit they can be difficult to control intellectually in the design phase
of the UI (conceptual design) and in the implementation and testing of the UI
software.

'Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200
Aarhus N, DENMARK, email: louiselOdaimi.au.dk

tSoftware Technology Laboratory, Nokia Research Center, P.O. Box 407, FIN-00045 NOKIA
GROUP, FINLAND, email:{Antti-Pekka.Tuovinen, Jianli.Xu}®nokia.com

621

622 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

The development of the user interface software for mobile phones is a concurrent
and a distributed engineering process. There is a large family of products that
share many common features but have also a high degree of variation in terms
of supported features and variation in the UI style (size of display, the number
and purpose of buttons and keys). There is also strong pressure for (re)using the
same SW components in as many products as possible. To avoid costly delays in
the integration phase of a set of independently developed features, it is important
to identify and clearly specify the feature interactions at an early stage of the
development. Precise descriptions of the interactions are also needed when planning
the testing of the UI software.

The problem that originally motivated this research work was that feature in-
teractions were not specified explicitly enough in the UI design specifications and
the SW design documentation. This meant that SW designers and UI testers had
to go through a lot of documentation to find out which interactions should be im-
plemented and tested. Also, not having a clear understanding of the interactions
of a new feature caused problems for managers because feature interactions were
considered as one of the primary indicators of the cost of developing the new fea-
ture. So, having a good' understanding of the interactions of the new feature would
help managers to make reliable estimates of the cost (in terms of both time and
money) of developing the new feature. Therefore, the goals of this work were:

• identifying categories of interactions that are specific to the domain of mobile
phones,

• creating behavioral models that capture the typical feature interaction pat-
terns in each category,

• providing an environment for interactive exploration and simulation of the
interaction models, and

• providing input to the development of the UI design specification template
used by UI designers to document the UIs of features.

In the core of our approach is an executable behavioral model of the underly-
ing UI architecture and the individual features. As the modeling language we use
Coloured Petri Nets. Coloured Petri Nets (CP-nets or CPN)[5] is a graphical mod-
elling language with well-defined semantics that allows simulation of CPN models as
well as formal analysis [6]. In contrast to many other modelling languages, CP-nets
are both state and actiosn oriented. CP-nets axe suitable for modelling concurrent
systems and a number of projects have demonstrated their usefulness in modelling
and analysis of complex systems [10, 8, 3, 4]. The tool Design/CPN [7] that we use
makes it possible to add domain specific graphics for visualisation and interaction
purposes.

Note that we did not include automatic detection of feature interactions by
analytical means (e.g. by state space analysis) as an explicit goal of this research.
We first wanted to concentrate on using visualisations and interactive simulation
as the means for human users to observe the behavior of the mobile phone when

Experiences in Modelling Feature Interactions with Coloured Petri Nets 623

features interact. Automatical feature interaction detection methods could then be
investigated as follow-up work.

The structure of the paper is as follows. In Section 2 we discuss the types of
interactions that are typical in mobile phones. Then, in Section 3 we describe at a
general level the modelling approach and the use of domain specific graphics in the
interactive simulation of the model. Then, in Section 4, we describe the concrete
results we have achieved by using our approach and discuss how the results have
been used by Nokia Mobile Phones. The technical details of the model and the
generation of the visualisations are given in [9].

2 Types of Feature Interactions
The user-interface (UI) of a mobile phone can be characterized as task-oriented.
This means that the phone UI is designed to directly support the main functions of
the device. This is different from a PC that has a generic UI that supports a much
wider range of applications. For example, a phone has keys assigned permanently
for answering and ending a call. Furthermore, when browsing the contact infor-
mation stored in the phonebook, it must be possible to call a person by a single
press of a key. This design philosophy reflects the requirements and needs of mobile
users, and the physical and economical constraints of the devices.

Each mobile phone product follows a certain UI style ranging from basic (sim-
ple) models to more complex business-use oriented models and exclusive fashion
products. The style is an important part of the product brand and it has a rel-
atively long lifetime. It describes the physical structure of the UI and the basic
mechanisms (keys and their operation) of user interaction. The UI specification of
a product defines the features of the product by showing the GUI design and by
describing the detailed user interaction for each feature.

A mobile phone is a multi-tasking device: many applications (features) can be
active at the same time. Even during a phone call and while talking, the user
can activate the calendar or start a game through the in-call menu of the phone.
The status of external actors can affect how some features behave in a mobile
phone. For example, network status affects some features immediately. Also, the
accessories that are connected to the phone change the default behavior of some
features. From the UI software point of view, these external actors are independent
sources of events; they can issue events that the features have to react to and change
their behavior accordingly. Inside the phone, the energy manager (battery status
supervisor) can also issue events indicating a critical condition (e.g. 'battery low'
-event) that need immediate reaction from some applications (a game is stopped)
or the whole phone software system (complete shutdown).

It is difficult to manage the behavioral complexity of feature interactions without
explicit models of the interactions. When new types of features and more complex
UI styles are introduced in the future, the problems become even more difficult.
UI designers, UI testers, and UI software developers all need a solid understanding
about the implications that feature interactions have on their work.

624 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

2.1 Feature Interaction Categories
Feature interactions come from different sources in a mobile phone. The first cat-
egory of interactions is the use interaction between features. For instance, the
task-oriented user interface design requires that when browsing the phone numbers
stored in the phone, a call can be made to a number directly from the browser.
This represents an interaction between the 'phonebook' and 'mobile originated call'
features.

The second category of interactions comes from the need to share the limited UI
resources (screen, keypad) between many features that can be activated indepen-
dent of each other. Because of the prioritization of the features, important events
may interrupt less important activities. For example:

• an incoming call screens phonebook browsing for the duration of the call but
the browser application does not know it,

• hang-up key stops search from phonebook (the browser is killed), and

• an incoming call suspends a game, but the game is saved and it can be
continued.

The third category involves interactions where one feature affects other features
by making them unavailable or by modifying their default behavior. For instance,
the 'any key answer' feature makes it possible to answer an incoming call by pressing
any key on the keypad and the 'key guard' feature locks the keypad for accidental
key presses. The combined effect of these features is that if 'any key answer' is
enabled and 'key guard' is on, an incoming call can be answered only by pressing
the 'send' (off-hook) key. However, once the call is active, 'key guard' is temporarily
disabled during the call and then automatically enabled again after the call. This
scenario can be made ever more complex by adding other simultaneous events, for
instance 'calendar alarm'.

The use interactions are specified in the UI specifications implicitly but in detail.
The use of word 'implicit' means that the use interactions are not called interactions
directly; they are described as a part of the flow of user's actions. Use interactions
are not so difficult to control during implementation. However, the interactions
of the second and the third categories are much more difficult to manage and the
behavioral specifications of the interactions are scattered in the specifications of the
involved features. Therefore, the focus of our work is on modeling and documenting
the typical feature interaction patterns that belong to the latter two categories.

3 Modelling and Visualising Feature Interactions
We do not intend to model the entire phone UI software system. Instead, we con-
centrate on a representative set of features that have interesting interactions. Also,
the main focus of the work described here is on the visualisation of feature interac-
tions rather than on the automatic analysis and detection of feature interactions.

Experiences in Modelling Feature Interactions with Coloured Petri Nets 625

| DisplayServer#41

| KeyPressServer#22

' PowerServer#40 ' • A
: : : : : : : : : : : : : : ; I ,

\ CallServer#38 ^ . Comm unication Kernel̂ •

Applications#37

Game#6

BasicCail#3*l'

Alarm«17

KeyguardtMS

Send_Recefve#5

Figure 1: The hierarchy page.

In this section, we first provide an overview of the CPN model. CP-nets will be
informally introduced along with the presentation of the model. Then, we explain
how we have added domain specific graphics to the model for visualisation and user
interaction purposes.

3.1 CPN Models
Figure 1 gives an overview of the CPN model by showing how it has been hierar-
chically structured into 14 modules (also referred to as subnets or pages). Each
node in Fig.l represents a subnet of the CPN model. An arc between two nodes
indicates that the source node contains a substitution transition whose behaviour
is described in the subnet represented by the destination node.

• The CPN model consists of four main parts that correspond to the four con-
cepts of the phone UI software system: applications, servers, UI controller, and
communication kernel. Servers implement the basic capabilities of the phone and
Applications implement the behaviour of features by using the services of servers.
Applications make the feature available to the user via a user interface; servers do
not have user interfaces. Servers and applications communicate by means of asyn-
chronous message passing through the communication kernel. The UI controller
manages the user interaction and handles the displays of applications. '

The subnet Top depicted in Fig.2 is the top-most page of the CPN model and
provides the most abstract view of the CPN model. The page consists of four
substitution transitions that correspond to the four parts mentioned above. The
detailed behaviour of UlController, Servers, CommunicationKernel, and Applica-
tions is modelled in subnets associated with the substitution transitions.

3.1.1 Semantics of CP-nets

A CP-net is created as a graphical drawing with textual inscriptions. A state of a
CP-net is represented by means of places which are drawn as ellipses with a name
positioned inside. The places contain tokens, which carry data values, or colours.
Each place has a type (a colour set) which specifies the kind of tokens that the
place can hold.

626 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

Figure 2: Page Top.

Actions of CP-nets are represented as transitions which are drawn as rectangles
with a name positioned inside. The transitions and places are connected by arcs.
Transitions remove tokens from places connected by incoming arcs and add tokens
to the places connected by outgoing arcs. The tokens removed and added are
determined by arc expressions which are textual inscriptions positioned next to
the arcs. In the Design/CPN tool, the inscription language is Standard ML. The
transitions can have guards that are boolean expressions written in ML.

When simulating a model, a step in a simulation means calculating a new mark-
ing for the CP-net. Calculating a new marking means calculating a new assignment
of tokens to places as dictated by the firing of a multiset of enabled transitions.
Before the transistions can fire, the set of binding elements is calculated first. This
means finding all the possible assignments of the tokens in the places to variables
(place holders for tokens) in the arc expressions that satisfy the guards of the tran-
sitions. Then, a non-conflicting set of binding elements can be chosen to enable a
set transitions. Note that a transition can actually be fired more than once during
a step depending on the binding elements chosen (see [5] for a detailed definition).

The Design/CPN tool provides ways to control the selection of bindings and
the selection of enabled transitions. Furthermore, the tool provides two modes of
simulation: interactive and automatic. The interactive mode can be used to debug a
CP-net by manually selecting bindings and enabled transitions. In automatic mode,
stop criteria can be set to limit the number of steps performed by the simulator.

3.1.2 Extensibi l i ty

An important property of the Design/CPN tool is that transitions can have code
segments in Standard ML. The code segments are cxcecuted when transitions fire.

Experiences in Modelling Feature Interactions with Coloured Petri Nets 627

The code segments can employ functions and types imported from user defined
ML libraries to create any kind of side effects. For instance, the Mimic library
[2] can be used to create animated domain specific graphical representations of
the concepts modelled by the CP-nets. Then, the graphical representation can be
updated during simulation from the code segments in the transitions to reflect the
changes in the state of the model.

The Mimic library provides functions for querying input from the user. That
is, the user can point and click the graphical objects on the Mimic windows (called
pages). The library captures the raw window events and converts them to ML
objects. However, the CP-nets comprising the model must be structured so that
they query for user input at the appropriate steps of the simulation. The (blocking)
calls to the Mimic query functions are contained in the code segments of transitions.

3.1.3 Modularity

The use of substitution transitions allows the user to relate a transition to a more
complex CP-net. The idea is similar to the module concepts found in many pro-
gramming languages. Substitution transitions can act like macros or functions in
terms of how the replacement/substitution is done.

Currently, the model constitutes of 98 page instances. However, there are only
25 different kinds of pages. The applications are modelled using a two or three
level hierarchy of pages containing substitution transitions. The state changes
of applications are modelled using a generic page that describes a single state
transitions in the behavioral model of application. This generic page is hooked up
with the input and output message buffers that an application uses to send and
receive messages from the UI controller.

Furthermore, CP-nets have the concept of fusion place. This means that the
user can specify that a set of places in a CP-net actually represent the same place
(object) even though the places of the set are drawn as individual places. So, fusion
places have the effect of global variables. Using these two constructs together with
Design/CPN's ability to import and export subnets, we have constructed a CPN
model of the phone UI software system where features can easily be added and
removed. Hence, large parts of the CPN model can be reused in the models of
other products with new features.

3.2 Visualisation

An important aspect of our work is the addition of domain specific graphics to the
model. This makes it possible to observe, configure and control simulations without
interacting directly with the CP-nets. We have made two extensions to the CPN
model. First, the state of the phone (as the user, observes it) is visualised by an
animation of the phone display and the keypad of the phone.

The animation is generated using the Mimic library [2]. So, during an inter-
active simulation run, the user can press the keys on the animated phone and the

628 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

MSC (1)

UI

Select game

New game

Reject call

Game

Select game

Request display

New game

Update display

Interrupt

Interrupt OK

Update display

Call
CD

Request display

Reject Call

Remove display

CallServer

Incoming call

Incoming call

1
2

3

i

5

6

7

8

9

10

11

12

13

14

15

IS
17

Figure 3: An MSC automatically generated during a simulation run.

underlying model responds correspondingly to the user's actions by changing the
display.

Second, the CPN model is extended with Message Sequence Charts (MSCs) [1]
that are automatically generated as graphical feedback. The reason MSCs are
chosen is that they allow the behaviour of the CPN model to be visualised in a way
that is familiar to Nokia's UI designers and software developers.

Fig. 3 shows an example of such an MSC automatically generated during a
simulation run of the CPN model. The MSC contains a vertical line for each of
the applications and servers in the phone UI software system. The arrows between
the vertical lines correspond to messages sent in the system. A mark on a vertical
line corresponds to an external event such as an user action. The communication
sequence considered corresponds to a scenario where the mobile phone receives
an incoming call while the user is playing a game. The scenario demonstrates an
interaction between the 'game' and the 'call' features that belongs to the category
of UI resource sharing interactions. The scenario consists of the following sequence
of events:

Experiences in Modelling Feature Interactions with Coloured Petri Nets 629

• The user selects a game from the menu (line 1)

• The game feature is notified and it requests the display (lines 2-3)

• The user selects a new game (line 4)

• The 'game' feature is notified and it changes the contents of the display ac-
cordingly (lines 5-6)

• An incoming call arrives. The 'call' server notifies the 'call' feature (lines 7-8)

• The 'call' feature requests the display (line 9)

• The display is currently in the use of the 'game' feature. The UI controller in-
terrupts the 'game' feature and after the interruption has been acknowledged
the display is granted to the 'call' feature (lines 10-12)

• The user rejects the call (line 13)

• The 'call' feature is notified and the display is removed (lines 14-15)

• The 'game' feature is resumed (lines 16-17)

In the scenario above, the UI controller (see Fig. 2) is responsible for interrupting
(lines 10-12) and resuming (lines 16-17) the execution of features. So, the features
do not have to know which features they potentially interrupt or which features
interrupt them. This makes it possible to add and remove features from the CPN
model without changing the subnets modelling the rest of the features.

4 Conclusions

4.1 Results

The model provides the basic UI infrastructure where we can plug in features.
Currently, the model includes the features listed below. All these features can be
simulated by interactive graphical simulation and the corresponding MSCs can be
generated during simulation. The MSCs can then be used as static documentation
about the events that occurred during simulation and about the messages that were
passed in the system during the simulation session.

Idle State
The Idle State feature handles the mobile phone when it is idle, i.e., is ready
to establish incoming and outgoing calls, browse the menus etc.

Menu
The Menu feature handles the menu structure and browsing of menus of the
mobile phone.

Call
The Call feature handles the incoming and outgoing calls of the mobile phone.

630 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

Any Key Answer
The Any Key Answer allows incoming calls to be answered by the user of the
mobile phone by pressing any key of the mobile phone.

Key Guard
The Key Guard feature blocks the keys of the mobile phone to prevent the
user from accidentally pressing keys when not using the phone.

Phone Book
The Phone Book feature allows names and numbers to be stored in memory.

Profiles and Caller Groups
The Profiles and Caller Groups feature allows the user to divide the numbers
stored in the Phone Book into caller groups and assign different ringing tones
to each caller group.

Alarm Clock
The Alarm Clock feature allows the user to set an alarm clock. When the
clock expires the mobile phone will indicate the alarm using tones and the
mobile phone display.

Power
The Power feature observes the status of the battery of the mobile phone and
indicates when the battery is low or charging.

Game
The Game feature allows the user to play games.

These features allow us to visualise all three types of interactions described in
Section 2. More features were planned to be included in the model (multi-party
calls and in-call menu) but these had to be dropped due to the time constraints of
the project.

The most valuable result of the modeling work was the understanding of the
nature and the causes of feature interactions gained by the people participating in
the project. This knowledge was refined and transferred to the customer at the
Nokia R&D unit that funded the research.

First, we helped the people responsible for the development of the Nokia mobile
phones UI design specifications to add a section about feature interactions into
the UI design specification template. The feature interaction, section in the new
template uses the categorisation described in Section 2. Second, using the MSCs
generated from simulating the model, we wrote a document that describes the
feature interaction categories with concrete interaction examples. We also identified
all the situations caused by events (from internal and external sources) that need
to be considered.when specifying the UI of a feature.

Naturally, the CPN model and all related technical documentation was also
delivered to the customer. The model may be valuable for the future development
of the mobile phone UI software architecture. However, from the customer's point
of view, the most immediate value of the research comes from the input to the UI
specification work.

Experiences in Modelling Feature Interactions with Coloured Petri Nets 631

4.2 Coloured Petri Nets vs. UML models
When we started the work on analysing and modelling feature interactions, we
considered also other formalisms than Coloured Petri Nets. The UML statecharts
and activity diagrams were also strong candidates. However, we chose CPNs from
the following reasons (in no particular order):

• CPNs are both state and action oriented. This gives a choice in the kind of
models that are constructed (i.e. data flow or discrete state models).

• The hierarchical structure of nets, the use of separate pages, and the fusion
places makes it possible to build modular models using either a top-down or
a bottom-up approach.

• Even incomplete models can be immediately simulated (executed) during con-
struction

• Tool support (Design/CPN) for simulation and visualisation of models.

• We had good earlier experiences in using CPNs in modelling and analysing
the mobile phone software architecture.

4.3 Final Remarks
The most immediate benefit of our modeling work is the increased understanding of
feature interactions. The model provides a sound base to build a body of knowledge
about feature interactions in Nokia's mobile phones and how to handle them at the
feature level.

We have found that CPNs are well suited for the purpose of modelling feature
interactions in mobile phones. As a modelling language, CPNs provides the flexi-
bility and modularity that is needed in the construction of non-trivial models. The
extensibility and progammability of CPNs in the Design/CPN tool have been very
important properties for our work.

There are several interesting possibilities for future tasks based on the current
work. For example, we could link the interaction patterns to existing implementa-
tion patterns in the software. This would be achieved through static documenta-
tion. Other possible uses of the model include regression testing of the behavior of
the phone UI when changing the logic of the features included in the model. The
Design/CPN tool gives several possibilities to add support also for automated re-
gression testing. For instance, we could check that invariants expressed as markings
(contained tokens) of specific states are preserved (using automatic simulation or
state space analysis). In [9], we discuss some initial ideas about automatic detection
of feature interactions using the CPN model and some additional tools.

Acknowledgements
This work has been funded by Nokia Mobile Phones. We want to thank Andy
Turner, Jyrki Okkonen, Piia Yliranta, and Sirpa Ruokangas for their input.

632 Louise Lorentsen, Antti-Pekka Tuovinen, and Jianli Xu

References
[1] ITU (CCITT). Recommendation Z.120: MSC. Technical report, International

Telecommunication Union, 1992.

[2] S. Christensen. Message Sequence Charts. User's Manual, January 1997. Avail-
able from http://www.daimi.au.dk/designCPN/.

[3] S. Christensen and J.B. J0rgensen. Analysis of Bang and Olufsen's BeoLink
Audio/Video System Using Coloured Petri Nets. In P. Azéma and G. Balbo,
editors, Proceedings of ICATPN'97, volume 1248 of Lecture Notes in Computer
Science, pages 387-406. Springer-Verlag, 1997.

[4] D.J. Floreani, J. Billington, and A. Dadej. Designing and Verifying a Commu-
nications Gateway Using Coloured Petri Nets and Design/CPN. In J. Billing-
ton and W. Reisig, editors, Proceedings of ICATPN'96, volume 1091 of Lecture
Notes in Computer Science, pages 153-171. Springer-Verlag, 1996.

[5] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer
Science. Springer-Verlag, 1992.

[6] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer
Science. Springer-Verlag, 1994.

[7] K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN Reference
Manual. Department of Computer Science, University of Aarhus, Denmark,
1995.
Online: h t t p : //www. daimi. au. dk/designCPN/.

[8] L. Lorentsen and L.M. Kristensen. Modelling and Analysis of a Danfoss
Flowmeter System. In M.Nielsen and D.Simpson, editors, Proceedings of
ICATPN'2000, volume 1825 of Lecture Notes in Computer Science, pages 346-
366. Springer-Verlag, 2000.

[9] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling Features and Feature
interactions of Nokia Mobile Phones Using Coloured Petri Nets. In J. Es-
parza and C. Lakos, editors, Proceedings of the 24th International Conference
on Application and Theory of Petri Nets (ICATPN'2002), Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[10] J. Xu and J. Kuusela. Analyzing the Execution Architecture of Mobile Phone
Software with Colored Petri Nets. Software Tools for Technology Transfer,
2(2):133—143, December 1998.

http://www.daimi.au.dk/designCPN/

