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Abstract 
During the last ten years, data mining, also known as knowledge discov-

ery in databases, has established its position as a prominent and important 
research area. Mining association rules is one of the important research prob-
lems in data mining. Many algorithms have been proposed to find association 
rules in databases with quantitative attributes. The algorithms usually dis-
cretize the attribute domains into sharp intervals, and then apply simpler 
algorithms developed for boolean attributes. An example of a quantitative 
association rule might be "10% of married people between age 50 and 70 have 
at least 2 cars". Recently, fuzzy sets were suggested to represent intervals with 
non-sharp boundaries. Using the fuzzy concept, the above example could be 
rephrased e.g. "10% of married old people have several cars". However, if the 
fuzzy sets are not well chosen, anomalies may occur. In this paper we tackle 
this problem by introducing an additional fuzzy normalization process. Then 
we present the definition of quantitative association rules based on fuzzy set 
theory and propose a new algorithm for mining fuzzy association rules. The 
algorithm uses generalized definitions for interest measures. Experimental 
results show the efficiency of the algorithm for large databases. 

1 Introduction 
The goal of data mining is to extract higher-level information from an abundance 
of raw data. Mining association rules is one of the important research problems 
in data mining [11]. The problem of mining boolean association rules over basket 
data was introduced in [1]. Given a set of transactions where each transaction is 
a set of items, an association rule is an expression of the form X Y, where X 
and Y are sets of items. An example of an association rule is: "40% of transactions 
that contain beer and potato chips also contain diapers; 5% of all transactions 
contain all of these items". Here 40% is called the confidence of the rule, and 5% 
the support of the rule. The problem is to find all association rules that satisfy 
user-specified minimum support and minimum confidence constraints. There are 
many known algorithms for mining boolean association rules (see [2], [4], [5], [10] 
and [13] for just a few examples). 
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In practice the information in many, if not most, databases is not limited to 
categorical attributes (e.g. zip code, make of car), but also contains much quan-
titative data (e.g. age, income). The problem of mining quantitative association 
rules was introduced and an algorithm proposed in [12]. The algorithm involves 
discretizing the domains of quantitative attributes into intervals in order to reduce 
each domain into a categorical one. An example of such an association might be 
"10% of married people between 50 and 70 have at least 2 cars". 

Without a priori knowledge, however, determining the right intervals can be a 
tricky and difficult task due to the "catch-22" situation, as called in [12], because 
of the effects of small support and small confidence. Moreover, these intervals may 
not be concise and meaningful enough for human experts to easily obtain nontrivial 
knowledge from those rules discovered. 

Instead of using sharp intervals, fuzzy sets were suggested in [9] to represent 
intervals with non-sharp boundaries. The obtained rules are called fuzzy associ-
ation rules. If meaningful linguistic terms are assigned to fuzzy sets, the fuzzy 
association rule is more understandable. The above example could be rephrased 
e.g. "10% of married old people have several cars". An algorithm for mining fuzzy 
association rules was proposed in [8], but the problem is that an expert must pro-
vide the required fuzzy sets of the quantitative attributes and their corresponding 
membership functions. It is unrealistic to assume that experts can always provide 
the best fuzzy sets for fuzzy association rule mining. Moreover, if the fuzzy sets are 
not well chosen, anomalies may occur. In this paper we will tackle this problem by 
introducing an additional fuzzy normalization process. 

The rest of this paper is organized as follows. In the next section, we present a 
brief description of how existing algorithms can be used for the mining of quantita-
tive association rules and how fuzzy techniques can be applied to the data mining 
process. Then we will introduce a fuzzy normalization process in Section 3. In 
the same section, we give the definitions of fuzzy association rules and interest 
measures. In Section 4 we propose a new algorithm for fuzzy quantitative associa-
tion rules. In Section 5 the experimental results are reported, followed by a brief 
conclusion in Section 6. 

2 Problem Description 

Several efficient algorithms for mining boolean association rules have been pre-
sented. Boolean attributes can be considered a special case of categorical attributes 
[4] and it is relatively straightforward to generalize the boolean algorithms for cat-
egorical attributes. For quantitative attributes, however, the situation is not so 
simple. We either have to somehow transform the quantitative association rules 
problem into boolean one or to find new algorithms. Here we shall, in fact, apply 
both alternatives. 
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2.1 Mapping Quantitative Attributes to Boolean Ones 

If the quantitative association rules problem can be mapped to the boolean associa-
tion rules problem, any algorithm for finding boolean association rules can be used 
to find quantitative association rules. This mapping can be performed as follows 
[12]. Suppose that we have a database shown in Table 1. 

RID Age Income Status RID Age Income Status 
1 19 1400 Unmarried 11 26 2000 Married 
2 22 1600 Unmarried 12 31 2400 Married 
3 31 2400 Unmarried 13 19 1400 Unmarried 
4 18 1400 Married 14 27 2200 Married 
5 23 1600 Married 15 31 2600 Married 
6 30 2800 Married 16 15 1000 Unmarried 
7 17 1200 Unmarried 17 24 1800 Unmarried 
8 25 2000 Married 18 38 2600 Married 
9 31 2200 Married 19 17 1200 Unmarried 

10 19 1400 Unmarried 20 39 2400 Married 

Table 1: An example database 

Let the relational table contain a boolean field for each attribute value/interval 
for each quantitative attribute. Then the value of any such boolean field, which 
corresponds to (attribute, v), would be "1" if the attribute had v in the original 
record, and "0" otherwise. Table 2 shows this mapping for the example database 
given in Table 1. Age is partitioned into three intervals: 11..20, 21..30 and 31..40. 
For income, two intervals have been defined. The categorical attribute, Status, is 
represented by two boolean attributes: "Unmarried" and "Married". 

RID 

1 
2 
3 
4 
5 

19 
20 

Age Age Age 
(11..20)(21..30)(31..40)( 

Income 
;i000..1800)( 

1 
1 
0 
1 
1 

1 
0 

Income 
2000..2800) 

0 
0 
1 
0 
0 

0 
1 

Status 
Unmarried 

1 
1 
1 
0 
0 

1 
0 

Status 
Married 

Ö 
0 
0 
1 
1 

0 
1 

Table 2: Mapping to boolean association rules problem 

For example, Record 5, which had (Age : 23) now has uAge : 11..20" equal to 
"0", "Age : 21..30" equal to "1", and Age : 31. .40" equal to "0", etc. 
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2.2 Mapping Problems 
Unfortunately, the mapping approach leads to two problems [12]: 

• Small support: if an interval is too small, a rule containing this interval may 
not have the minimum support; either very few rules are generated or rules 
are nearly as specific as the data itself. 

• Small confidence: if an interval is too large, a rule containing this interval in 
the antecedent may not have the minimum confidence; many rules with little 
information are generated. 

An example of the problem of small support (also called "sharp boundary prob-
lem" in [9]) is shown in Figure 1, suppose [11,20], [21,30] and [31,40] are three 
intervals created on the quantitative attribute Age, with 35%, 35% and 30% sup-
ports. If the minimum support threshold is a bit greater than 35%, then none of 
the intervals has sufficient support. However, there are high frequencies at 19 and 
31, so a small extension of the interval [21,30] would make it frequent. 

j • • • * 

20% 

15% 

10% I 

5% 

10 20 
Age 

30 40 

Figure 1: Example of small support problem 

Of course, there is no restriction that the intervals should be disjoint. By letting 
them overlap, the sharp boundary problem can be overcome [12], see Figure 2. 

10 

20% 

15% 

10%! 

5% 

15 20 25 
Age 

30 35 40 

Figure 2: Overlapping adjacent intervals 

Combining/overlapping adjacent intervals avoids the small support problem, 
and the number of intervals may be increased to avoid the small confidence problem. 
Unfortunately, this approach introduces a new problem [12]: 
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• Many rules: Consider an interval satisfying the minimum support. Then any 
range containing this interval will also satisfy the minimum support. Thus, 
the number of rules increases, and not all of them are interesting. 

2.3 Fuzzy Approach 
Instead of using sharp intervals, fuzzy sets were suggested in ([3], [9]) to represent 
intervals with non-sharp boundaries, as shown in Figure 3. Using fuzzy sets, an 
element can belong to a set with set membership value in [0,1]. The lower histogram 
in Figure 3 shows membership values chosen for the middle fuzzy set. 
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Figure 3: Fuzzy set 

However, if the fuzzy sets are not well chosen, some anomalies occur. In Figure 
1, the three intervals will be replaced by three fuzzy sets. Suppose the value 30 
has membership degree of 0.9 in the second set and 0.3 in the third set. Then it 
will contribute 0.9 to the support of the second fuzzy set and 0.3 to the third one. 
However, this means that the value 30 will be more important than other values 
since the sum of its contributions to different fuzzy sets has become greater than 
1. In the following section we will tackle this problem by introducing an additional 
fuzzy normalization process. 

3 Inclusion of Fuzzyness in Associaton Rules 
Our starting point is that the fuzzy sets and their membership functions are given. 
In [6] we gave a clustering algorithm for their automatic generation, but here we do 
not make any assumptions of the source of fuzzy sets. In this section we will first 
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introduce a fuzzy normalization process, to derive unbiased membership functions 
for the given fuzzy sets. Then we will give the generalized definition of a fuzzy 
association rule and related interest measures. 

3.1 Fuzzy Normalization Process 
Let I = {¿i, ¿2, • • •, in~} be the complete set of items where each ij (1 < j < n) 
denotes a categorical or quantitative (fuzzy) attribute. Further denote by F(ij) = 
{(ij, I) | I = 1 , . . . , N(ij)} the set of fuzzy sets (or non-fuzzy categories), related to 
item ij, where N(ij) represents the number of fuzzy sets (or number of categories). 
The membership function of (ij,l) is denoted by If ij is categorical, 

ij,i)(v) = 0 or » 7 i ( t , - , i ) = 1- If is fuzzy! 0 < m(ijti)(y) < 1. Thus, categories 
are special fuzzy sets, and can be handled similarly. 

Let t = {t.i\,t.i2, • • • ,t.in} be a transaction, where t.ij, (1 < j < n) represents 
the value of the jth item. Value t.ij can be mapped to 

{(l,m{ijil)(t.ij)) | for all i, 1 < I < N(ij)}. 

We define that F(ij) is a 'fuzzy partition' if m(ij,i)(v) = 1 f ° r each v 
in domain ij where ij is fuzzy. This is a natural generalization to the non-fuzzy 
partitioning of a set into disjoint intervals covering the whole range. In practice, 
the sum may not always be equal to 1. We therefore define a normalization process 
as follows: 

u • \ m(iiti)(t-ij) 
= ^NUT) 777-

Example. Suppose I = {status, age} where status is a categorical attribute with 
the domain of {married, unmarried} and age is a quantitative attribute with three 
fuzzy sets {young, middle, old}. Note that it is possible to define other fuzzy set 
groups for this attribute, t — {unmarried, 25} will be mapped to {{(married, 
0),(unmarried, 1)}, {(young, 0.2), (middle, 0.9), (old, 0.1)}} . 

(Status, married) (Status, unmarried) (Age, young) (Age, middle) (Age, old) 
0 1 0.2 0.9 0.1 

Table 3: Without fuzzy normalization 

Without normalization (Table 3), transaction t would increase the support 
of itemset {Status = unmarried, Age = young} by 0.2, the support of item-
set {Status = unmarried, Age = middle} by 0.9, and the support of itemset 
{Status = unmarried, Age = old} by 0.1. That is to say, this transaction will be 
counted 0.2 + 0.9 + 0.1 = 1.2 times for the item Age. However, it is unreasonable 
for one transaction to contribute more than others, if the corresponding discrete 
sets are disjoint. 
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(Status, married) (Status, unmarried) {Age, young) {Age, middle) {Age, old) 
0 1 0.167 0.75 0.083 

Table 4: After fuzzy normalization 

In contrast (Table 4), the normalization process will further transform the 
transaction t into {{(married, 0),(unmarried, 1)}, {(young, 0.167), (middle, 0.75), 
(old, 0.083)}}, for a total contribution of 1.0 for the item Age: 

It should be noticed that normalization is not always order-preserving, with 
respect to the values of membership functions. It might even produce functions 
which are not concave. For example, suppose that we have a quatitative attribute 
age and three transactions t\ = {25}, t2 = {26} and t3 = {27}. Table 5 shows the 
original and normalized mappings of the transactions into membership values. 

Transaction Age Original memberships 
{young, middle, old} 

Normalized memberships 
{young, middle, old} 

h 25 {0.20, 0.90, 0.10} {0.167, 0.750, 0.083} 
t2 26 {0.20, 0.91, 0.11} {0.164, 0.746, 0.090} 
h 27 {0.18, 0.92, 0.12} {0.148, 0.754, 0.098} 

Table 5: Example of normalization anomaly 

Notice the anomaly for the 'middle' fuzzy set: normalization changes the order 
of membership values. A sufficient (but not necessary) condition for concavity 
is that m(ij,i)(v) is constant for all v in domain ij. In [6] we tackled this 
problem and showed how to create a fuzzy partition directly, without normalization. 

3.2 Fuzzy Association Rule 
After having obtained the fuzzy partitions and their corresponding membership 
functions for each fuzzy set of every quantitative attribute, a new transformed 
(fuzzy) database DT is generated from the original database. Given a database 
DT = {t j, t2, • • •, tn} with attributes I and the fuzzy sets F(ij) associated with 
attributes i j in I, we use the following form for a fuzzy association rule [9]: 

If X = {x\,x2,... ,xp} is A = {ai,a2,... , a p } 
then Y = {yi,y2,...,yq} is B = {bub2,... ,bq}, 

where a* € F(xi), i = l , . . . , p , and bj € F(yj), j = l,...,q. X and Y are 
ordered subsets of I and they are disjoint i.e. they share no common attributes. 
A and B contain the fuzzy sets associated with the corresponding attributes in 
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X and Y. As in the binary association rule, "X is A" is called the antecedent 
of the rule while "Y is B" is called the consequent of the rule. We also denote 
z = X U Y = {zu ..., zp+q} and C = A U B = { c i , . . . , Cp+,}. 

3.3 Fuzzy Itemset Measures - Support and Confidence 
Let DT = { i i , ¿2, - - •, in} be a database, where n denotes the total number of 
records ('transactions'). Let (Z, C) be an attribute-fuzzy set pair, where Z is an 
ordered set of attributes Zj and C is a corresponding set of fuzzy sets Cj. (From 
now on, we prefer to use the word "itemset" instead of "attribute-fuzzy set pair" 
for (Z ,C ) elements). If a fuzzy association rule ( X , A) —» (Y, B) is interesting, 
it should have enough fuzzy support FS(z,c) a n d a high fuzzy confidence value 
FC((X,A),(Y,B)), where Z = X U Y, C = A U B. 

The fuzzy support value is calculated by multiplying the membership grade of 
each (zj,Cj), summing them, then dividing the sum by the number of records [9]. 
We prefer the product operator as the fuzzy AND, instead of the normal minimum, 
because it better distinguishes high- and low-support transactions. 

FS, (Z,C) = 
E i U n j M i f r 4 [(«¿.cj)]) 

where m is the number of items in itemset (Z, C). 
The fuzzy confidence value is calculated as follows: 

FC, UX,A),(Y,B)) 
_ FS(z,c) 

FS, (X,A) 

Both of the above formulas are direct generalizations of the corresponding for-
mulas for the non-fuzzy case [1]. 

(Age,middle) (Income, low) 
0.7 
0.2 

0.5 
0.3 
0.6 
0.8 

0.5 
0.3 
0.2 

0.4 
0.2 
0.4 

Table 6: Part of a database containing fuzzy membership values 

The following example illustrates the calculation of the fuzzy support and fuzzy 
confidence values. Let Z — {Age, Income}, C — {middle, low} and a part of 
database shown in Table 6. The fuzzy support and confidence of (Z, C) are given 
by: 
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FS(z,c) 

FCUX,A),(Y,B)) 

0.35 + 0.06 + 0.1 + 0.12 + 0.12 + 0.32 
6 

0.35 + 0.06 + 0.1 + 0.12 + 0.12 + 0.32 
0.7 + 0.2 + 0.5 + 0.3 + 0.6 + 0.8 

= 0.178 

= 0.345 

3.4 Fuzzy Covariance and Correlation Values 
Covariance is one of the simplest measures of dependence, based on the co-
occurrence of the antecedent (X , A) and consequent (Y, B). If they co-occur clearly 
more often than what can be expected in an independent case, then the rule 
(X, A) (Y, B) is potentially interesting. Piatetsky-Shapiro called this measure a 
rule-interest function [11]. We extend it to the fuzzy case, and define the covariance 
measure as: 

Covariance has generally the drawback that it does not take distributions into 
consideration. Therefore, in statistics, it is more common to use so called correlation 
measure, where this drawback has been eliminated. Again, we have to generalize 
the non-fuzzy formula to the fuzzy case, and obtain: 

similarly for (Y,B). 

These definitions are extensions of the basic formulas of variance and covariance. 
The value of the fuzzy correlation ranges from -1 to 1. Only a positive value tells 
that the antecedent and consequent are related. The higher the value is, the more 
related they are. 

We use the information in Table 6 to illustrate the calculation of the fuzzy 
correlation value of a rule. Given the rule, "If Age is middle then Salary is low", 
the fuzzy covariance and correlation values of the rule are as follows: 

FCOV((X,A),(Y,B)) = FS(Z,C) - FS(X,A) • FS(Y,B)-

FCorr(ix,A),(Y,B)) 
FCOV((X,A),{Y,B)) 

\JVar(x,A) • Var{YtB} ' 
where 

FCOV((X,A),(Y,B)) 

FCorr{{X,A),{Y,B)) 

0.178-0.516 0.333 = 0.006 

V0.045 • 0.012 
= 0.258. 
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We defined the fuzzy extension of correlation measure, because it is an alter-
native to confidence, when measuring the dependence between the antecedent and 
consequent of a rule. We defined some other alternative measures of interestingness 
in [7]. In Section 5, we shall show results for both confidence and correlation. 

4 Algorithm for Mining Fuzzy Quantitative Asso-
ciation Rules 

An efficient algorithm for mining quantitative association rules has been proposed in 
[12]. However, a new algorithm is needed to solve the mining of fuzzy quantitative 
association rules. The problem of discovering all fuzzy quantitative association 
rules can be decomposed into two subproblems: 

1. Find all itemsets that have fuzzy support ( F S ( X , A ) ) above the user speci-
fied minimum support (see Section 3.3). These itemsets are called frequent 
itemsets. 

2. Use the frequent itemsets to generate the desired rules. The general idea is 
that if, say, X, Y, and X U Y are frequent itemsets, then we can determine 
if the rule X Y holds by computing FC^X,A),(Y,B)) (see Section 3.3). If 
this value is larger than the user specified minimum confidence value, then 
the rule will be interesting. We can also use the fuzzy correlation value 
(FCorr((x,A),(Y,B))) f ° r this problem (see Section 3.4). 

An algorithm for mining quantitative association rules has the following inputs 
an outputs. 
Inputs: A database D, three threshold values minsup, minconf and mincorr. 
Output: A list of interesting rules. 
Notations: 

D the database 
DT the transformed database 
Fk set of frequent k-itemsets (have k items) 
c
k 

set of candidate k-itemsets (have k items) 
I complete item set 
minsup support threshold 
minconf confidence threshold 
mincorr correlation threshold 
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Algorithm: 
Main Algorithm (minsup, minconf, mincorr, D) 
1 F = 0; 
2 I = Search(D); 
3 (C\,DT) = Transform (D, I); 
4 k = 1; 
5 Fk = Checking(Cfc, DT, minsup)-, 
6 while (|Cfc| + 0) do 
7 begin 
8 k = k-\-\\ 
9 if k == 2 then 
10 Ck = Joinl (Fk-i) 
11 else Ck = Join2(F fc_i); 
12 Ck =Prun e(Ck)-, 
13 Fk = Checking (Ck,DT, minsup)-, 
14 F = FUFk-, 
15 end 
16 Rules(F,minconf,mincorr)-, 

The subroutines are outlined as follows: 

1. Search(D): The subroutine accepts the database, finds out and re-
turns the complete item set I = {¿i, ¿ 2 , . . . , in}- For example, 
I — {Age, Income, Status} for the database given in Table 1. 

2. Transform(£), I) : This step generates a new transformed (fuzzy) database 
DT from the original database by user specified fuzzy sets. At the same 
time, the candidate 1-itemsets C\ will be generated from the transformed 
database. (C, is a set of sets of {item, fuzzy set) pairs.) For example, C\ = 
{{(Age, young)}, {(Age, middle)}, {(Age, old)}, {(Income, low)}, {(Income, 
medium,)}, {(Income, high,)}, {(Status, unmarried)}, {(Status, married)}} 
is the complete set of candidate 1-itemsets. 

3. Checking(Cfc, DT, minsup): In this subroutine, the transformed (fuzzy) 
database is scanned and the fuzzy support (F S (X ,A ) ) °f each candidate in 
Ck is calculated. A k-itemset in Ck is deleted if its fuzzy support is less than 
minsup. The remaining candidate itemsets will be kept in Ck- At the same 
time, the frequent itemsets Fk will be generated from Ck-

4. Joinl(Ffc_i): This Join step generates C2 from Fi as follows: 
insert into C2 
select {(X, A), (Y, B)} 
from (X,A), (Y,B) in Fx 

where X ^ Y 
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For example, after this Join step C2 will be C2 = {{(Age, young), (Income, 
high)}, {(Age, middle), {Income, low)}, •• •}, but C2 ^ {•••, {(Age, young), 
(Age,middle)}, - • •}. 

5. Join2(Ffc_i): This Join step generates Ck from 1 as in [1]. For example, 
if we have {{(Age, young), (Income, low)}, {(Age, young), (Balance, low)}} 
in Fk~i, {{(Age,young), (Income,low), (Balance,low)}} will be generated 
in Ck. 

6. Prune(Cjfc): During the prune step, an itemset S in Ck will be pruned if a 
subset of S does not exist in Ck-i-

7. Rules (F): Find the rules from the frequent itemsets F. 

For example, if (Age, young) and (Income, low) are frequent itemsets, then 
we get the (Age, young) => (Income, low) rule, if its fuzzy confidence value 
(and fuzzy correlation value) is larger than the user specified minimum value. 

5 Experimental Results 
In this section, we will examine the accuracy and efficiency of our approach by 
experimenting with a real-life dataset. We applied our approach to a database called 
FAM95. This database contains data for the 63756 families that were interviewed 
in the March 1995 Current Population Survey (CPS), conducted by the Bureau 
of the Census for the Bureau of Labor Statistics. The data had 23 attributes: 7 
quantitative and 16 categorical. 

5.1 Interest Measures 
In this experiment, we use six quantitative attributes to illustrate how the fuzzy 
concept gives more interesting rules than the discrete. The quantitative attributes 
were age of head in years ("head" is the reference person in a family), number of 
persons, children in family, education level of head, head's personal income and 
family income. Each quantitative attribute has three intervals/fuzzy sets. We 
choose the intervals by applying the well-known quantile-based partitioning, so 
that each interval gets the same number of attribute values. 

Figure 4 shows the number of frequent itemsets for different minimum support. 
As expected, the number of frequent itemsets decreases as the minimum support 
increases from 10% to 45%. Fuzzyl denotes the fuzzy method without normaliza-
tion and Fuzzy2 denotes the fuzzy method with normalization. We can see that 
the fuzzy method with,normalization gives fewer frequent itemsets than the fuzzy 
method without normalization. This method and the discrete interval method give 
similar numbers of frequent itemsets. 
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Minimum Support 

Figure 4: Number of frequent itemsets 

Figures 5 and 6 show the number of interesting rules for different minimum 
confidence and correlation values. In both cases the minimum support was set to 
20%. The results are quite similar to those of Figure 4. 
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Figure 5: Effect of minimum confidence 

We can see that the fuzzy method without normalization using confidence to 
calculate interest measure gives the highest number of expected interesting rules. 
However, in the correlation case the fuzzy method with normalization gives more 
rules than the others if the minimum correlation value was 0.6. 

In the following we show some interesting rules. The minimum support was set 
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Figure 6: Effect of minimum correlation 

to 20%, minimum confidence to 50%, and minimum correlation to 0.5. 

IF IncHead is low THEN IncFam is low 
IF IncHead is medium THEN IncFam is medium 
IF FamPers is low AND IncHead is low THEN IncFam is low 
IF NumKids is low AND IncHead is low THEN IncFam is low 
IF FamPers is low AND NumKids is low AND IncHead is low THEN IncFam is low 

5.2 Scale-Up Experiment 
In this experiment, we will give the results on the performance of the algorithm 
using the confidence and correlation interest measures. The running time for the 
algorithm can be split into two parts: 

• Candidate generation. The time for this is independent of the number of 

• Counting support, confidence and correlation. The time for this is directly 
proportional to the number of records. When the number of records is large, 
this time will dominate the total time. 

Thus we would expect the algorithm to have near-linear scaleup. This is con-
firmed by Figure 7, which shows the execution time as we increase the number of 
input records from 10000 to 64000. Note that we use five quantitative attributes in 
the database and each attribute has three fuzzy sets. We have set the user specified 
parameters such that both methods will give the same number of rules. The graph 
shows that the methods scale quite linearly for this dataset. 

records. 
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Number of Records ( x 10000) 

Figure 7: Scale-up: number of records 

6 Conclusion 
In this paper, we showed a new algorithm for mining fuzzy association rules, which 
were introduced in earlier papers. We assign each attribute with several fuzzy sets 
which characterize the quantitative attribute. Fuzzy sets provide a smooth transi-
tion between member and non-member of a set. We gave three different definitions 
for interest measure: fuzzy support, fuzzy confidence, and fuzzy correlation. 

We showed two different methods of mining fuzzy quantitative association rules: 
without normalization, and with normalization. The unnormalized method gives 
the highest number of interesting rules. The normalized fuzzy method gives about 
the same number of rules as the discrete. However, either result set might not be 
included in the other. 

We proposed a new algorithm for mining such quantitative association rules. 
Our experiments on a real-life dataset indicate that the algorithm scales linearly 
with the number of records. They also showed that the confidence interest measure 
gives better performance than the correlation interest measure. 
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