
Acta Cybernetical5(2001) 279-304.

Using Decision Trees to Infer Semantic Functions
of Attribute Grammars *

Szilvia Zvada* and Tibor Gyimóthyt

Abstract

In this paper we present a learning method called LAG (Learning of Attribute
Grammar) which infers semantic functions for simple classes of attribute
grammars by means of examples and background knowledge. This method
is an improvement on the AGLEARN approach as it generates the training
examples on its own via the effective use of background knowledge. The
background knowledge is given in the form of attribute grammars. In
addition, the LAG method employs the decision tree learner C4.5 during
the learning process. Treating the specification of an attribute grammar as a
learning task gives rise to the application of attribute grammars to new sorts
of problems such as the Part-of-Speech (PoS) tagging of Hungarian sentences.

Here we inferred context rules for selecting the correct annotations for
ambiguous words with the help of a background attribute grammar. This
attribute grammar detects structural correspondences of the sentences. The
rules induced this way were found to be more precise than those rules learned
without this information.

1 Introduction
Attribute grammars were introduced in [11] as a formalism for the specification
of the semantics of program languages (see [1, 4]). They can be considered as an
extension of context-free grammars in the sense that attributes and their semantic
functions are related to the symbols of the grammar. An attribute is a named
property with given values and a semantic function computes its value based on
the values of other attributes. A semantic functions may be complex, therefore the
specification of an attribute grammar may be a laborious task. Hence a tool which
is able to complete a partially given attribute grammar by means of examples
would be very useful. The term "partially given" here means that some of the
attributes might lack semantic function. The task is to define these unknown
semantic functions.
Based on the correspondence of the nonterminals of attribute grammars and the
predicates of logic programs (see [5, 6, 17]), we can apply many of techniques to

*This work was supported by the grants O T K A T52721 and IKTA 8/99.
^Research Group on Artificial Intelligence, University of Szeged, H-6720 Szeged,
Aradi vértanúk tere 1, Hungary, e-mail: {zvada,gyimi}®sol. inf .u-szeged.hu

279

280 Szilvia Zvada, Tibor Gyimóthy

attribute grammars, which techniques were originally developed for logic programs.
For instance, viewing the specification of an attribute grammar as a learning task,
learning methods presented in the framework of inductive logic programming (ILP,
see [12, 14]) can be used to solve this task.
ILP is an active research area of machine learning that studies the definitions of
logic programs from examples and the presence of background knowledge. Since
examples and background knowledge are expressed in first-order logic, ILP methods
can be employed to learn relational and recursive definitions. This last property
makes ILP methods very promising for the attribute grammars, because recursive
rules often emerge in attribute grammars as well.
This fact suggested the use of a similar learning approach in the AGLEARN
method ([8]) to that one employed in the ILP learning system called LINUS ([12]),
but in a different representational framework. That is, the learning task and
background knowledge is represented in the form of attribute grammars instead
of logic programs. The task of AGLEARN is to complete the specifications of an
S-attributed or an L-attributed grammar based on positive and negative examples.
These examples contain strings derived from the target nonterminal, the attributes
of this target nonterminal being evaluated in these strings. The main idea behind
AGLEARN is converting the learning task into a propositional form then inferring
the unknown semantic function with the help of a propositional learner.
In this paper we introduce the LAG approach which is based on the AGLEARN
method, but it uses the given background knowledge more effectively and employs
the C4.5 decision tree learner (see [19]) instead of a propositional learner. Doing this
allows treating the learning task as a classification problem with multiple classes.
The robustness of the C4.5 for classification problems has already been
demonstrated. Another important difference between the AGLEARN and LAG
methods can be seen in the handling of the training examples. In the case of the
former, the user has to explicitly define each training example in advance. With
the latter, the input of the LAG system consists of strings taken from the language
generated by the partially given attribute grammar. The LAG system builds the
decorated decision trees of these strings and evaluates the attribute instances during
the tree traversals. Whenever an attribute instance with no semantic function is
computed its value is defined by the user ("oracle"). Hence even a few strings can
produce a large number of training examples.
The LAG method is applied to the Part-of-Speech tagging of Hungarian sentences.
The task here is to distinguish the different morphologic classes of a word, as in
the case of "múlt"1, which might be annotated by a verbal, noun or adjectival tag.
The tagging of Hungarian texts is very difficult due to the rich morphology of the
language. Our method has been applied in order to infer the rules for selecting
the contextually correct tags. The input data set, a corpus with about 100000
pre-tagged words ([7, 16]), is employed for training and testing. The background
attribute grammar determines some structural information of the parts of sentences

'mull (verb) -passed
múlt (noun) - past
múlt (adjective) - past, last

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 281

like subject phrase and predicate phrase. Based on the latter the training data sets
for the C4.5 system are generated. By using the training sets decision rules are
inferred for ambiguous words. The experimental results show (see also [2, 9]) that
the use of even simple attribute grammars as background knowledge yields more
effective rules than a method which lacks this structural information.
In Section 2 the key definitions relating to the learning of attribute grammars are
introduced, while in Section 3 the LAG method itself is discussed. Afterwards,
in Section 4 a brief overview of the PoS tagging problem and the application of
the LAG method is presented. The accuracy of the C4.5 and LAG approaches
is compared in Section 5. In the final section, the conclusions are drawn and
suggestions for future research are offered.

2 Preliminaries

In this section we introduce the terminology and notations used in this paper.

2.1 Attribute grammars
Attribute grammars were introduced in [11] as an extension of context-
free grammars (cfg onwards) for specifying static semantics of programming
languages, such as type-checking and name-analysis during syntax-directed parsing.
This is achieved by attaching attributes (named properties with given .values)
to the symbols of the grammar. During the parsing a derivation tree based on
the underlying cfg is constructed. In this tree nodes and leaves are labeled by
nonterminals and terminals of the cfg, respectively. The instances of the attributes
appear in this tree along with the grammar symbols which they are related to. This
tree is called decorated derivation tree or simply ddt.
The value of an attribute instance is defined by its semantic function during the
traversal of the ddt. The value of an attribute is determinable iff the values of all the
attributes in the argument of the semantic function have already been computed. In
this way the semantic functions define dependency relations among the attributes.
The attributes transmit information within the ddt in two directions: from the root
to the leaves, where they are named inherited attributes, or backwards, where
they are called synthesized attributes.
Before we formally define the learning task for attribute grammars, let us first
consider the definitions and notations of attribute grammars (cf. [1]).
An attribute grammar (briefly ag) is a four tuple AG = (G,SD,AD,R) which
consists of the following components:

• an underlying cfg G = (V/v, VT, P, S)

• a semantic domain SD = (T, !F) consisting of a set T of the domains of
attributes and a set T of functions over the attributes: type\ x • • • x typem —>•
typeo for typei 6 T (0 < i < m).
(If type o = {true, false} then we talk about relations.)

282 Szilvia Zvada, Tibor Gyimóthy

• an attribute description is a triple AD = (Inh, Syn, r) where Inh and Syn are
finite, disjoint sets of inherited and synthesized attributes, respectively.
Attr — Inh U Syn is the set of all attributes of AG. Let X.a denote an
attribute a £ Attr attached to the grammar symbol X 6 V/v U Vr- The set
Inh(X) and set Syn(X) consist of the inherited and synthesized attributes of
the symbol X, respectively, r is a function mapping attributes to their types
(domains) such that r : Attr —> T .

• a set R = {R{p) \ p £ P} consisting of finite sets R(p) of semantic
functions which are associated with the production p : Xo —> Xi... Xmp.
An occurrence of an attribute Xk-a in the production p is denoted by X^.a.
The set

DO(p) = {Xq.S £ Syn(X0)} U {XPk.i £ Inh(Xk) with 1 < k < mp} and

UO{p) = {Xo A € Inh(Xo)} U {XPk.s £ Syn(Xk) with 1 < k < mp}

of defined attribute occurrences and used attribute occurrences of p,
respectively, are assigned to every production p £ P. For every Xk.a £ DO(p)
there is exactly one semantic function given in Rip)

XPk.a = f (XPki.au...XPki.as)

with (/ : r (ai) x • • • x r(as) ->• r(a)) £ T and Xk..ai € UO(p) for 1 < i < s.
Then we say that Xk.a depends on Xk..a,i, for 1 < i < s. (Note that if s = 0
the function is a constant c £ T(O) .)

In several applications it is useful to attach a special, synthesized, boolean attribute
accept to the start symbol S of the underlying cfg. Using the attribute accept we
can define the language generated by an attribute grammar like so:

Lang(AG) = {w | w € Lang(G) and S.accept = true in the ddt of w } .

Let AG = (G,SD,AD,R) be an ag with an underlying cfg G = (VN,VT,P,S), a
semantic domain SD = (T, T) and an attribute description AD = (Inh, Syn, r) .
Furthermore, let t be a ddt and no be a node of t, which is labelled by X 0 € V^ U Vr.
The set Inh(no) = {no-i\Xo-i £ Inh(Xo)} of inherited attribute instances and
the set Syn(no) = {no.s|Xo.s £ Syn(Xo)} of synthesized attribute instances
are associated with the node no. Thus Inst(no) = Inh(no) U Syn(no)- (Note that
T(no-i) = r(Xo-i) — r(i) holds for any no-i £ Inst(no).)
Further, let the production p : X0 X\... Xmp be applied at node no- Then
Xi,..., Xmp label the successors n\,..., nmp of no, from left to right, respectively.
Let

DI(no,p) = {nk.a | Xk.a £ DO(p) with 0 < k < mp} and
UI(n0,p) — {nk.a | XPk.a £ UO(p) with 0 < k < m p }

be the set of defined attribute instances and used attribute instances of
no, respectively. Then an instance n,.a of the defined attribute occurrence XP.a is
determined by f(nkl.a\,... ,nkm.am), where nkla\.. .njtmam £ UI(no,p) are the

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 283

instances of the attribute occurrences X*k .a\,... ,Xkm.am G UO(p) and / is the
interpretation of the semantic function

X'-a = f (xFki .ai,... XPkm .aro) .

An attribute instance rik0.a depends on the attribute instances nk¡ -a¿, for
1 < i < m. It is clear that an attribute instance n, .a can be computed if all attribute
instances on which it depends have already been evaluated.
An ag is circular if it has a ddt such that there is a circular dependency among the
attribute instances. Otherwise an ag is non-circular. Here we consider two subsets
of the non-circular ags, namely the L-attributed and S-attributed grammars.
An ag is L-attr ibuted if all attribute instances of an arbitrary ddt of this ag can
be evaluated in one left-to-right tree traversal. The left-to-right traversal and the
attribute evaluation are described by the following procedure:

proc tree_ traversal(node : no);
begin

for i := 1 to mp do

begin

eval (Inh(ni));
tree _tr aver sal (n¡);

end;

eval (Syn(no));
end;

One can formulate conditions for the L-attributed property. Let Xj .a be a defined
attribute occurrence of the production p and Xt .a = f (Xk .a\,... Xk ,as). Then
the ag is L-attributed if the following conditions hold for each defined attribute
occurrence (see Figure 2.1):

- if X¡.a is an inherited attribute occurrence then Xk..ai € Inh(Xq) or
Xk..ai € Syn(XTk.), with 1 < i < s and 1 < ki < I. This means that an
inherited attribute occurrence X¡.a may depend on the synthesized attribute
occurrences of the rhs symbols Xk., that have been defined before than X, .
It may also depend on the inherited attribute occurrences of the lhs symbol
Xq as shown in Figure 1. Here an inherited attribute occurrence is visualized
by a white circle above the respective symbol, whereas a synthesized attribute
occurrence is depicted as a black dot below it.

p:Xo — Xi j . Xi ...

Figure 1: L-attributed dependencies of X" .a

- if Xq .a is a synthesized attribute occurrence then Xk..ai 6 /n / i (Xo) or
Xk..ai 6 Syn(Xk), with 1 < i < s and 1 < ki < mp . Namely, this

284 Szilvia Zvada, Tibor Gyimóthy

means that an lhs synthesized attribute occurrence Xq .a of a rule may depend
on synthesized attribute occurrences of rhs symbols and inherited attribute
occurrences of the lhs symbol, itself. Figure 2 presents these relations.

(P -XO —» XI . . . XMP a • • v,\

Figure 2: L-attributed dependencies of XQ.OL

Let the set UOL-attr(X¡ .a) denote the used attribute occurrences of p which fulfill
these two conditions with respect to the attribute occurrence X* .a.
The other subset of non-circular ags investigated in this paper is the S-attributed
grammar. An ag is S-attributed if solely synthesized attributes are related to
the symbols of the grammar. It is clear that the set of S-attributed grammars is a
subset of L-attributed grammars.
To help to make these definitions clearer, let us illustrate their use with a concrete
example.

Example 1 The S-attributed ag AGtVP — (GtyP,SDtyP,ADtyp,Rtyp) defined
below determines whether the type of an arithmetical expression is real or integer,

nonterminals and terminals Vjv = {Expr,Term, Factor, AddOp, MulOp,}
VT = {Integer,Real, =, —, *, / , A}

the semantic domain SDtvp T = {typemode,typeop} , where
typemode = {int,real}, and
typeop = {add, sub, mul, div}

F — { / l : typemode X typemode ~> typCmode,
h • typemode X typeop X typemode typemode}

where fi(x, y) = if (x = int) A (y = int)
then int
else real

/2(1, y, z) = if (x = int) A (y = mul) A (z = int)
then int
else real

the attribute descriptions ADtyp Inh = 0
Syn ' {mode, op)
Syn(Expr) = Syn(Term) = Syn(Factor) = {mode}
Syn(AddOp) = Syn(MulOp) = {op}
r(mode) = {int, real}
r(op) = {add, sub, mul, div}

the underlying cfg Gtyp and the set Rtvv of semantic functions:

1, Expro —> Expr 1 AddOp Term
il(l) = { Expro-mode := f 1 (Exprmode, Term.mode)}

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 285

2, Expr —Term
R(2) - { Expr.mode := Term.mode}

3, Termo Term\ MulOp Factor
R(3) = {Termo.mode := fo(Termi.mode, MulOp.op, Factor.mode)}

4, Term —y Factor
R(4) = {Term.mode := Factor.mode}

5, Factor —> Integer
R(5) = { Factor.mode := int}

Factor —» Real
R(6) = { Factor.mode := real}

7, Factor —> (Expr)
R(7) = { Factor.mode := Expr.mode}

S, AddOp +
ii(8) = { AddOp.op add}

9, AddOp -
R(9) - { AddOp.op := sub}

10, MulOp -t x
R(10) = { MulOp.op := mul}

11, MulOp -¥ /
i i (l l) = { MulOp.op := diu}

some o/ the defined and used attribute occurrences:
DO(1) = {Expro.mode}
DO(2) = {Expr.mode}
DO(3) = {Termo.mode}

f / 0 (l) = {Expri.mode, AddOp.op,Term.mode}
UO(2) = {Term.mode}
(70(3) = {Termi .mode, MulOp.op, Factor.mode}

It is immediately apparent that for S-attributed grammars, all the used attribute
occurrences satisfy the L-attributed property.
Nevertheless, the specification of semantic functions is not trivial even in the case of
L-attributed and S-attributed grammars. The current paper introduces a method
which learns the semantic functions of ags like these.

2.2 Inductive learning
The idea of using inductive learning methods to define semantic functions of
an attribute grammar was motivated by the parallelism found between the
nonterminals of attribute grammars and the predicates of logic programs (see
[5, 6, 17]).
In general, an inductive learning method studies a set of positive and negative
training examples and background knowledge in order to infer a hypothesis which
approximates the target concept. The inferred hypothesis explains the training
examples together with the background knowledge such that all positive examples
can be 'proved' by it and no negative example can be 'derived' from it. Many
inductive learning approaches use an attribute-value language to represent the

286 Szilvia Zvada, Tibor Gyimóthy

examples, background knowledge and the concept to be induced. The most popular
of these attribute-value learners are decision tree learners used widely in solving
classification problems ([13, 19]).
These methods construct decision trees for modelling the target hypotheses from
the training examples expressed as attribute-value vectors. In a decision tree, every
interior node is labelled with a test over an attribute which is expected to most
efficiently classify the current subset of training examples. The possible outcomes of
these attribute tests assign a name to the branches descending from the nodes. The
leaves show a "class" to which the examples of the current training set belong. The
decision trees can be also represented by a set of decision rules (see Example 2).
The LAG method makes the use of the decision rules during the learning process.
The decision trees can be constructed by a heuristically guided, hill climbing
algorithm called ID3 ([12]). Its heuristic is based on an information-theoretic
measure called entropy, which measures the length of the encoding of the current
training set in bits. The most popular decision tree learner algorithm is the C4.5
system ([19]) which is widely used in academic and industrial spheres. There axe
many good textbooks available on decision tree learner methods ([12, 13, 19]). In
the following, we represent a decision tree constructed for a learning task.

Example 2 (A modified version of an example in [12].) The task is to find a concept
•which describes whether a robot is friendly or not, based on the properties Smiling, Holding,
Has_ tie, Head_ Shape, Body_ Shape, and an initial set of training examples.

Smiling Holding Has tie Head_ Shape Body Shape Class
yes balloon yes square square friendly
yes flag yes octagon octagon friendly
yes balloon no round round friendly
yes flag no octagon octagon friendly
yes flag no octagon octagon friendly
yes balloon no square square friendly
yes sword yes round octagon unfriendly
yes sword no square octagon unfriendly
no sword no octagon round unfriendly
no flag no round square un friendly

Rule\: Holding = balloon —> class friendly
Rule2: Smiling = yes A Holding = flag

—> class friendly
Rule3: Smiling — no class unfriendly
RUICA : Holding = sword —> class unfriendly

Default class: friendly

Figure 3: The decision tree and decision rules constructed by the C4.5

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 287

These learning methods which generally yield robust, reliable results are even able
to handle noisy input data and continuous attributes. However, they have some
drawbacks as well. In the attribute-value-based representation, variables cannot be
used, hence these learning methods cannot deal with complex relations. Another
disadvantage is the inability of use of background knowledge.
The above problem was bridged by the introduction of inductive logic programming
(ILP, [12, 14]). The learning methods developed in the ILP framework
employ first-order logic to represent the learning task, the training examples and
background knowledge. The latter is used intensively in the learning process.
The ILP learning system called LINUS ([12]) combines the advantages of attribute-
value learners and first-order-logic-based representation. The learning approach of
the LINUS system can be summarized in three steps:

- It transforms the learning task into a propositional form.

- The transformed learning task is solved by using an appropriate propositional
learner.

- The results of this propositional learner are converted back into a first-order
logic form.

A similar learning method (see Figure 4) is used in the AGLEARN algorithm for
inducing attribute grammars. However, the AGLEARN describes the learning task
and background knowledge used with the help of an attribute grammar instead of
a logic program.

LINUS system AGLEARN method

Learning task Background knowledge Background knowledge Learning task

completed Prolog program completed attribute grammar

Figure 4: Similarities and differences between the LINUS system and the
AGLEARN method

288 Szilvia Zvada, Tibor Gyimóthy

2.3 Description of the learning task
In this section, we formulate the learning task of ags in the following way:
The goal of the learning is to give a complete specification for the ag AG =
(G,SD,AD,R) from a, partially given L-attributed ag AGinp = (G, SD, AD, RTNP)
and a set W{n p of strings taken from the language generated by AGinp.
The term "partially given" here means that Rinp C R, namely some of the semantic
functions of AGinP are undefined. This AGinp not only describes the background
knowledge and the learning task, but is used to generate the training examples
from the strings of Wi„p . The background knowledge is given as a fully defined
ag AGBG = (G , S D B G , A D B G , R I N P) , where SDBG C SD and ADBG Q AD. T h e
learning task is specified by the following items:

(1) The semantic domain SDTAR = (TTAR^TAR) which consists the types of the
target attributes (Ttar) and initial functions (TTAR) over these attributes.
SDTAR is defined in advance, such that SDTARU SDBQ = SD holds. The
LAG method constructs the unknown semantic functions from the elements
Of Ttar-

(2) The description ADtar = (Inhtar,Syntar,T) of the target attributes are
related to the symbols of cfg G such that ADtar U ADBG = AD holds.

(3) A set TO[p) of the target attribute occurrences is assigned to production
p-.X0^X1...XmroiG. »
A defined attribute occurrence Xf.a G TO(p) (0 < I < mp) if it has no
semantic function in Rinp. In this case Xf.a is called target attribute
occurrence. TO = |J TO(p) denotes the set of all target attribute
occurrences.

To be more exact, the learning method infers the unknown semantic functions of
Rtar for the target attribute occurrences then completes the specification of AGinp

such that Rtar U Rinp = R will hold.
The training examples for the target attribute occurrences are generated during
the derivation of the input strings of Winp. Based on the AGinp, a ddtw is built
for each w € Winp string. Let no be a node of ddtw labelled by Xq and let
p : X0 -¥ Xi.. Xmp be applied at this node. Moreover, let Xi,..., Xmp each
label the successor n\,... ,nmp of no, respectively. Then, during the traversal
and evaluation of ddt^ for each instance n;.a of Xi.a £ TO(p), (0 < I < mp), an
example

e = (w, (ui,vi),...(uk,vk),(ni.a,v0))
is added to the training set £Xf.a- The vi,... ,vk denote the values of the instances
of the used attribute occurrences ult... ,uk 6 UOL-ATTR{Xf .a) that have already
been computed. With a knowledge of these values, the value VQ of the target
attribute instance n/.a is defined by the user.

Example 3 We show what these definitions look like with the help of the type-checking
example AGtyP (see Example 1). Let us suppose that the semantic functions in the
production 1 and 3 are unknown: iZ(l) = iZ(3) = 0.

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 289

input strings Winp = { ((3 * 2 + 6) — 7) / (3 * 1.5 — 2.5/5) ,
(3 /2 - 1) * 3 + (0.7 * (0.1 + l)) / (6 * 2 + 4 .3) }

background knowledge AGBG — (GTYP, S D t y p , ADTYP, RBG), where RBG Q RtyP

learning task SDtar TtaT = {{true, false}}
Ftar = {=2}, where =2 is the identity relation

ADtar Syn = {mode}
Syn(Expr) = Syn(Term) = {mode}
r(mode) = {int, rCal}

target attribute occurrences TO = {Exprl.mode, Term^.mode}

3 Learning of L-attributed grammars
In this section we introduce the LAG system which infers semantic functions for
L-attributed grammars. It takes a partially given ag AGINP and a set Wi„p of
strings of the language generated by AGinp as input. The term 'partially given'
here means that AGinp has some attribute occurrences which have no semantic
function. During the learning process the LAG method infers these unknown
semantic functions and adds them to AGin p to complete its specification.
AGinp describes the learning tasks and the background ag AGBG• In addition, it
is used to generate the training examples from the strings of Win p . For each string
a ddt is constructed by AGINP, which also consists of instances of target attribute
occurrences. During the evaluation of the ddt the values of these target instances
are determined by the user with the knowledge of the values of other attribute
instances. The latter have been computed automatically based on AGinp. This
is an important advantage of this system compared to other learning methods
where a whole set of training examples have to be given in advance. After
generating the training examples for the target attribute occurrences, the LAG
system transforms the learning task and background knowledge into2 an attribute-
value representation.3

The learning tasks represented this way are solved by the decision tree learner, C4.5
([19]). Finally, the hypotheses produced by the C4.5 in the form of decision rules
are transformed back into "if-then" semantic functions (see Example 1).
The basic steps of the LAG method can be summarized as follows:

• Generation of the training examples from the input strings.

• Transformation into attribute-value tuples: a training table consisting of
attribute-value tuples is constructed for each target attribute occurrence.

• Decision tree learning-, solving the transformed learning tasks using the C4.5
system: the decision rules are built based on the training tables.

• Formulating semantic functions: The rules inferred by C4.5 are transformed
back into the form of semantic functions.

2described by an attribute grammar
'expressed as attribute-value vectors

290 Szilvia Zvada, Tibor Gyimóthy

3.1 Generation of training examples

Using the input ag AGinp we build a ddtw for each input string w in Wi„p . In
these ddts the target attribute occurrences may have arbitrarily many instances.
Let no be a node of ddt„, where the production p : Xo Xi... Xmp is applied
and let ni.a, (0 < I < mP) be the instance of the target attribute occurrence
Xf.a £ TO(p). Further, let UlL-attr(ni,a) denote the set of used attribute
instances n ^ . u i , . . . ,rik,-us € UI(no,p), which fulfill the L-attributed conditions
(see p. 283): they were computed before the evaluation of target attribute instance
ni.a.
During the evaluation of the ddtm, the user is asked about the values of the
target attribute instances by substituting the unknown semantic functions with
a question IQ:

proc IQ (set : UlL-attr, inst : target);
begin write ('The used attribute instances have the following values: 0 ;

VTite (UlL-attr, p) ;
read (.target);

end;

In addition, replacing using the procedure new_eval() instead of the procedure
evalQ in the tree_traversal() (see p. 283) process yields examples which are
added to the training set SxP A for each instance of the target attribute occurrence
X*.a.

proc new_eval (set : DI, node : n);
begin for each a € DI do

if a£TO then eval(n.a);
else begin

a :— IQ(UIi,-attr{n, a), a) ;
add_ example(w, UlL-attr(n, a), a) ;
end;

end;

During the evaluation, one example is generated for each instance of each target
attribute occurrence in the ddt№. Hence examples can be produced for different
training example sets. Since the training set Exp a may contain an example more
than once, even a small number of input strings can induce numerous training
examples: |Wmp| < | |J £x*,a\ •

TO

Example 4 (Continuing from Example 3) The training example set SExpTi mode is
generated for the target attribute occurrence Expro.mode of production 1. (A similar
training set can be constructed for the target attribute occurrence TermQ.mode as well.)
Let tui = ((3 * 2 + 6) - 7) / (3 * 1.5 - 2 .5 /5) and

w2 = (3 / 2 - 1) * 3 + (0.7 * (0.1 + l)) / (6 * 2 + 4.3)
denote the two input strings. The production 1 is applied three times in ddtwi, hence
three examples are generated for Expro.mode during the traversal ofddtWl. Similarly,
the traversal of ddtW2 produces four examples. It is easy to check that ^^xpr1 .mode is the
following after the evaluation of ddtWl and ddtv,2:

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 291

UOh-uttT

w e winp Expri.mode Addop.op Term.mode Expro-mode
W\ int add int INT
W\ int sub int INT
w 1 real sub real REAL
W2 real sub int REAL
W2 real add int REAL
W2 int add real REAL
W2 real add real REAL

3.2 Transformation into attribute-value tuples

Upon generating the training example set, the LAG method transforms the learning
task into attribute-value tuples. One training table is generated for each target
attribute occurrence (i.e. in the type-checking example two training tables are
constructed: one for Expr\.mode and one for Term^.mode).
There are two ways of formulating the training tables depending on the type of
target attribute occurrences:
(1) Enumerated case: when the domain of the target attribute occurrence X^ .a
is defined by a finite list. In this case our aim is to infer a classification-like semantic
function for it, where the classes are made up of the c\ , . . . , ck elements of the
domain. The training table Tx* a consists of columns

{string} U UOL-attr U IZu U {dass } ,
where columns string, class and UOL-attr are constructed from the training
example set £xv a . The column class contains the value of Xf.a computed during
the evaluation of ddtw , where w € {string}. The set 7Zu consists of the satisfiable
interpretations of each relation r : r(x i) x ••• x r (z m) —> {true, false} given
in SDinp. An interpretation r(ui,..., um) is satisfiable iff U{ € UOL-attr and
r(tti) = r(xi) , for all i = 1 . . .m.

Example 5 (Continuing from Example 4) Since we have only one relation — ' in SDinp,
the set IZu only consists of the column n : (Expri.mode = Term.mode). The training
table TExpri mode generated is:

string UOL-attr Tlu class
w e Winp Expri.mode Addop.op Term.mode r\ Expro.mode

w l int add int true INT
Wl int sub int true INT
W\ real sub real true REAL
W2 real sub int false REAL
W2 real add int false REAL
W2 int add real false REAL
W2 real add real true REAL

Based on the training tables constructed in this way the semantic functions are
produced in the following form:

292 Szilvia Zvada, Tibor Gyimóthy

X* .a = if Testis A ••• A Testis then c^
else if Test2,i A • • • A Testis then c<2

otherwise Cis

where c^,... ,Ci3 e t(X* .a), and Testk,j{k = 1 . . .s,j = i\ .. ,is) is given in the
form (Columnkj — Vj) with ColumnkJ £ U0L — attr U7Zu and Vj 6 T(Columnk,j).

(2) Non-enumerated case: if the domain of a target attribute occurrence X* .a
is non-enumerated then the LAG system is going to infer a semantic function for it
by employing the elements of Ttar- If so, a slightly extended training table TxP A

is produced:
{string, target} U UOL-attr U TZu UTZjr u {c/ass}.

The columns of the string, UOL-attr, and 7Zu are the same as those of the
enumerated-typed target attribute occurrences. The main differences between the
two cases surface in the columns of TZjr, target and class.
The elements of the set IZ? are defined as a relation (X{ .a = q), where q might be
an attribute occurrence uk £ UOL-attr or a satisfiable interpretation f(u\,... ,um)
of / : r (x i) x • • • x r (x m) -4 t(Xp .a). The values of X* .a computed during the
parsing of the input strings make up the elements of the column target.
In addition, the elements of the column class = { + , — } denote positive and
negative examples. The positive examples of the training table will be elements
of the set £XP A. The negative examples are generated from the positive ones by
changing the elements of the column target with some randomly selected values of
T(X;.a).

Example 6 Let us consider an S-attributed ag AGab, which counts the number of letters
in a string of the language a*b'.

1 , 5 -*AB So.n = A\.n + B2-n 2,A->aA A0.n — inc(A\.n)
3, ¿0-71 = 0 4, B -¥bB Bo.n = inc(Bi .n)
5, B —>A B0.n = 0

Let us suppose that all of the semantic functions are unknown. The learning task will then
defined as follows:

S ID tar •• Ttar = {N}
Ttar = {inc1, dec1,+2,—2}, where

inc: N N + : N x N - > N
dec : N —)• N - : N x N - + N

ADtar : Syn = (n)
Syn(S) = Syn(A) = Syn(B) = {n}
r(n) = N •

Win? = {ab, aab, abb}
TO = {Sin, A20.n, Aln, B^.n, Bin}

The training table TA2 n for the target attribute occurrence A^.n consists of the following
columns:

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 293

7ZT
W 6 Winp Ao-n Aln r 1 r-2 r3 class

UOL-attr = {Aln} ab 1 0 false true false + £ II aab 1 0 false true false +
aab 2 1 false true false +

n : (A g . n = Aln) abb 1 0 false true false +
r2 : (Aln = inc(Af.n)) ab 2 0 false false false • -

r 3 : (AQ.II = dec(Aln)) aab 0 0 true false false -

aab 0 1 false false true -

abb 3 0 false false false -

Similar training tables are generated for the target attribute occurrences So-n, Aq.TI, Bq.TI,

Bg.n as well.

Using the training tables structured in this way, the LAG system infers semantic
functions which have the following form:

X[.a= if Testis A • • • A Testis then q
else if Test2,i A • • • A Test2,i2 then qi2

then qin

where Testkj denotes the test (Columnkj = vj) with vj 6 T(Columnkj) and
Columnkj £ UOi-attr U TZu. Here, qik might be a function / € TtaT or a used
attribute occurrence u £ UOL-attr-

3.3 Learning with the C4.5 system
The C4.5 system views the learning task described by the training table as a
classification problem. The possible values of the target attribute occurrence make
up the set of possible classes. The system constructs a classification model in the
form of a decision tree or a set of decision rules. The LAG system formulates the
semantic functions based on the decision rules.
The decision rules produced by the C4.5 system are represented as follows:

RulesxP a = <

Rulei : Columni,i = vi

Columnni = uni

class c 1

Columni,i e UOL-attr U7Zu

Columnni 6 UOL-attr U 7Zu

ci 6 r(Xi .a)
Rule2 :
Default class: Cdefault | Cdefault £

Example 7 Based on the training table rno^e given in the Example 5, the C4-5
system infers the following decision rules:

Rules Bxpr^.mode

Rulei : Expr\.mode = real —> class REAL
Rul&2 : Expri.mode = mi A

Term.mode = int —> class INT

Default class: REAL

294 Szilvia Zvada, Tibor Gyimóthy

Similar decision rules are inferred from the training table TA2 „ of the non-enumerated
target attribute occurrence:

true —t class +
RulesA2 n = ^ Rule2 : (Ao.n = inc(A\.n)) = false —» class -(Rule 1 : (Aa.n = inc(A\.n)) = ¡

Rule2 : (Ao.n = inc(Ai.n)) =
Default class:+

3.4 Formulating semantic functions
First we simplify the set of rules learned by the C4.5 system then transform them
into semantic functions.
(1) Enumerated case: The set of rules is reduced as follows:

Simplified_Rulesxr a = {r E Rules xPa \ ci ̂ Cdefauit}-

This set is transformed to a semantic function of the form:
X?.a = if (Column\t\ =Vit) A - A (Column\tni =Di,ni)

then c\
else if (Column2,i = «2,1) A ...

Otherwise Cde fault
where (Columnij = Vij) occurs in the tests of Simplified_RulesXp a.

Example 8 The semantic function formulated for the target attribute occurrence
ExprQ.mode is the following:

Expro-mode = if (Expri.mode = int) A (Term.mode = int)
then INT
else REAL

(2) Non-enumerated case: here, the rules inferred by C4.5 classify the examples
into one of two classes: + , —. A rule is accepted iff it tests exactly one column of

The set Simplified_RulesXP A is constructed in the following way:

Simplified_RulesXp a = < r¡ 6 RulesxP
(d = +), and for exactly one k :
Columrii= (Xt .0 = Qi) 6 7Zt

with (Columni,/t = true)

This set is transformed to a semantic function in the form:
Xi .a = if (Columniri = v^) A. . . (Column\,ni =t>iini)

then qi
else if (Column2,i = V2,i) A . . .

then qn

otherwise WARNING

where Columnij are the tests of Simplified_RulesXPa> such
Columriij 6 UOL-attr U TZy, while qi is a function and (Xf.a = qi) is

that

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 295

among the tests of Simplified_RulesXp a. (Note: if during the execution of
the generated ag for a given input none of the conditions in the above semantic
function are fulfilled, a warning message is induced for the user. This message
indicates that the inferred semantic function is not applicable for that input. If
the Simplified_RulesXP A = 0, then it then means that the LAG system was not
able to learn semantic function for Xf.a.)

Example 9 The decision rules for the target attribute occurrence A$.n are simplified in
the following way:

Simplified_RulesA2 n = {Rule\ : (Ao-n = inc(A\.n)) = true —• class +}

Since the simplified set of rules consists of a single rule not containing any tests over the
elements of columns in UOL-attr UlZu and the test of this rule is an element of 71f, the
generated semantic function of A%.n is

Ao-n = inc(Ai.n)
which is the correct solution.

Within the non-enumerated learning there is a special case where a constant value
should be assigned to the target attribute occurrence. In this case a semantic
function

Xf.a = c, where c G r(Xf.a)
is generated automatically based on a preliminary check of positive examples.

4 Application of the LAG method in NLP

4.1 Part-of-Speech Tagging Problem
Research into both text and spoken language understanding is significantly helped
by investigating those phenomena that occur in actual language use.
The first stage of the investigation is to assign part of speech (PoS) tags to every
word representing its syntactic category and morphological properties based on
large corpora. The corpus is an archive of annotated words including their
morphological properties as codes called tag. Annotating a given text is a far
from trivial task since the words often belong to several syntactic categories or
morphological classes in different contexts (e.g. the Hungarian word "múlt"4 might
be annotated by a verbal, noun or adjectival tag).
The task of a PoS tagger (morphological disambiguater) is to automatically select
the appropriate PoS annotation in a given context where possible. In principle
there are two main approach for automatic part-of-speech tagging:

- the probabilistic one which normally uses Hidden Markov Models and
- the rule-based one which normally uses linguistic rules.

4múlt (verb) - passed (Perfect 'pass')
múlt (noun) - past
múlt (adjective) - past, last

296 Szilvia Zvada, Tibor Gyimóthy

In this section we infer rules for a rule-based tagger with the aid of the LAG method.
We specify an ag which detects correspondences among the parts of the sentences
such as predicate phrase and subject phrase. Using this structural information
during the learning process, the LAG system produces disambiguater rules for each
ambiguous class.

4.2 The initial data set
Our Hungarian corpus is the morphologically annotated translation of George
Orwell's novel 1984• The first tagged version of this corpus was produced by the
MULTEXT-East project ([7]). The corpus includes approximately 100 000 words
including punctuation characters. The novel consists of four chapters where the
first two served as training data for the learning process while chapters 3 and 4
were used as test data.
The most widely used encoding is the Morpho-Syntactical Description (MSD, [7]).
Unfortunately it associates too many different classes with the Hungarian language.
E.g. based on its stems, a noun could be annotated with 1324 different MSD codes.
In order to reduce the number of MSD classes the CTAG encoding scheme (Corpus
Tagging,[16]) was employed, which has just 120 word tags, 4 punctuation tags and
1 tag for unknown words. Table 2 lists the distribution of the ambiguous classes
whose instances occur over 100 times in the training and test data.

Table 2: The most frequently ambiguous classes and their cardinalities

Occurrence Occurrence
Classes Training Test Classes Training Test

data data data data
asn,vmis3s 490 182 nsn,rgn,rp 112 46
cp.rg 880 294 psn,rp 142 57
cp,rg,vmip3s 247 125 psn,t 1867 620
cp,rp 334 149 pso,rg 217 85
cp,vmis3s 113 38 rg.rp 150 59
ms,t 751 222 rg,st 285 100
nsn,psn 111 52

For instance, a word which belongs to the ambiguous class [asn, vmisSs] could
be annotated as a nominative, singular adjective or as a verb in past tense, 3rd
person singular. In another ambiguous case, the [psn, t] stands for the word 'az',
which could be annotated as a singular pronoun, nominative case5 or as an article6.
(A brief description of the corpus tags is given in the Appendix B.)
Besides the tags there is an identifier associated with every sentence which shows the
location of a sentence in the original text, namely Orwell, Hungarian translation,
1st chapter, 2nd section, 1st paragraph, 1st sentence is

5 ,az' - the
6 'az ' - that

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 297

'Ohu. 1.2.1.1' "Derült, hideg áprilisi nap volt,

az orak eppen tizenhármát ütöttek."
This sentence is annotated as follows:

'Ohu. 1.2.1.1',(asn, [asn, wms3s]), wpunct, asn, asn, nsn, vmis3s, wpunct,

(í, [psn, i]), npn, rg, msa, vmis3p, spunct

In the sequence of corpus tags an ambiguous case is denoted by a pair given in round
brackets. The second component is the set of possible tags of the word, while the
first component shows its correct tag in the given sentence. Using the sequences of
corpus tags during the learning process we can infer context rules which describe
general regularities among the morpho-syntactical categories of the language.
Each ambiguous class is dealt with as an independent learning task so we generate
an initial input set for each one, based on sequences of the corpus tags. Each
element of these input sets is structured as follows:

Sentence.ID, beforei, ..., before7, afteri, ..., after7, correct_ctag
where correct_ ctag denotes the observed morpho-syntactical category of the word
in the given sentence. In addition, we consider 7 corpus tags before and after the
ambiguous case. (Here: we denote the blanks with xxx when this 7-sized window
extends over the beginning and the end of a sentence).
Continuing our example, the following tuples

are added to the input set yVasnyvmis3s
and WpSn,t of the ambiguous class [asn,vmis3s] and \psn,t], respectively:

'Ohu. 1.2.1.1', xxx, xxx, xxx, xxx, xxx, xxx, xxx,

wpunct, asn, asn, nsn, vmis3s, wpunct, t, asn
'Ohu.1.2.1.1', wpunct, vmis3s, nsn, asn, asn, wpunct, asn,

npn, rg, msa, vmis3p, spunct , xxx, xxx, t
Using these sets of sequences the C4.5 system can infer disambiguater rules for each
ambiguous class, i.e. produce a set of decision rules for the class [asn, vmisSs] such
that:

Rulel: beforei = t —• class asn
Rule 2: afteri = npn —> class asn

Rule 36: afteri = spunct —» class vmis3s
Rule 37: beforei = nsa —> class vmis3s

Default class: vmis3s
In order to generate more effective rules the LAG method has been designed to
recognize structural coherences in the sentences via an ag and extend the input of
C4.5 with them.

4.3 Description of the learning task
The ag AGctag introduced here, detects parts of sentences and phrases in ambiguous
cases.
The parts of sentences can be derived from the corpus tags, which refer to the
suffixes of the words as well. The suffix determines the role of a word in a sentence.

7 It was a bright, cold day in April and the clocks were striking thirteen.

298 Szilvia Zvada, Tibor Gyimóthy

We separate the corpus tags into groups based on the role they play in a sentence
such as predicate, subject, object, attribute, dative adverb, other adverb. The rest
of the sentence elements are denoted with the value other. Furthermore, the value
none is generated for the case of xxx tags.
The phrases, called syntagmas, describe relations among the parts of sentences
like the predicate syntagma, where the predicate and subject are related, or the
accusative syntagma, where the predicate and object are related. It is clear that
the identification of a syntagma depends on the attribute group.
Furthermore, our experiments show that in most cases the choice of the correct
corpus tag of a word is influenced only by its neighboring tags. Hence, we use a
simplified ag AGctag as background knowledge which deals only with tags next to
the ambiguous case (size of window = 1) and it detects a syntagma among the
tags after it. (A part of the ag can be found in the Appendix C.)

Sentence —>
Sentence_ID " , " BeforeCtags " , " AfterCtags Ctag_Sentence
Sentence —> A

' CTAG = {asn, asnx, ..., wmis3s, spunct, wpunct... }
GROUP = {Pred, Subj, Acc, AdvDat, AdvOth, Att, Other, None}
SYNTAGMA = {PredSynt, SubjSynt, AccSynt, AdvDatSynt,

AdvOthSynt, AttSynt, OtherSynt, NoneSynt}
= 2 } where, = is the identity relation

Gctag 1 : Ctag_

2 : Ctag_

SDctag Tctag — '

ctag ~

ADctag Inh = 0
Syn = {ctagi, groupi, syntagma}
Syn(BeforeCtags) = {ctagi, groups}
Syn(AfterCtags) = {ctagi, groupx, syntagma}

r(ctag\) — CTAG
r(groupi) — GROUP
T(syntagma) = SYNTAGMA

In order to choose the contextually correct tag in an ambiguous case, a synthesized
attribute correct^ctag is associated with the start symbol Ctag_Sentence. Its
semantic function is unknown, so the learning task is described as follows:

the semantic domain SDtar Ttar = {CTAG}
Ttar = 0

the attribute description ADtar Syn = {correct_ctag}
Syn(Ctag _Sentence) = {correct _ctag}
r(correct _ctag) = CTAG

Rtar R(l) = 0

target attribute occurrence T O (l) = {Ctag_Sentence\.correct_ctag}
input StringS i.e. W;„p = Wo5„,vm.i33

The learning concept is inferred by the LAG method introduced in the Section 3.

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 299

4.4 Generation of the training examples
We build the ddts for every given sequence s of corpus tags for an ambiguous
class. Recalling that the values of the target attribute occurrence correct_ctag are
defined in advance in the training corpus, the question IQ is not used during the
tree traversals.
For instance, in the case of the ambiguous class (asn, vmis3s) given the set of input
sequences of V\>asn,vmisZs'-

Ohu .1.2.1.1, xxx, xxx, xxx, xxx, xxx, xxx, xxx

wpunct, asn, asn, nsn, vmis3s, wpunct, t, asn
Ohu.1.2.5.5, t, cp, wpunct, vmn, vmis3s, rg, i, nso

rg, vmip3p, rq, t, nsa, spunct, asn

Ohu.2.11.40.5, rg, rg, spunct, rp, vmcp3s, nsax, cp
pso, ms, nsa, spunct, xxx, xxx, xxx, vmis3s

Ohu.2.11.40.5, nsa, asn, asn, xxx, xxx, xxx, xxx

nso, wpunct, cp, nsax, vmcp3s, rp, spunct, vmis3s

The training example set £asn,vmis3s generated in this case is:
Sentence_ID

Ul U2
UOL-attr

U3 U4 Us
class

Ohu.1.2.1.1 xxx none wpunct 0th AttSynt asn
Ohu.1.2.5.5 t 0th nso AdvOth AdvOthSynt asn

Ohu.2.11.40.5 rg 0th pso AdvOth noneSynt vmis3s
Ohu.2.11.40.5 nsa Acc nso AdvOth AdvOthSynt vmisZs

: BeforeCtags.ctagi U2 : AfterCtags.ctagi
ti3 : BeforeCtags.groupi U4 : AfterCtags.groupi

us : AfterCtags.syntagma

class : Ctag_Sentences.correct_tag .

4.5 Preparation of the training tables
Since the target attribute occurrence Ctag_Sentences.correct_tag is enumerated-
typed, the training table consists of the columns

{Sentence_ID} U UOL-attr U IZu U {correct_ctag}
where 7Zu contains the relations

ri : (BeforeCtags.ctagi = AfterCtags.ctagi)
r2 : (BeforeCtags.groupi = AfterCtags.groupi)

Hence, the training table Tasn,wmis3s is constructed as follows:
Sentence_ID UOL-attr TZu class

Ul U2 U3 U4 Us r i n>

Ohu.1.2.1.1

Ohu.1.2.5.5

xxx

t

None

Oth

wpunct

nso

Oth AttSynt

AdvOth AdvOthSynt
false false

false false
asn
asn

Ohu.2.11.40.5

Ohu.2.11.40.5
rg
nsa

Oth

Acc
pso
nso

AdvOth noneSynt

AdvOth AdvOthSynt

false false

false false
vmis3s
vmis3s

300 Szilvia Zvada, Tibor Gyimóthy

4.6 Inferred context rules
The sets of decision rules are inferred based on the training tables, i.e.:

RuleSasn

Rule i
Rule 2
Rules

BeforeCtags.groupi = Acc
AfterCtags .groupi = Oth
AfterCtags.ctagi = pso
A fterCtags. syntagma = AttSynt

class
class

vmis3s
vmisSs

Rule42 : BeforeCtags.ctagi — wpunct
A fterCtags.syntagma = AttSynt

Default class: vmis3s

class asn

class asn

The rule sets are reduced and converted to the form of semantic functions. Let us
take for instance the case of the ambiguous class asn, vmis3s:

Ctags_ Sentences, correct _tag = if (BeforeCtags.ctagi = wpunct) and
(AfterCtags.syntagma = AttSynt)

then asn
else if (AfterCtags.ctagi = pso) and

(AfterCtags. syntagma = AttSynt)
then

else vmis3s
Since disambiguater rules for any ambiguity can be inferred this way the above
method is a useful tool for a PoS tagger system.

5 Comparison of the results of C4.5 and LAG
In the following table we compare the accuracy of the disambiguater rules achieved
by C4.5 and LAG based on the corpus of Orwell's novel. The accuracy of the rules
is tested using the chapters 3 and 4 of the novel, these chapters not being used
during training process.
Table 3 shows the error numbers and error percentages of the decision rule sets
generated for the most frequent ambiguous classes. The rules inferred by the
C4.5 system are based on the sequences of corpus tags (see p. 297). The LAG
system, however, creates its results by the means of the training sequences which
axe augmented with structural information detected by the ag given in Section 4.3
In the column Mark, the sign

" + " denotes those classes where the use of LAG yields only minor
improvements, and

" + + " means significant improvements produced by employing the LAG
method compared to C4.5.

The results show the accuracy of the inferred rules is improved if an ag as
background knowledge is utilised during the learning process.

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 301

Table 3: The comparison of the C4-5 and LAG system

Ambiguity
classes

Results by C4.5 Results by LAG

Mark
Ambiguity
classes

training data test data training data test data
Mark

Ambiguity
classes #err err % #err err % #err err % #err err % Mark
asn-vmis3s 39 8.0 % 15 8.2 % 34 6.9 % 11 6.0 % +
cp-rg 142 16.1 % 72 24.5% 136 15.5 % 69 23.5% +
cp-rg-vmip3s 14 5.7 % 31 24.8% 11 4.5 % 23 18.4% +
cp-rp 41 12.3 % 16 10.7% 10 3.0 % 11 7.4 % ++
cp-vmis3s 2 1.8 % 0 0.0 % 0 0.0 % 0 0.0 % +
nsn-psn 24 21.6% 16 30.8% 4 3.6 % 6 11.5% + +
psn-rp 9 6.3 % 3 5.3 % 6 4.2 % 3 5.3 % +
psn-t 28 1.5 % 17 2.7 % 25 1.3 % 15 2.4 % +
pso-rg 73 33.6 % 34 40.0% 25 11.5% 11 12.9% ++
rg-rp 57 38.0 % 15 25.4% 31 20.7 % 8 13.6% ++
rg-st 104 36.5 % 44 44.0% 62 21.8 % 35 35.0% ++

6 Summary

In this paper we investigated the specification of ags from the viewpoint of inductive
learning. We described a learning task for inferring semantic functions of a partially
defined ag and introduced an inductive learning method for solving this task. In
the learning approach of the LAG system a number of similarities exist between it
and ILP methods. These similarities arise from the close connection between logic
programs and ags. The LAG method infers semantic functions for enumerated and
non-enumerated attribute occurrences of an L-attributed or S-attributed grammar.
During the learning process it derives the training examples from input strings with
the help of background knowledge. The background knowledge given as an ag is
employed in the preparation the training tables for the target attribute occurrences.
Using the training tables the C4.5 system produces decision rules which are then
converted to the form of semantic functions.
We plan to increase the efficiency of the LAG method by reducing the restrictions
related to background knowledge, i.e. extend the the algorithm to more complex ags
than the S-attributed and L-attributed ones. Moreover, we would like to develop a
more precise algorithm for the non-enumerated cases.
As regards to the PoS tagging application we would also like improve the
background attribute grammar to better describe the features of the Hungarian
language.

References

[1] ALBLAS, H.: Introduction to Attribute Grammars. Springer Verlag LNCS
545, p.1-16, 1991.

302 Szilvia Zvada, Tibor Gyimóthy

[2] ALEXIN, Z . , ZVADA, SZ. , GYIMÓTHY , T . : Application of AGLEARN on
Hungarian Part-of-Speech Tagging. In Proceedings of the Second Workshop
on Attribute Grammars and their Applications (WAGA'99), Amsterdam, The
Netherlands, p.133-152, INRIA Rocquencourt, 1999.

[3] CUSSENS, J.: Part-of-Speech Tagging Using Progol. In Proceedings of the
Seventh International Workshop on Inductive Logic Programming (ILP97),
Prague, Czech Republic, Springer Verlag LNAI 1297, p.37-44, 1997.

[4] DERANSART, P . , JOURDAN, M . , LORHO, B . : Attribute Grammars -
Definitions, Systems and Bibliography. Springer Verlag LNCS 323, 1988.

[5] DERANSART , P., MALUSZYÑSKI, J . : Relating Logic Programs and Attribute
Grammars. Journal of Logic Programming 2, p.119-156, 1985.

[6] DERANSART , P., MALUSZYÑSKI, J. : A Grammatical View of Logic
Programming. MIT Press, 1993.

[7] ERJAVEC, T . , MONACHINI, M. : Specification and Notation for Lexicon
Encoding. Copernicus Project 106 "MULTEXT-EAST", Deliverable D l . l F
(Final Report). 1997

[8] GYIMÓTHY, T . , HORVÁTH, T . : Learning Semantic Functions of Attribute
Grammars. Nordic Journal of Computing 4, p.287-302, 1997.

[9] HORVÁTH, T . , ALEXIN, Z . , GYIMÓTHY, T . , WROBEL , S.: Application
of Different Learning Methods to Hungarian Part-of-speech Tagging. In
Proceedings of Ninth Workshop on Inductive Logic Programming (ILP99),
Bled, Slovenia, Springer Verlag LNAI 1634, p. 128-139, 1999.

[10] HASTENS, U.: Ordered Attribute Grammars. Acta Informática 13, p.229-256,
1980.

[11] KNUTH, D . E . : Semantics of Context-Free Languages. Mathematical Systems
Theory 2(2), p.127-145,1968. Correction: Mathematical Systems Theory 5(1),
p.95-96, 1971.

[12] LAVRAC , N., DZEROSKI, S. : Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, New York, 1994.

[13] MITCHELL, T . Machine Learning. McGraw-Hill, 1997.

[14] MUGGLETON, S.: Inductive Logic Programming. Academic Press, London,
1992.

[15] MUGGLETON, S. , D E RAEDT , L.: Inductive Logic Programming: Theory and
Methods. Journal of Logic Programming 19/20, p.629-679, 1994.

[16] ORAVECZ, Cs.: Part-of-Speech Tagging in the Hungarian National Corpus -
a Case Study. Research Institute for Linguistics of the Hungarian Academy of
Sciences, 1998.

Using Decision Trees to Infer Semantic Functions of Attribute Grammars 303

[17] PAAKKI, J.: A Logic-Based Modification of Attribute Grammars for Practical
Compiler Writing. In Proceedings of the Seventh International Conference on
Logic Programming (D.H.D. Warren, P. Szeredi, eds.), Jerusalem, p.203-217.
MIT Press, 1990.

[18] QUINLAN, J . R . Induction of decision trees. Machine Learning, 1 (1) , p .81-106,
1986.

[19] QUINLAN, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

A Appendix
The corpus tags used in the Hungarian translation of the Orwell novel ' 1984 ' :
ASN, ASNX, ASNY, ASA, ASAX, ASAY, ASD, ASDX, ASDY, ASO, ASOX, ASOY, APN,

APNX, APNY, APA, APAX, APAY, APD, APDX, APDY, APO, APOX, APOY, MP, MPX, MPY,

MS, MSX, MSY, MD, I, CP, NSN, NSNX, NSNY, NSA, NSAX, NSAY, NSD, NSDX, NSDY,

NSO, NSOX, NSOY, NPN, NPNX, NPNY, NPA, NPAX, NPAY, NPD, NPDX, NPDY, NPO,

NPOX, NPOY, PSN, PSNX, PSNY, PSA, PSAX, PSAY, PSD, PSDX, PSDY, PSO, PSOX,

PSOY, PN, PPNX,PPNY, PPA, PPAX, PPAY, PPD, PPDX, PPDY, PPO, PPOX, PPOY, RG,

R0, RP,RQ, RV, ST, T, VA, VMCP1S, VMCP1P, VMCP2, VMCP2S, VMCP2P, VMCP3S,

VMCP3P, VMIP1S, VMIP1P, VMIP2, VMIP2P, VMIP2S, VMIP3S, VMIP3P, VMIS1S,

VMIS1P, VMIS2, VMIS2P, VMIS2S, VMIS3S, VMIS3P, VMMP1S, VMMP1P, VMMP2,

VMMP2P,VMMP2S, VMMP3S, VMMP3P, VMN, CPUNCT, SPUNCT, WPUNCT, UNKNOWN, X,Y

B Appendix
Here we briefly describe the above mentioned corpus tags. The first letter of each
ctag stands for the category of the related words:

Ctag Category Ctag Category
A Adjective R Adverb

CP Conjuntion ST Postposition
I Interjection T Article

M Numeral V Verb
N Noun X Residual
P Pronoun Y Abbreviation

SPUNCT sent, punct. CPUNCT closing punct.
WPUNCT wordpunct.

Then the tags are constructed in the following way:

After A , N, M and P : The second letter after A, N, M and P denotes the
cardinality while the third one is related to the cases, and the fourth letter
refers to the possessive cases:

304 Szilvia Zvada, Tibor Gyimóthy

Position 2 Position 3 Position 4
N nominative

S Singulair A accusative X / M . X
P plural D dative Y / M . Y

0 other

After V : in the case of verbs the situation is the following:

Position 2 Position 3 Position 4 Position 5 Position 6
modes tenses person

I indicative i
M main M imperative P present i

9 S single
A auxiliary C conditional S past •3 P prural

N infinitive o

Other combination : MD numeral digit
RG general adverb
RP verbal participle
RV present paxtiple
RQ interrogative clitic

C Appendix
A part of the background ag AGctag defined for PoS tagging problem is:

BeforeCtags "," AfterCtags Sentences Ctags_Sentences

Ctags_Sentenees

Sentence.ID " "

X

AfterCtags —¥ Acc.Group Synt.Acc

AfterCtags Pred.Group "," Synt.Pred

Synt.Acc

Synt.Acc

Synt.AdvDat

Synt.AdvDat

syntagma = Synt.Acc.syntagma

ctag = Acc.Group. ctag

group = Acc

syntagma = Synt.Pred.syntagma

ctag = Pred.Group.ctag

group = Pred

syntagma= iccSynt

syntagma= Synt.icc.syntagma

syntagma= AdvDatSynt

NonPred.Group "," Synt.AdvDat syntagma- Synt.AdvDat.syntagma

Pred.Group "," Ctags

NonPred.Group "," Synt.Acc

Pred.Group "," Ctags

Synt.Subj -»• Pred.Group "," Ctags

Synt.Subj NonPred.Group "," Synt.Subj

syntagma= SubjSynt

syntagma= Synt.Subj.syntagma

Ctags

Ctags

asn'

'asnx'

