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Abstract 

In this paper we present a learning method called LAG (Learning of Attribute 
Grammar) which infers semantic functions for simple classes of attribute 
grammars by means of examples and background knowledge. This method 
is an improvement on the AGLEARN approach as it generates the training 
examples on its own via the effective use of background knowledge. The 
background knowledge is given in the form of attribute grammars. In 
addition, the LAG method employs the decision tree learner C4.5 during 
the learning process. Treating the specification of an attribute grammar as a 
learning task gives rise to the application of attribute grammars to new sorts 
of problems such as the Part-of-Speech (PoS) tagging of Hungarian sentences. 

Here we inferred context rules for selecting the correct annotations for 
ambiguous words with the help of a background attribute grammar. This 
attribute grammar detects structural correspondences of the sentences. The 
rules induced this way were found to be more precise than those rules learned 
without this information. 

1 Introduction 
Attribute grammars were introduced in [11] as a formalism for the specification 
of the semantics of program languages (see [1, 4]). They can be considered as an 
extension of context-free grammars in the sense that attributes and their semantic 
functions are related to the symbols of the grammar. An attribute is a named 
property with given values and a semantic function computes its value based on 
the values of other attributes. A semantic functions may be complex, therefore the 
specification of an attribute grammar may be a laborious task. Hence a tool which 
is able to complete a partially given attribute grammar by means of examples 
would be very useful. The term "partially given" here means that some of the 
attributes might lack semantic function. The task is to define these unknown 
semantic functions. 
Based on the correspondence of the nonterminals of attribute grammars and the 
predicates of logic programs (see [5, 6, 17]), we can apply many of techniques to 
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attribute grammars, which techniques were originally developed for logic programs. 
For instance, viewing the specification of an attribute grammar as a learning task, 
learning methods presented in the framework of inductive logic programming (ILP, 
see [12, 14]) can be used to solve this task. 
ILP is an active research area of machine learning that studies the definitions of 
logic programs from examples and the presence of background knowledge. Since 
examples and background knowledge are expressed in first-order logic, ILP methods 
can be employed to learn relational and recursive definitions. This last property 
makes ILP methods very promising for the attribute grammars, because recursive 
rules often emerge in attribute grammars as well. 
This fact suggested the use of a similar learning approach in the AGLEARN 
method ([8]) to that one employed in the ILP learning system called LINUS ([12]), 
but in a different representational framework. That is, the learning task and 
background knowledge is represented in the form of attribute grammars instead 
of logic programs. The task of AGLEARN is to complete the specifications of an 
S-attributed or an L-attributed grammar based on positive and negative examples. 
These examples contain strings derived from the target nonterminal, the attributes 
of this target nonterminal being evaluated in these strings. The main idea behind 
AGLEARN is converting the learning task into a propositional form then inferring 
the unknown semantic function with the help of a propositional learner. 
In this paper we introduce the LAG approach which is based on the AGLEARN 
method, but it uses the given background knowledge more effectively and employs 
the C4.5 decision tree learner (see [19]) instead of a propositional learner. Doing this 
allows treating the learning task as a classification problem with multiple classes. 
The robustness of the C4.5 for classification problems has already been 
demonstrated. Another important difference between the AGLEARN and LAG 
methods can be seen in the handling of the training examples. In the case of the 
former, the user has to explicitly define each training example in advance. With 
the latter, the input of the LAG system consists of strings taken from the language 
generated by the partially given attribute grammar. The LAG system builds the 
decorated decision trees of these strings and evaluates the attribute instances during 
the tree traversals. Whenever an attribute instance with no semantic function is 
computed its value is defined by the user ("oracle"). Hence even a few strings can 
produce a large number of training examples. 
The LAG method is applied to the Part-of-Speech tagging of Hungarian sentences. 
The task here is to distinguish the different morphologic classes of a word, as in 
the case of "múlt"1, which might be annotated by a verbal, noun or adjectival tag. 
The tagging of Hungarian texts is very difficult due to the rich morphology of the 
language. Our method has been applied in order to infer the rules for selecting 
the contextually correct tags. The input data set, a corpus with about 100000 
pre-tagged words ([7, 16]), is employed for training and testing. The background 
attribute grammar determines some structural information of the parts of sentences 

'mull (verb) -passed 
múlt (noun) - past 
múlt (adjective) - past, last 
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like subject phrase and predicate phrase. Based on the latter the training data sets 
for the C4.5 system are generated. By using the training sets decision rules are 
inferred for ambiguous words. The experimental results show (see also [2, 9]) that 
the use of even simple attribute grammars as background knowledge yields more 
effective rules than a method which lacks this structural information. 
In Section 2 the key definitions relating to the learning of attribute grammars are 
introduced, while in Section 3 the LAG method itself is discussed. Afterwards, 
in Section 4 a brief overview of the PoS tagging problem and the application of 
the LAG method is presented. The accuracy of the C4.5 and LAG approaches 
is compared in Section 5. In the final section, the conclusions are drawn and 
suggestions for future research are offered. 

2 Preliminaries 

In this section we introduce the terminology and notations used in this paper. 

2.1 Attribute grammars 
Attribute grammars were introduced in [11] as an extension of context-
free grammars (cfg onwards) for specifying static semantics of programming 
languages, such as type-checking and name-analysis during syntax-directed parsing. 
This is achieved by attaching attributes (named properties with given .values) 
to the symbols of the grammar. During the parsing a derivation tree based on 
the underlying cfg is constructed. In this tree nodes and leaves are labeled by 
nonterminals and terminals of the cfg, respectively. The instances of the attributes 
appear in this tree along with the grammar symbols which they are related to. This 
tree is called decorated derivation tree or simply ddt. 
The value of an attribute instance is defined by its semantic function during the 
traversal of the ddt. The value of an attribute is determinable iff the values of all the 
attributes in the argument of the semantic function have already been computed. In 
this way the semantic functions define dependency relations among the attributes. 
The attributes transmit information within the ddt in two directions: from the root 
to the leaves, where they are named inherited attributes, or backwards, where 
they are called synthesized attributes. 
Before we formally define the learning task for attribute grammars, let us first 
consider the definitions and notations of attribute grammars (cf. [1]). 
An attribute grammar (briefly ag) is a four tuple AG = (G,SD,AD,R) which 
consists of the following components: 

• an underlying cfg G = (V/v, VT, P, S) 

• a semantic domain SD = (T, !F) consisting of a set T of the domains of 
attributes and a set T of functions over the attributes: type\ x • • • x typem —>• 
typeo for typei 6 T (0 < i < m). 
(If type o = {true, false} then we talk about relations.) 
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• an attribute description is a triple AD = (Inh, Syn, r ) where Inh and Syn are 
finite, disjoint sets of inherited and synthesized attributes, respectively. 
Attr — Inh U Syn is the set of all attributes of AG. Let X.a denote an 
attribute a £ Attr attached to the grammar symbol X 6 V/v U Vr- The set 
Inh(X) and set Syn(X) consist of the inherited and synthesized attributes of 
the symbol X, respectively, r is a function mapping attributes to their types 
(domains) such that r : Attr —> T . 

• a set R = {R{p) \ p £ P} consisting of finite sets R(p) of semantic 
functions which are associated with the production p : Xo —> Xi... Xmp. 
An occurrence of an attribute Xk-a in the production p is denoted by X^.a. 
The set 

DO(p) = {Xq.S £ Syn(X0)} U {XPk.i £ Inh(Xk) with 1 < k < mp} and 

UO{p) = {Xo A € Inh(Xo)} U {XPk.s £ Syn(Xk) with 1 < k < mp} 

of defined attribute occurrences and used attribute occurrences of p, 
respectively, are assigned to every production p £ P. For every Xk.a £ DO(p) 
there is exactly one semantic function given in Rip) 

XPk.a = f (XPki.au...XPki.as) 

with ( / : r (ai ) x • • • x r(as) ->• r(a)) £ T and Xk..ai € UO(p) for 1 < i < s. 
Then we say that Xk.a depends on Xk..a,i, for 1 < i < s. (Note that if s = 0 
the function is a constant c £ T(O) . ) 

In several applications it is useful to attach a special, synthesized, boolean attribute 
accept to the start symbol S of the underlying cfg. Using the attribute accept we 
can define the language generated by an attribute grammar like so: 

Lang(AG) = {w | w € Lang(G) and S.accept = true in the ddt of w } . 

Let AG = (G,SD,AD,R) be an ag with an underlying cfg G = (VN,VT,P,S), a 
semantic domain SD = (T, T) and an attribute description AD = (Inh, Syn, r ) . 
Furthermore, let t be a ddt and no be a node of t, which is labelled by X 0 € V^ U Vr. 
The set Inh(no) = {no-i\Xo-i £ Inh(Xo)} of inherited attribute instances and 
the set Syn(no) = {no.s|Xo.s £ Syn(Xo)} of synthesized attribute instances 
are associated with the node no. Thus Inst(no) = Inh(no) U Syn(no)- (Note that 
T(no-i) = r(Xo-i) — r(i) holds for any no-i £ Inst(no).) 
Further, let the production p : X0 X\... Xmp be applied at node no- Then 
Xi,..., Xmp label the successors n\,..., nmp of no, from left to right, respectively. 
Let 

DI(no,p) = {nk.a | Xk.a £ DO(p) with 0 < k < mp} and 
UI(n0,p) — {nk.a | XPk.a £ UO(p) with 0 < k < m p } 

be the set of defined attribute instances and used attribute instances of 
no, respectively. Then an instance n,.a of the defined attribute occurrence XP.a is 
determined by f(nkl.a\,... ,nkm.am), where nkla\.. .njtmam £ UI(no,p) are the 
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instances of the attribute occurrences X*k .a\,... ,Xkm.am G UO(p) and / is the 
interpretation of the semantic function 

X'-a = f (xFki .ai,... XPkm .aro) . 

An attribute instance rik0.a depends on the attribute instances nk¡ -a¿, for 
1 < i < m. It is clear that an attribute instance n, .a can be computed if all attribute 
instances on which it depends have already been evaluated. 
An ag is circular if it has a ddt such that there is a circular dependency among the 
attribute instances. Otherwise an ag is non-circular. Here we consider two subsets 
of the non-circular ags, namely the L-attributed and S-attributed grammars. 
An ag is L-attr ibuted if all attribute instances of an arbitrary ddt of this ag can 
be evaluated in one left-to-right tree traversal. The left-to-right traversal and the 
attribute evaluation are described by the following procedure: 

proc tree_ traversal(node : no); 
begin 

for i := 1 to mp do 

begin 

eval (Inh(ni)); 
tree _tr aver sal (n¡); 

end; 

eval (Syn(no)); 
end; 

One can formulate conditions for the L-attributed property. Let Xj .a be a defined 
attribute occurrence of the production p and Xt .a = f (Xk .a\,... Xk ,as). Then 
the ag is L-attributed if the following conditions hold for each defined attribute 
occurrence (see Figure 2.1): 

- if X¡.a is an inherited attribute occurrence then Xk..ai € Inh(Xq) or 
Xk..ai € Syn(XTk.), with 1 < i < s and 1 < ki < I. This means that an 
inherited attribute occurrence X¡.a may depend on the synthesized attribute 
occurrences of the rhs symbols Xk., that have been defined before than X, . 
It may also depend on the inherited attribute occurrences of the lhs symbol 
Xq as shown in Figure 1. Here an inherited attribute occurrence is visualized 
by a white circle above the respective symbol, whereas a synthesized attribute 
occurrence is depicted as a black dot below it. 

p:Xo — Xi j . Xi ... 

Figure 1: L-attributed dependencies of X" .a 

- if Xq .a is a synthesized attribute occurrence then Xk..ai 6 /n / i (Xo) or 
Xk..ai 6 Syn(Xk ), with 1 < i < s and 1 < ki < mp . Namely, this 
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means that an lhs synthesized attribute occurrence Xq .a of a rule may depend 
on synthesized attribute occurrences of rhs symbols and inherited attribute 
occurrences of the lhs symbol, itself. Figure 2 presents these relations. 

( P -XO —» XI . . . XMP a • • v,\ 

Figure 2: L-attributed dependencies of XQ.OL 

Let the set UOL-attr(X¡ .a) denote the used attribute occurrences of p which fulfill 
these two conditions with respect to the attribute occurrence X* .a. 
The other subset of non-circular ags investigated in this paper is the S-attributed 
grammar. An ag is S-attributed if solely synthesized attributes are related to 
the symbols of the grammar. It is clear that the set of S-attributed grammars is a 
subset of L-attributed grammars. 
To help to make these definitions clearer, let us illustrate their use with a concrete 
example. 

Example 1 The S-attributed ag AGtVP — (GtyP,SDtyP,ADtyp,Rtyp) defined 
below determines whether the type of an arithmetical expression is real or integer, 

nonterminals and terminals Vjv = {Expr,Term, Factor, AddOp, MulOp,} 
VT = {Integer,Real, =, —, *, / , A} 

the semantic domain SDtvp T = {typemode,typeop} , where 
typemode = {int,real}, and 
typeop = {add, sub, mul, div} 

F — { / l : typemode X typemode ~> typCmode, 
h • typemode X typeop X typemode typemode} 

where fi(x, y) = if (x = int) A (y = int) 
then int 
else real 

/2(1, y, z) = if (x = int) A (y = mul) A (z = int) 
then int 
else real 

the attribute descriptions ADtyp Inh = 0 
Syn ' {mode, op) 
Syn(Expr) = Syn(Term) = Syn(Factor) = {mode} 
Syn(AddOp) = Syn(MulOp) = {op} 
r(mode) = {int, real} 
r(op) = {add, sub, mul, div} 

the underlying cfg Gtyp and the set Rtvv of semantic functions: 

1, Expro —> Expr 1 AddOp Term 
il(l) = { Expro-mode := f 1 (Exprmode, Term.mode)} 



Using Decision Trees to Infer Semantic Functions of Attribute Grammars 285 

2, Expr —Term 
R(2) - { Expr.mode := Term.mode} 

3, Termo Term\ MulOp Factor 
R(3) = {Termo.mode := fo(Termi.mode, MulOp.op, Factor.mode)} 

4, Term —y Factor 
R(4) = {Term.mode := Factor.mode} 

5, Factor —> Integer 
R(5) = { Factor.mode := int} 

Factor —» Real 
R(6) = { Factor.mode := real} 

7, Factor —> (Expr) 
R(7) = { Factor.mode := Expr.mode} 

S, AddOp + 
ii(8) = { AddOp.op add} 

9, AddOp -
R(9) - { AddOp.op := sub} 

10, MulOp -t x 
R( 10) = { MulOp.op := mul} 

11, MulOp -¥ / 
i i ( l l ) = { MulOp.op := diu} 

some o/ the defined and used attribute occurrences: 
DO( 1) = {Expro.mode} 
DO(2) = {Expr.mode} 
DO( 3) = {Termo.mode} 

f / 0 ( l ) = {Expri.mode, AddOp.op,Term.mode} 
UO(2) = {Term.mode} 
(70(3) = {Termi .mode, MulOp.op, Factor.mode} 

It is immediately apparent that for S-attributed grammars, all the used attribute 
occurrences satisfy the L-attributed property. 
Nevertheless, the specification of semantic functions is not trivial even in the case of 
L-attributed and S-attributed grammars. The current paper introduces a method 
which learns the semantic functions of ags like these. 

2.2 Inductive learning 
The idea of using inductive learning methods to define semantic functions of 
an attribute grammar was motivated by the parallelism found between the 
nonterminals of attribute grammars and the predicates of logic programs (see 
[5, 6, 17]). 
In general, an inductive learning method studies a set of positive and negative 
training examples and background knowledge in order to infer a hypothesis which 
approximates the target concept. The inferred hypothesis explains the training 
examples together with the background knowledge such that all positive examples 
can be 'proved' by it and no negative example can be 'derived' from it. Many 
inductive learning approaches use an attribute-value language to represent the 
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examples, background knowledge and the concept to be induced. The most popular 
of these attribute-value learners are decision tree learners used widely in solving 
classification problems ([13, 19]). 
These methods construct decision trees for modelling the target hypotheses from 
the training examples expressed as attribute-value vectors. In a decision tree, every 
interior node is labelled with a test over an attribute which is expected to most 
efficiently classify the current subset of training examples. The possible outcomes of 
these attribute tests assign a name to the branches descending from the nodes. The 
leaves show a "class" to which the examples of the current training set belong. The 
decision trees can be also represented by a set of decision rules (see Example 2). 
The LAG method makes the use of the decision rules during the learning process. 
The decision trees can be constructed by a heuristically guided, hill climbing 
algorithm called ID3 ([12]). Its heuristic is based on an information-theoretic 
measure called entropy, which measures the length of the encoding of the current 
training set in bits. The most popular decision tree learner algorithm is the C4.5 
system ([19]) which is widely used in academic and industrial spheres. There axe 
many good textbooks available on decision tree learner methods ([12, 13, 19]). In 
the following, we represent a decision tree constructed for a learning task. 

Example 2 (A modified version of an example in [12].) The task is to find a concept 
•which describes whether a robot is friendly or not, based on the properties Smiling, Holding, 
Has_ tie, Head_ Shape, Body_ Shape, and an initial set of training examples. 

Smiling Holding Has tie Head_ Shape Body Shape Class 
yes balloon yes square square friendly 
yes flag yes octagon octagon friendly 
yes balloon no round round friendly 
yes flag no octagon octagon friendly 
yes flag no octagon octagon friendly 
yes balloon no square square friendly 
yes sword yes round octagon unfriendly 
yes sword no square octagon unfriendly 
no sword no octagon round unfriendly 
no flag no round square un friendly 

Rule\: Holding = balloon —> class friendly 
Rule2: Smiling = yes A Holding = flag 

—> class friendly 
Rule3: Smiling — no class unfriendly 
RUICA : Holding = sword —> class unfriendly 

Default class: friendly 

Figure 3: The decision tree and decision rules constructed by the C4.5 
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These learning methods which generally yield robust, reliable results are even able 
to handle noisy input data and continuous attributes. However, they have some 
drawbacks as well. In the attribute-value-based representation, variables cannot be 
used, hence these learning methods cannot deal with complex relations. Another 
disadvantage is the inability of use of background knowledge. 
The above problem was bridged by the introduction of inductive logic programming 
(ILP, [12, 14]). The learning methods developed in the ILP framework 
employ first-order logic to represent the learning task, the training examples and 
background knowledge. The latter is used intensively in the learning process. 
The ILP learning system called LINUS ([12]) combines the advantages of attribute-
value learners and first-order-logic-based representation. The learning approach of 
the LINUS system can be summarized in three steps: 

- It transforms the learning task into a propositional form. 

- The transformed learning task is solved by using an appropriate propositional 
learner. 

- The results of this propositional learner are converted back into a first-order 
logic form. 

A similar learning method (see Figure 4) is used in the AGLEARN algorithm for 
inducing attribute grammars. However, the AGLEARN describes the learning task 
and background knowledge used with the help of an attribute grammar instead of 
a logic program. 

LINUS system AGLEARN method 

Learning task Background knowledge Background knowledge Learning task 

completed Prolog program completed attribute grammar 

Figure 4: Similarities and differences between the LINUS system and the 
AGLEARN method 
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2.3 Description of the learning task 
In this section, we formulate the learning task of ags in the following way: 
The goal of the learning is to give a complete specification for the ag AG = 
(G,SD,AD,R) from a, partially given L-attributed ag AGinp = (G, SD, AD, RTNP) 
and a set W{n p of strings taken from the language generated by AGinp. 
The term "partially given" here means that Rinp C R, namely some of the semantic 
functions of AGinP are undefined. This AGinp not only describes the background 
knowledge and the learning task, but is used to generate the training examples 
from the strings of Wi„p . The background knowledge is given as a fully defined 
ag AGBG = ( G , S D B G , A D B G , R I N P ) , where SDBG C SD and ADBG Q AD. T h e 
learning task is specified by the following items: 

(1) The semantic domain SDTAR = (TTAR^TAR) which consists the types of the 
target attributes (Ttar) and initial functions (TTAR) over these attributes. 
SDTAR is defined in advance, such that SDTARU SDBQ = SD holds. The 
LAG method constructs the unknown semantic functions from the elements 
Of Ttar-

(2) The description ADtar = (Inhtar,Syntar,T) of the target attributes are 
related to the symbols of cfg G such that ADtar U ADBG = AD holds. 

(3) A set TO[p) of the target attribute occurrences is assigned to production 
p-.X0^X1...XmroiG. » 
A defined attribute occurrence Xf.a G TO(p) (0 < I < mp) if it has no 
semantic function in Rinp. In this case Xf.a is called target attribute 
occurrence. TO = |J TO(p) denotes the set of all target attribute 
occurrences. 

To be more exact, the learning method infers the unknown semantic functions of 
Rtar for the target attribute occurrences then completes the specification of AGinp 

such that Rtar U Rinp = R will hold. 
The training examples for the target attribute occurrences are generated during 
the derivation of the input strings of Winp. Based on the AGinp, a ddtw is built 
for each w € Winp string. Let no be a node of ddtw labelled by Xq and let 
p : X0 -¥ Xi.. Xmp be applied at this node. Moreover, let Xi,..., Xmp each 
label the successor n\,... ,nmp of no, respectively. Then, during the traversal 
and evaluation of ddt^ for each instance n;.a of Xi.a £ TO(p), (0 < I < mp), an 
example 

e = (w, (ui,vi),...(uk,vk),(ni.a,v0)) 
is added to the training set £Xf.a- The vi,... ,vk denote the values of the instances 
of the used attribute occurrences ult... ,uk 6 UOL-ATTR{Xf .a) that have already 
been computed. With a knowledge of these values, the value VQ of the target 
attribute instance n/.a is defined by the user. 

Example 3 We show what these definitions look like with the help of the type-checking 
example AGtyP (see Example 1). Let us suppose that the semantic functions in the 
production 1 and 3 are unknown: iZ(l) = iZ(3) = 0. 
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input strings Winp = { ( ( 3 * 2 + 6) — 7 ) / ( 3 * 1.5 — 2.5/5) , 
(3 /2 - 1) * 3 + (0.7 * (0.1 + l ) ) / ( 6 * 2 + 4 .3) } 

background knowledge AGBG — (GTYP, S D t y p , ADTYP, RBG), where RBG Q RtyP 

learning task SDtar TtaT = {{true, false}} 
Ftar = {=2}, where =2 is the identity relation 

ADtar Syn = {mode} 
Syn(Expr) = Syn(Term) = {mode} 
r(mode) = {int, rCal} 

target attribute occurrences TO = {Exprl.mode, Term^.mode} 

3 Learning of L-attributed grammars 
In this section we introduce the LAG system which infers semantic functions for 
L-attributed grammars. It takes a partially given ag AGINP and a set Wi„p of 
strings of the language generated by AGinp as input. The term 'partially given' 
here means that AGinp has some attribute occurrences which have no semantic 
function. During the learning process the LAG method infers these unknown 
semantic functions and adds them to AGin p to complete its specification. 
AGinp describes the learning tasks and the background ag AGBG• In addition, it 
is used to generate the training examples from the strings of Win p . For each string 
a ddt is constructed by AGINP, which also consists of instances of target attribute 
occurrences. During the evaluation of the ddt the values of these target instances 
are determined by the user with the knowledge of the values of other attribute 
instances. The latter have been computed automatically based on AGinp. This 
is an important advantage of this system compared to other learning methods 
where a whole set of training examples have to be given in advance. After 
generating the training examples for the target attribute occurrences, the LAG 
system transforms the learning task and background knowledge into2 an attribute-
value representation.3 

The learning tasks represented this way are solved by the decision tree learner, C4.5 
([19]). Finally, the hypotheses produced by the C4.5 in the form of decision rules 
are transformed back into "if-then" semantic functions (see Example 1). 
The basic steps of the LAG method can be summarized as follows: 

• Generation of the training examples from the input strings. 

• Transformation into attribute-value tuples: a training table consisting of 
attribute-value tuples is constructed for each target attribute occurrence. 

• Decision tree learning-, solving the transformed learning tasks using the C4.5 
system: the decision rules are built based on the training tables. 

• Formulating semantic functions: The rules inferred by C4.5 are transformed 
back into the form of semantic functions. 

2described by an attribute grammar 
'expressed as attribute-value vectors 
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3.1 Generation of training examples 

Using the input ag AGinp we build a ddtw for each input string w in Wi„p . In 
these ddts the target attribute occurrences may have arbitrarily many instances. 
Let no be a node of ddt„, where the production p : Xo Xi... Xmp is applied 
and let ni.a, (0 < I < mP) be the instance of the target attribute occurrence 
Xf.a £ TO(p). Further, let UlL-attr(ni,a) denote the set of used attribute 
instances n ^ . u i , . . . ,rik,-us € UI(no,p), which fulfill the L-attributed conditions 
(see p. 283): they were computed before the evaluation of target attribute instance 
ni.a. 
During the evaluation of the ddtm, the user is asked about the values of the 
target attribute instances by substituting the unknown semantic functions with 
a question IQ: 

proc IQ (set : UlL-attr, inst : target); 
begin write ('The used attribute instances have the following values: 0 ; 

VTite (UlL-attr, p ) ; 
read (.target); 

end; 

In addition, replacing using the procedure new_eval() instead of the procedure 
evalQ in the tree_traversal() (see p. 283) process yields examples which are 
added to the training set SxP A for each instance of the target attribute occurrence 
X*.a. 

proc new_eval (set : DI, node : n); 
begin for each a € DI do 

if a£TO then eval(n.a); 
else begin 

a :— IQ(UIi,-attr{n, a), a) ; 
add_ example(w, UlL-attr(n, a), a) ; 
end; 

end; 

During the evaluation, one example is generated for each instance of each target 
attribute occurrence in the ddt№. Hence examples can be produced for different 
training example sets. Since the training set Exp a may contain an example more 
than once, even a small number of input strings can induce numerous training 
examples: |Wmp| < | |J £x*,a\ • 

TO 

Example 4 (Continuing from Example 3) The training example set SExpTi mode is 
generated for the target attribute occurrence Expro.mode of production 1. (A similar 
training set can be constructed for the target attribute occurrence TermQ.mode as well.) 
Let tui = ( (3 * 2 + 6) - 7 ) / ( 3 * 1.5 - 2 .5 /5 ) and 

w2 = ( 3 / 2 - 1) * 3 + (0.7 * (0.1 + l ) ) / ( 6 * 2 + 4.3) 
denote the two input strings. The production 1 is applied three times in ddtwi, hence 
three examples are generated for Expro.mode during the traversal ofddtWl. Similarly, 
the traversal of ddtW2 produces four examples. It is easy to check that ^^xpr1 .mode is the 
following after the evaluation of ddtWl and ddtv,2: 
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UOh-uttT 

w e winp Expri.mode Addop.op Term.mode Expro-mode 
W\ int add int INT 
W\ int sub int INT 
w 1 real sub real REAL 
W2 real sub int REAL 
W2 real add int REAL 
W2 int add real REAL 
W2 real add real REAL 

3.2 Transformation into attribute-value tuples 

Upon generating the training example set, the LAG method transforms the learning 
task into attribute-value tuples. One training table is generated for each target 
attribute occurrence (i.e. in the type-checking example two training tables are 
constructed: one for Expr\.mode and one for Term^.mode). 
There are two ways of formulating the training tables depending on the type of 
target attribute occurrences: 
(1) Enumerated case: when the domain of the target attribute occurrence X^ .a 
is defined by a finite list. In this case our aim is to infer a classification-like semantic 
function for it, where the classes are made up of the c\ , . . . , ck elements of the 
domain. The training table Tx* a consists of columns 

{string} U UOL-attr U IZu U {dass } , 
where columns string, class and UOL-attr are constructed from the training 
example set £xv a . The column class contains the value of Xf.a computed during 
the evaluation of ddtw , where w € {string}. The set 7Zu consists of the satisfiable 
interpretations of each relation r : r(x i) x ••• x r ( z m ) —> {true, false} given 
in SDinp. An interpretation r(ui,..., um) is satisfiable iff U{ € UOL-attr and 
r(tti) = r(xi) , for all i = 1 . . .m. 

Example 5 (Continuing from Example 4) Since we have only one relation — ' in SDinp, 
the set IZu only consists of the column n : (Expri.mode = Term.mode). The training 
table TExpri mode generated is: 

string UOL-attr Tlu class 
w e Winp Expri.mode Addop.op Term.mode r\ Expro.mode 

w l int add int true INT 
Wl int sub int true INT 
W\ real sub real true REAL 
W2 real sub int false REAL 
W2 real add int false REAL 
W2 int add real false REAL 
W2 real add real true REAL 

Based on the training tables constructed in this way the semantic functions are 
produced in the following form: 
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X* .a = if Testis A ••• A Testis then c^ 
else if Test2,i A • • • A Testis then c<2 

otherwise Cis 

where c^,... ,Ci3 e t(X* .a), and Testk,j{k = 1 . . .s,j = i\ .. ,is) is given in the 
form (Columnkj — Vj) with ColumnkJ £ U0L — attr U7Zu and Vj 6 T(Columnk,j). 

(2) Non-enumerated case: if the domain of a target attribute occurrence X* .a 
is non-enumerated then the LAG system is going to infer a semantic function for it 
by employing the elements of Ttar- If so, a slightly extended training table TxP A 

is produced: 
{string, target} U UOL-attr U TZu UTZjr u {c/ass}. 

The columns of the string, UOL-attr, and 7Zu are the same as those of the 
enumerated-typed target attribute occurrences. The main differences between the 
two cases surface in the columns of TZjr, target and class. 
The elements of the set IZ? are defined as a relation (X{ .a = q), where q might be 
an attribute occurrence uk £ UOL-attr or a satisfiable interpretation f(u\,... ,um) 
of / : r (x i ) x • • • x r ( x m ) -4 t(Xp .a). The values of X* .a computed during the 
parsing of the input strings make up the elements of the column target. 
In addition, the elements of the column class = { + , — } denote positive and 
negative examples. The positive examples of the training table will be elements 
of the set £XP A. The negative examples are generated from the positive ones by 
changing the elements of the column target with some randomly selected values of 
T(X;.a). 

Example 6 Let us consider an S-attributed ag AGab, which counts the number of letters 
in a string of the language a*b'. 

1 , 5 -*AB So.n = A\.n + B2-n 2,A->aA A0.n — inc(A\.n) 
3, ¿0-71 = 0 4, B -¥bB Bo.n = inc(Bi .n) 
5, B —>A B0.n = 0 

Let us suppose that all of the semantic functions are unknown. The learning task will then 
defined as follows: 

S ID tar •• Ttar = {N} 
Ttar = {inc1, dec1,+2,—2}, where 

inc: N N + : N x N - > N 
dec : N —)• N - : N x N - + N 

ADtar : Syn = (n) 
Syn(S) = Syn(A) = Syn(B) = {n} 
r(n) = N • 

Win? = {ab, aab, abb} 
TO = {Sin, A20.n, Aln, B^.n, Bin} 

The training table TA2 n for the target attribute occurrence A^.n consists of the following 
columns: 
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7ZT 
W 6 Winp Ao-n Aln r 1 r-2 r3 class 

UOL-attr = {Aln} ab 1 0 false true false + £ II aab 1 0 false true false + 
aab 2 1 false true false + 

n : ( A g . n = Aln) abb 1 0 false true false + 
r2 : (Aln = inc(Af.n)) ab 2 0 false false false • -

r 3 : (AQ.II = dec(Aln)) aab 0 0 true false false -

aab 0 1 false false true -

abb 3 0 false false false -

Similar training tables are generated for the target attribute occurrences So-n, Aq.TI, Bq.TI, 

Bg.n as well. 

Using the training tables structured in this way, the LAG system infers semantic 
functions which have the following form: 

X[.a= if Testis A • • • A Testis then q 
else if Test2,i A • • • A Test2,i2 then qi2 

then qin 

where Testkj denotes the test (Columnkj = vj) with vj 6 T(Columnkj) and 
Columnkj £ UOi-attr U TZu. Here, qik might be a function / € TtaT or a used 
attribute occurrence u £ UOL-attr-

3.3 Learning with the C4.5 system 
The C4.5 system views the learning task described by the training table as a 
classification problem. The possible values of the target attribute occurrence make 
up the set of possible classes. The system constructs a classification model in the 
form of a decision tree or a set of decision rules. The LAG system formulates the 
semantic functions based on the decision rules. 
The decision rules produced by the C4.5 system are represented as follows: 

RulesxP a = < 

Rulei : Columni,i = vi 

Columnni = uni 

class c 1 

Columni,i e UOL-attr U7Zu 

Columnni 6 UOL-attr U 7Zu 

ci 6 r(Xi .a) 
Rule2 : 
Default class: Cdefault | Cdefault £ 

Example 7 Based on the training table rno^e given in the Example 5, the C4-5 
system infers the following decision rules: 

Rules Bxpr^.mode 

Rulei : Expr\.mode = real —> class REAL 
Rul&2 : Expri.mode = mi A 

Term.mode = int —> class INT 

Default class: REAL 
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Similar decision rules are inferred from the training table TA2 „ of the non-enumerated 
target attribute occurrence: 

true —t class + 
RulesA2 n = ^ Rule2 : (Ao.n = inc(A\.n)) = false —» class -( Rule 1 : (Aa.n = inc(A\.n)) = ¡ 

Rule2 : (Ao.n = inc(Ai.n)) = 
Default class:+ 

3.4 Formulating semantic functions 
First we simplify the set of rules learned by the C4.5 system then transform them 
into semantic functions. 
(1) Enumerated case: The set of rules is reduced as follows: 

Simplified_Rulesxr a = {r E Rules xPa \ ci ̂  Cdefauit}-

This set is transformed to a semantic function of the form: 
X?.a = if (Column\t\ =Vit) A - A (Column\tni =Di,ni) 

then c\ 
else if (Column2,i = «2,1) A ... 

Otherwise Cde fault 
where (Columnij = Vij) occurs in the tests of Simplified_RulesXp a. 

Example 8 The semantic function formulated for the target attribute occurrence 
ExprQ.mode is the following: 

Expro-mode = if (Expri.mode = int) A (Term.mode = int) 
then INT 
else REAL 

(2) Non-enumerated case: here, the rules inferred by C4.5 classify the examples 
into one of two classes: + , —. A rule is accepted iff it tests exactly one column of 

The set Simplified_RulesXP A is constructed in the following way: 

Simplified_RulesXp a = < r¡ 6 RulesxP 
(d = +), and for exactly one k : 
Columrii= (Xt .0 = Qi) 6 7Zt 

with (Columni,/t = true) 

This set is transformed to a semantic function in the form: 
Xi .a = if (Columniri = v^) A. . . (Column\,ni =t>iini) 

then qi 
else if (Column2,i = V2,i) A . . . 

then qn 

otherwise WARNING 

where Columnij are the tests of Simplified_RulesXPa> such 
Columriij 6 UOL-attr U TZy, while qi is a function and (Xf.a = qi) is 

that 
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among the tests of Simplified_RulesXp a. (Note: if during the execution of 
the generated ag for a given input none of the conditions in the above semantic 
function are fulfilled, a warning message is induced for the user. This message 
indicates that the inferred semantic function is not applicable for that input. If 
the Simplified_RulesXP A = 0, then it then means that the LAG system was not 
able to learn semantic function for Xf.a.) 

Example 9 The decision rules for the target attribute occurrence A$.n are simplified in 
the following way: 

Simplified_RulesA2 n = {Rule\ : (Ao-n = inc(A\.n)) = true —• class +} 

Since the simplified set of rules consists of a single rule not containing any tests over the 
elements of columns in UOL-attr UlZu and the test of this rule is an element of 71f, the 
generated semantic function of A%.n is 

Ao-n = inc(Ai.n) 
which is the correct solution. 

Within the non-enumerated learning there is a special case where a constant value 
should be assigned to the target attribute occurrence. In this case a semantic 
function 

Xf.a = c, where c G r(Xf.a) 
is generated automatically based on a preliminary check of positive examples. 

4 Application of the LAG method in NLP 

4.1 Part-of-Speech Tagging Problem 
Research into both text and spoken language understanding is significantly helped 
by investigating those phenomena that occur in actual language use. 
The first stage of the investigation is to assign part of speech (PoS) tags to every 
word representing its syntactic category and morphological properties based on 
large corpora. The corpus is an archive of annotated words including their 
morphological properties as codes called tag. Annotating a given text is a far 
from trivial task since the words often belong to several syntactic categories or 
morphological classes in different contexts (e.g. the Hungarian word "múlt"4 might 
be annotated by a verbal, noun or adjectival tag). 
The task of a PoS tagger (morphological disambiguater) is to automatically select 
the appropriate PoS annotation in a given context where possible. In principle 
there are two main approach for automatic part-of-speech tagging: 

- the probabilistic one which normally uses Hidden Markov Models and 
- the rule-based one which normally uses linguistic rules. 

4múlt (verb) - passed (Perfect 'pass') 
múlt (noun) - past 
múlt (adjective) - past, last 
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In this section we infer rules for a rule-based tagger with the aid of the LAG method. 
We specify an ag which detects correspondences among the parts of the sentences 
such as predicate phrase and subject phrase. Using this structural information 
during the learning process, the LAG system produces disambiguater rules for each 
ambiguous class. 

4.2 The initial data set 
Our Hungarian corpus is the morphologically annotated translation of George 
Orwell's novel 1984• The first tagged version of this corpus was produced by the 
MULTEXT-East project ([7]). The corpus includes approximately 100 000 words 
including punctuation characters. The novel consists of four chapters where the 
first two served as training data for the learning process while chapters 3 and 4 
were used as test data. 
The most widely used encoding is the Morpho-Syntactical Description (MSD, [7]). 
Unfortunately it associates too many different classes with the Hungarian language. 
E.g. based on its stems, a noun could be annotated with 1324 different MSD codes. 
In order to reduce the number of MSD classes the CTAG encoding scheme (Corpus 
Tagging,[16]) was employed, which has just 120 word tags, 4 punctuation tags and 
1 tag for unknown words. Table 2 lists the distribution of the ambiguous classes 
whose instances occur over 100 times in the training and test data. 

Table 2: The most frequently ambiguous classes and their cardinalities 

Occurrence Occurrence 
Classes Training Test Classes Training Test 

data data data data 
asn,vmis3s 490 182 nsn,rgn,rp 112 46 
cp.rg 880 294 psn,rp 142 57 
cp,rg,vmip3s 247 125 psn,t 1867 620 
cp,rp 334 149 pso,rg 217 85 
cp,vmis3s 113 38 rg.rp 150 59 
ms,t 751 222 rg,st 285 100 
nsn,psn 111 52 

For instance, a word which belongs to the ambiguous class [asn, vmisSs] could 
be annotated as a nominative, singular adjective or as a verb in past tense, 3rd 
person singular. In another ambiguous case, the [psn, t] stands for the word 'az', 
which could be annotated as a singular pronoun, nominative case5 or as an article6. 
(A brief description of the corpus tags is given in the Appendix B.) 
Besides the tags there is an identifier associated with every sentence which shows the 
location of a sentence in the original text, namely Orwell, Hungarian translation, 
1st chapter, 2nd section, 1st paragraph, 1st sentence is 

5 ,az' - the 
6 'az ' - that 



Using Decision Trees to Infer Semantic Functions of Attribute Grammars 297 

'Ohu. 1.2.1.1' "Derült, hideg áprilisi nap volt, 

az orak eppen tizenhármát ütöttek." 
This sentence is annotated as follows: 

'Ohu. 1.2.1.1',(asn, [asn, wms3s]), wpunct, asn, asn, nsn, vmis3s, wpunct, 

(í, [psn, i]), npn, rg, msa, vmis3p, spunct 

In the sequence of corpus tags an ambiguous case is denoted by a pair given in round 
brackets. The second component is the set of possible tags of the word, while the 
first component shows its correct tag in the given sentence. Using the sequences of 
corpus tags during the learning process we can infer context rules which describe 
general regularities among the morpho-syntactical categories of the language. 
Each ambiguous class is dealt with as an independent learning task so we generate 
an initial input set for each one, based on sequences of the corpus tags. Each 
element of these input sets is structured as follows: 

Sentence.ID, beforei, ..., before7, afteri, ..., after7, correct_ctag 
where correct_ ctag denotes the observed morpho-syntactical category of the word 
in the given sentence. In addition, we consider 7 corpus tags before and after the 
ambiguous case. (Here: we denote the blanks with xxx when this 7-sized window 
extends over the beginning and the end of a sentence). 
Continuing our example, the following tuples 

are added to the input set yVasnyvmis3s 
and WpSn,t of the ambiguous class [asn,vmis3s] and \psn,t], respectively: 

'Ohu. 1.2.1.1', xxx, xxx, xxx, xxx, xxx, xxx, xxx, 

wpunct, asn, asn, nsn, vmis3s, wpunct, t, asn 
'Ohu.1.2.1.1', wpunct, vmis3s, nsn, asn, asn, wpunct, asn, 

npn, rg, msa, vmis3p, spunct , xxx, xxx, t 
Using these sets of sequences the C4.5 system can infer disambiguater rules for each 
ambiguous class, i.e. produce a set of decision rules for the class [asn, vmisSs] such 
that: 

Rulel: beforei = t —• class asn 
Rule 2: afteri = npn —> class asn 

Rule 36: afteri = spunct —» class vmis3s 
Rule 37: beforei = nsa —> class vmis3s 

Default class: vmis3s 
In order to generate more effective rules the LAG method has been designed to 
recognize structural coherences in the sentences via an ag and extend the input of 
C4.5 with them. 

4.3 Description of the learning task 
The ag AGctag introduced here, detects parts of sentences and phrases in ambiguous 
cases. 
The parts of sentences can be derived from the corpus tags, which refer to the 
suffixes of the words as well. The suffix determines the role of a word in a sentence. 

7 It was a bright, cold day in April and the clocks were striking thirteen. 
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We separate the corpus tags into groups based on the role they play in a sentence 
such as predicate, subject, object, attribute, dative adverb, other adverb. The rest 
of the sentence elements are denoted with the value other. Furthermore, the value 
none is generated for the case of xxx tags. 
The phrases, called syntagmas, describe relations among the parts of sentences 
like the predicate syntagma, where the predicate and subject are related, or the 
accusative syntagma, where the predicate and object are related. It is clear that 
the identification of a syntagma depends on the attribute group. 
Furthermore, our experiments show that in most cases the choice of the correct 
corpus tag of a word is influenced only by its neighboring tags. Hence, we use a 
simplified ag AGctag as background knowledge which deals only with tags next to 
the ambiguous case ( size of window = 1 ) and it detects a syntagma among the 
tags after it. (A part of the ag can be found in the Appendix C.) 

Sentence —> 
Sentence_ID " , " BeforeCtags " , " AfterCtags Ctag_Sentence 
Sentence —> A 

' CTAG = {asn, asnx, ..., wmis3s, spunct, wpunct... } 
GROUP = {Pred, Subj, Acc, AdvDat, AdvOth, Att, Other, None} 
SYNTAGMA = {PredSynt, SubjSynt, AccSynt, AdvDatSynt, 

AdvOthSynt, AttSynt, OtherSynt, NoneSynt} 
= 2 } where, = is the identity relation 

Gctag 1 : Ctag_ 

2 : Ctag_ 

SDctag Tctag — ' 

ctag ~ 

ADctag Inh = 0 
Syn = {ctagi, groupi, syntagma} 
Syn(BeforeCtags) = {ctagi, groups} 
Syn(AfterCtags) = {ctagi, groupx, syntagma} 

r(ctag\) — CTAG 
r(groupi) — GROUP 
T(syntagma) = SYNTAGMA 

In order to choose the contextually correct tag in an ambiguous case, a synthesized 
attribute correct^ctag is associated with the start symbol Ctag_Sentence. Its 
semantic function is unknown, so the learning task is described as follows: 

the semantic domain SDtar Ttar = {CTAG} 
Ttar = 0 

the attribute description ADtar Syn = {correct_ctag} 
Syn(Ctag _Sentence) = {correct _ctag} 
r(correct _ctag) = CTAG 

Rtar R(l) = 0 

target attribute occurrence T O ( l ) = {Ctag_Sentence\.correct_ctag} 
input StringS i.e. W;„p = Wo5„,vm.i33 

The learning concept is inferred by the LAG method introduced in the Section 3. 
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4.4 Generation of the training examples 
We build the ddts for every given sequence s of corpus tags for an ambiguous 
class. Recalling that the values of the target attribute occurrence correct_ctag are 
defined in advance in the training corpus, the question IQ is not used during the 
tree traversals. 
For instance, in the case of the ambiguous class (asn, vmis3s) given the set of input 
sequences of V\>asn,vmisZs'-

Ohu .1.2.1.1, xxx, xxx, xxx, xxx, xxx, xxx, xxx 

wpunct, asn, asn, nsn, vmis3s, wpunct, t, asn 
Ohu.1.2.5.5, t, cp, wpunct, vmn, vmis3s, rg, i, nso 

rg, vmip3p, rq, t, nsa, spunct, asn 

Ohu.2.11.40.5, rg, rg, spunct, rp, vmcp3s, nsax, cp 
pso, ms, nsa, spunct, xxx, xxx, xxx, vmis3s 

Ohu.2.11.40.5, nsa, asn, asn, xxx, xxx, xxx, xxx 

nso, wpunct, cp, nsax, vmcp3s, rp, spunct, vmis3s 

The training example set £asn,vmis3s generated in this case is: 
Sentence_ID 

Ul U2 
UOL-attr 

U3 U4 Us 
class 

Ohu.1.2.1.1 xxx none wpunct 0th AttSynt asn 
Ohu.1.2.5.5 t 0th nso AdvOth AdvOthSynt asn 

Ohu.2.11.40.5 rg 0th pso AdvOth noneSynt vmis3s 
Ohu.2.11.40.5 nsa Acc nso AdvOth AdvOthSynt vmisZs 

: BeforeCtags.ctagi U2 : AfterCtags.ctagi 
ti3 : BeforeCtags.groupi U4 : AfterCtags.groupi 

us : AfterCtags.syntagma 

class : Ctag_Sentences.correct_tag . 

4.5 Preparation of the training tables 
Since the target attribute occurrence Ctag_Sentences.correct_tag is enumerated-
typed, the training table consists of the columns 

{Sentence_ID} U UOL-attr U IZu U {correct_ctag} 
where 7Zu contains the relations 

ri : (BeforeCtags.ctagi = AfterCtags.ctagi) 
r2 : (BeforeCtags.groupi = AfterCtags.groupi) 

Hence, the training table Tasn,wmis3s is constructed as follows: 
Sentence_ID UOL-attr TZu class 

Ul U2 U3 U4 Us r i n> 

Ohu.1.2.1.1 

Ohu.1.2.5.5 

xxx 

t 

None 

Oth 

wpunct 

nso 

Oth AttSynt 

AdvOth AdvOthSynt 
false false 

false false 
asn 
asn 

Ohu.2.11.40.5 

Ohu.2.11.40.5 
rg 
nsa 

Oth 

Acc 
pso 
nso 

AdvOth noneSynt 

AdvOth AdvOthSynt 

false false 

false false 
vmis3s 
vmis3s 
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4.6 Inferred context rules 
The sets of decision rules are inferred based on the training tables, i.e.: 

RuleSasn 

Rule i 
Rule 2 
Rules 

BeforeCtags.groupi = Acc 
AfterCtags .groupi = Oth 
AfterCtags.ctagi = pso 
A fterCtags. syntagma = AttSynt 

class 
class 

vmis3s 
vmisSs 

Rule42 : BeforeCtags.ctagi — wpunct 
A fterCtags.syntagma = AttSynt 

Default class: vmis3s 

class asn 

class asn 

The rule sets are reduced and converted to the form of semantic functions. Let us 
take for instance the case of the ambiguous class asn, vmis3s: 

Ctags_ Sentences, correct _tag = if (BeforeCtags.ctagi = wpunct) and 
(AfterCtags.syntagma = AttSynt) 

then asn 
else if (AfterCtags.ctagi = pso) and 

(AfterCtags. syntagma = AttSynt) 
then 

else vmis3s 
Since disambiguater rules for any ambiguity can be inferred this way the above 
method is a useful tool for a PoS tagger system. 

5 Comparison of the results of C4.5 and LAG 
In the following table we compare the accuracy of the disambiguater rules achieved 
by C4.5 and LAG based on the corpus of Orwell's novel. The accuracy of the rules 
is tested using the chapters 3 and 4 of the novel, these chapters not being used 
during training process. 
Table 3 shows the error numbers and error percentages of the decision rule sets 
generated for the most frequent ambiguous classes. The rules inferred by the 
C4.5 system are based on the sequences of corpus tags (see p. 297). The LAG 
system, however, creates its results by the means of the training sequences which 
axe augmented with structural information detected by the ag given in Section 4.3 
In the column Mark, the sign 

" + " denotes those classes where the use of LAG yields only minor 
improvements, and 

" + + " means significant improvements produced by employing the LAG 
method compared to C4.5. 

The results show the accuracy of the inferred rules is improved if an ag as 
background knowledge is utilised during the learning process. 
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Table 3: The comparison of the C4-5 and LAG system 

Ambiguity 
classes 

Results by C4.5 Results by LAG 

Mark 
Ambiguity 
classes 

training data test data training data test data 
Mark 

Ambiguity 
classes #err err % #err err % #err err % #err err % Mark 
asn-vmis3s 39 8.0 % 15 8.2 % 34 6.9 % 11 6.0 % + 
cp-rg 142 16.1 % 72 24.5% 136 15.5 % 69 23.5% + 
cp-rg-vmip3s 14 5.7 % 31 24.8% 11 4.5 % 23 18.4% + 
cp-rp 41 12.3 % 16 10.7% 10 3.0 % 11 7.4 % ++ 
cp-vmis3s 2 1.8 % 0 0.0 % 0 0.0 % 0 0.0 % + 
nsn-psn 24 21.6% 16 30.8% 4 3.6 % 6 11.5% + + 
psn-rp 9 6.3 % 3 5.3 % 6 4.2 % 3 5.3 % + 
psn-t 28 1.5 % 17 2.7 % 25 1.3 % 15 2.4 % + 
pso-rg 73 33.6 % 34 40.0% 25 11.5% 11 12.9% ++ 
rg-rp 57 38.0 % 15 25.4% 31 20.7 % 8 13.6% ++ 
rg-st 104 36.5 % 44 44.0% 62 21.8 % 35 35.0% ++ 

6 Summary 

In this paper we investigated the specification of ags from the viewpoint of inductive 
learning. We described a learning task for inferring semantic functions of a partially 
defined ag and introduced an inductive learning method for solving this task. In 
the learning approach of the LAG system a number of similarities exist between it 
and ILP methods. These similarities arise from the close connection between logic 
programs and ags. The LAG method infers semantic functions for enumerated and 
non-enumerated attribute occurrences of an L-attributed or S-attributed grammar. 
During the learning process it derives the training examples from input strings with 
the help of background knowledge. The background knowledge given as an ag is 
employed in the preparation the training tables for the target attribute occurrences. 
Using the training tables the C4.5 system produces decision rules which are then 
converted to the form of semantic functions. 
We plan to increase the efficiency of the LAG method by reducing the restrictions 
related to background knowledge, i.e. extend the the algorithm to more complex ags 
than the S-attributed and L-attributed ones. Moreover, we would like to develop a 
more precise algorithm for the non-enumerated cases. 
As regards to the PoS tagging application we would also like improve the 
background attribute grammar to better describe the features of the Hungarian 
language. 
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A Appendix 
The corpus tags used in the Hungarian translation of the Orwell novel ' 1984 ' : 
ASN, ASNX, ASNY, ASA, ASAX, ASAY, ASD, ASDX, ASDY, ASO, ASOX, ASOY, APN, 

APNX, APNY, APA, APAX, APAY, APD, APDX, APDY, APO, APOX, APOY, MP, MPX, MPY, 

MS, MSX, MSY, MD, I, CP, NSN, NSNX, NSNY, NSA, NSAX, NSAY, NSD, NSDX, NSDY, 

NSO, NSOX, NSOY, NPN, NPNX, NPNY, NPA, NPAX, NPAY, NPD, NPDX, NPDY, NPO, 

NPOX, NPOY, PSN, PSNX, PSNY, PSA, PSAX, PSAY, PSD, PSDX, PSDY, PSO, PSOX, 

PSOY, PN, PPNX,PPNY, PPA, PPAX, PPAY, PPD, PPDX, PPDY, PPO, PPOX, PPOY, RG, 

R0, RP,RQ, RV, ST, T, VA, VMCP1S, VMCP1P, VMCP2, VMCP2S, VMCP2P, VMCP3S, 

VMCP3P, VMIP1S, VMIP1P, VMIP2, VMIP2P, VMIP2S, VMIP3S, VMIP3P, VMIS1S, 

VMIS1P, VMIS2, VMIS2P, VMIS2S, VMIS3S, VMIS3P, VMMP1S, VMMP1P, VMMP2, 

VMMP2P,VMMP2S, VMMP3S, VMMP3P, VMN, CPUNCT, SPUNCT, WPUNCT, UNKNOWN, X,Y 

B Appendix 
Here we briefly describe the above mentioned corpus tags. The first letter of each 
ctag stands for the category of the related words: 

Ctag Category Ctag Category 
A Adjective R Adverb 

CP Conjuntion ST Postposition 
I Interjection T Article 

M Numeral V Verb 
N Noun X Residual 
P Pronoun Y Abbreviation 

SPUNCT sent, punct. CPUNCT closing punct. 
WPUNCT wordpunct. 

Then the tags are constructed in the following way: 

After A , N, M and P : The second letter after A, N, M and P denotes the 
cardinality while the third one is related to the cases, and the fourth letter 
refers to the possessive cases: 
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Position 2 Position 3 Position 4 
N nominative 

S Singulair A accusative X / M . X 
P plural D dative Y / M . Y 

0 other 

After V : in the case of verbs the situation is the following: 

Position 2 Position 3 Position 4 Position 5 Position 6 
modes tenses person 

I indicative i 
M main M imperative P present i 

9 S single 
A auxiliary C conditional S past •3 P prural 

N infinitive o 

Other combination : MD numeral digit 
RG general adverb 
RP verbal participle 
RV present paxtiple 
RQ interrogative clitic 

C Appendix 
A part of the background ag AGctag defined for PoS tagging problem is: 

BeforeCtags "," AfterCtags Sentences Ctags_Sentences 

Ctags_Sentenees 

Sentence.ID " " 

X 

AfterCtags —¥ Acc.Group Synt.Acc 

AfterCtags Pred.Group "," Synt.Pred 

Synt.Acc 

Synt.Acc 

Synt.AdvDat 

Synt.AdvDat 

syntagma = Synt.Acc.syntagma 

ctag = Acc.Group. ctag 

group = Acc 

syntagma = Synt.Pred.syntagma 

ctag = Pred.Group.ctag 

group = Pred 

syntagma= iccSynt 

syntagma= Synt.icc.syntagma 

syntagma= AdvDatSynt 

NonPred.Group "," Synt.AdvDat syntagma- Synt.AdvDat.syntagma 

Pred.Group "," Ctags 

NonPred.Group "," Synt.Acc 

Pred.Group "," Ctags 

Synt.Subj -»• Pred.Group "," Ctags 

Synt.Subj NonPred.Group "," Synt.Subj 

syntagma= SubjSynt 

syntagma= Synt.Subj.syntagma 

Ctags 

Ctags 

asn' 

'asnx' 


