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The Debug Slicing of Logic Programs* 

Gyöngyi Szilágyi*, László Harmath* and Tibor Gyimóthy* 

Abstract 

This paper extends the scope and optimality of previous algorithmic de-
bugging techniques of Prolog programs using slicing techniques. We provide 
a dynamic slicing algorithm (called Debug slice) which augments the data 
flow analysis with control-flow dependences in order to identify the source of 
a bug included in a program. 
We developed a tool for debugging Prolog programs which also handles the 
specific programming techniques (cut, if-then, OR). This approach combines 
the Debug slice with Shapiro's algorithmic debugging technique. 

1 Introduction 
Slicing methods are widely used for the debugging [25], testing [2] and maintenance 
of imperative programs [1, 12]. Intuitively, a slice should contain all those parts of a 
program that may affect the variables in a set V at a program point p [26]. Slicing 
algorithms can be classified according to whether they only use statically available 
information (static slicing), or compute those program points which influence the 
value of a variable occurence for a specific program input (dynamic slice). Dynamic 
slicing methods are more appropriate for debugging than static ones as during 
debugging we generally investigate the program behaviour under a specific test 
case. The main advantage of using a dynamic slice during debugging is that many 
statements can be ignored in the process of bug localization. 

Different dynamic slicing methods have been introduced for debugging impera-
tive programs [23]. Most of these methods are based on a dependence graph which 
contains the explicit control dependences and data dependences of the program. In 
[9, 14] a slicing method was introduced for logic programs, and this method being 
used to improve the efficiency of the Shapiro's algorithmic debugging algorithm 
[19]. The slice presented in [9] contains those parts of a program that actually have 
an influence on the value of an argument of a predicate. This type of slice (called 
data flow slice) is safe if the structure of the proof tree for a goal is not changed 
[22]. 
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However, during debugging to find a source of a bug (i.e. a bug instance) we 
also need to identify those predicates that actually did not affect an argument in 
a predicate but could have affected it had they been evaluated differently (had 
their boolean outcome been different). We can say that these predicates are in 
the Potentially Dependent Predicate Set. Note that a different evaluation of the 
predicates in this set could change the success branch of the SLD-tree (where the 
bug was manifested). 

Consider the following example. 

Example 1 The buggy program is: 

1. p(A,X) :- q(A,X). 
2. q(A,X) :- A > 0, X is 2. 
3. q(A,X) :- X is 3. 

The correct program should be: 

1. p(A,X) .- q(A,X). 
2. q(A,X) :- A = 0, X is 2. 
3. q(A,X) .- X is 3. 

Executing this program for the goal p(0, X) the given solution is X = 3, while 
we expect X = 2. So a bug must be included in the program somewhere. 
Creating the dynamic data flow slice for an instance of X , it does not contain the 
buggy predicate A > 0 because X does not exactly depend on the predicates of 
clause 2, there being only control dependences between them. This means that if 
A > 0 had been evaluated differently it could have affected the solution of X. Our 
new slicing approach contains the buggy predicate A > 0 (see Section 4.2). 

In this paper we introduce a new type of slicing called Debug slicing for Prolog 
programs without side effects. A Debug slice of an Augmented SLD-tree includes 
those predicates that may affect the value of an argument in any success branch's 
predicate. So this slice is very suitable for debugging. The Debug slice is the set 
of predicates which contains the Potentially Dependent Predicates and their data 
dependences. 

This slicing method has been integrated into an interactive algorithmic debug-
ging tool to reduce the number of questions to the user during a debugging session 
[14]. The size of the debug slice is larger than the size of the data flow slice, but the 
data flow slice is not safe for debugging. On the other hand the Debug slice con-
tains all parts of the program that may be responsible for the incorrect behaviour 
at some selected argument position. 

In the next section the basic concepts of logic programming, algorithmic de-
bugging and slicing are presented. Section 3 then provides a detailed description 
of the construction of those structures needed in an outline of the Debug slice 
algorithm (Augmented SLD tree, Skeleton(n), (Directed) Proof Tree Dependence 
Graph, General Data Flow Slice). The computation of the Debug slice on the basis 
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of these structures is described in Section 4. The first results of a prototype imple-
mentation of Debug slice algorithm are discussed in Section 5. Finally, in Section 
6 we summarize related work and outline further studies. 

2 Preliminaries 
In this section we present some basic concepts (logic programming, algorithmic 
debugging, slicing) needed to outline the Debug slicing algorithm. 

2.1 Logic Programming 
A first order alphabet consist of variables, predicate symbols and function sym-
bols (which include constants) [24]. 

A variable is represented by an upper case letter followed by a string of lower 
case letters and/or digits. 

A function symbol is a lower case letter followed by a string of lower case 
letters and/or digits. 

The constants include integers and atoms, a constant is a function symbol of 
arity 0. The symbol for an atom can be any sequence of characters. 

A variable is a term, and a function symbol followed by bracketed n-tuple of 
terms is a (compound) term. Thus J(g(X),head) is a term when / , g and head 
are function symbols and X is a variable. 

A predicate symbol immediately followed by a bracketed n-tuple of terms is 
called an atomic formula, or atom. 

Let h, ai, • • •, am be atomic formulae for some m > 0 and let X\, • • •, Xi be all 
variables occurring in these formulae. 

Then the formula VXi • • • VX;(/i -f- ai, • • • ,am) is called a definite clause. If 
m = 0 the formula is called a fact. The atomic formula h is called the head of the 
clause, while ai, • • •, am is called its body. A goal is a definite clause with empty 
head. Since all variables of a definite clause are universally quantified we can omit 
the quantifiers. 

A clause or an atom is ground if it has no variable. 
A normal program is a set of program clauses. 
A substitution is a finite set (possible empty) of pairs of the form X —t, 

where X is a variable and t is a term and all the variables X are distinct. For any 
substitution o — {Xi —> ¿i, • • •, Xn —> tn} and term s, the term sa denotes the 
result of replacing each occurrence of the variable Xi by U (i = 1, • • •, n). The term 
so is called an instance of s. 

A substitution a is called a unifier for two terms Si and s2 if s\o = s2a. Such 
a substitution is called the most general unifier of si and s2 if for any other 
unifier (Tj of si and s2, sicri is an instance of sicr. If two terms are unifiable then 
they have uniquie most general unifier. 

A computation of a logic program P [19] can be described informally as 
follows. The computation starts from some initial goal g and can have two results: 
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success or failure. If a computation succeeds, then the final values of the variables 
in g are considered of as the output of the computation. A given goal can have 
several successful computations, each resulting in a different output. 

The computation progresses via nondeterministic goal reduction, at each step 
we have some current goal G = gi, • • • ,gn. A clause C = a bi, • • • ,bk in P is 
then chosen nondeterministically; the head of the clause a is then unified with gi, 
say, with substitution a, and the reduced goal is G' = (b\, • • •, bk, g2, • • •, gn)&- The 
computation terminates when the current goal is empty. Then G' is said to be 
derived, from G and C. 

Let P be a logic program and G a goal. A derivation of G from P is a possible 
infinite sequence of triples < Gi,Ci,Oi >, i = 0,1, • • • such that Gi is a goal, Cj is 
a clause in P with new variable symbols not occuring previously in the derivation, 
<Tj is a substitution, Go — G, and Gj+i is derived from Gi and Cl with substitution 
(Tj, for i > 0. If there is a derivation of G from P such that G; = <> (the empty 
goal) for some I > 0 we say that P succeeds on G. We assume by convention that 
in such a case Ci = 0 and at = { } . 

2.2 Algorithmic Debugging of Logic Programs 
Algorithmic debugging is a process where the user and a debugging system inter-
actively try to locate the source of an externally visible bug in the program [19]. 
There are a number of features of Prolog program which distinguish it from other 
programming languages. A Prolog program can have both a declarative and a 
procedural reading, and may or may not be multi-directional and even it can be 
nondeterminate. The computation model of Prolog is based on goal invocation as 
well as goal success and failure. Thus errors in Prolog programs occur when, for 
example, they finitely fail on goals that should succeed, or succeed on goals that 
should fail. 
A bug manifestation is undesired program behaviour, i.e. an undesired sequence of 
solutions computed by the program for a goal. A bug instance, which is a predicate 
instance, is a cause for a top goal bug manifestation. Our algorithm identifies a set 
of predicates of a program which can cause the bug mainfestation (i.e. an undesired 
solution with respect to a variable of the top goal). 
Shapiro's algorithm [19] traverses the proof tree of a program in different ways and 
asks the user about the expected behaviour of each resolved goal. The bottom-up 
method traverses the proof tree in postorder manner and asks the oracle about the 
correctness of the computed values of the nodes. If the result at a node is incorrect 
and all sons of this node are evaluated correctly the algorithm identifies the clause 
applied to this node as a buggy one. The query complexity of this method is linear 
in the size of the tree. 
The second method investigates the nodes in a top-down manner. If the result 
computed at a node is evaluated correctly by the oracle then the algorithm does 
not visit the nodes inside the sub-tree. Using this approach the query complexity 
can be reduced to a linear dependence in the depth of the proof tree. 
The most efficient technique is the divide-and-query startegy which requires a num-



The Debug Slicing of Logic Programs 261 

ber of queries logarithmic in the size of the proof tree. The divide-and-query algo-
rithm splits the proof tree into two approximately equal parts, and makes a query 
for the node at the splitting point. If this node gives an incorrect evaluation the 
algorithm goes on recursively to the sub-tree associated with this node. If the 
node's answer is correct its sub-tree is removed from the tree and a new mid-point 
is computed. 

A Prolog program may use a number of programming techniques specific to 
Prolog (cut, if-then, OR). We developed a tool for debugging Prolog programs 
incorporating these specific programming techniques as well for finding the source 
of a bug, i.e. for identifing a bug instance. 

2.3 Slicing 

Slicing is a program analysis technique originally developed for imperative lan-
guages [26]. Later improvements are presented in [23, 21, 15, 13]. 
Intuitively a program slice with respect to a specific variable V at some program 
point p (which can be a variable or an argument position of a predicate) contains all 
those program points that may affect the value of the variable or may be affected 
by the value of the variable. The tuple < V, p > is called a slicing criterion and a 
slice is computed with respect to one. 
Slicing techniques can also be classified into static and dynamic ones. 
Static slicing is based on an analysis of the program without executing it so it 
may be imprecise if it contains data flow which is actually not manifested during a 
particular execution. 
Dynamic slicing is based on the program's execution and hence extracts the precise 
data flow. A dynamic slice may be different for each execution and so shall always 
be produced separately whenever the program run. 
In addition, slicing can be classified into forward and backward types. Suppose our 
slicing criterion is < V, p > . Forward slicing with respect to < V,p > contains 
all those program points that may have its value modified if < V,p > is modified. 
Backward slicing contains all those program points which, if modified, might change 
the value of V. 
In the case of imperative languages a possible program representation for the pro-
gram's dependences is the Program Dependence Graph [7, 16, 11]. 

The problem of slicing logic programs is more complicated than for the impera-
tive case. Before a slice over a logic program can be produced, its implicit data flow 
has to be approximated. To approximate the data flow the implicit input/output 
data dependences have to be extracted from the program. 
Program slicing has been widely studied for imperative programs [23], but research 
on slicing logic programs is just beginning. To our knowledge, only a few papers 
deal with the problem of slicing logic programs [9, 20, 27, 22]. 
The main contribution of this article was to furnish a dynamic slicing algorithm 
which augments the data flow analysis with control-flow dependences so as to make 
the slicing algorithm better suited for debugging. 
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3 Basic structures and theorems for constructing 
the Debug Slice 

Our slicing is based on a dependence based approach. In [9] a Dependence Graph 
was constructed for a proof tree i.e. for a success branch of the SLD-tree. We 
would also like to extend this definition to the failure branches of the SLD tree. 
This is why this section provides a detailed description of the necessary structures 
needed to outline this extension: the Augmented SLD-tree, Skeleton(n) (a modified 
derivation tree), (Directed) Proof Tree Dependence Graph (PTDG) and General 
data flow slice. The computation of the Debug slice on the basis of these structures 
is described in the next section. 

The Augmenetd SLD-tree shows the execution order of the statements for a 
given input. 

Skeleton(n) is always built for one branch of the Augmented SLD-tree, and 
its nodes represent the data flow information needed for preparing the Proof Tree 
Dependence Graph. 

A General slice of a logic program with respect to a variable V is constructed us-
ing the Proof Tree Dependence Graph, which contains those predicates of a deriva-
tion that may affect the value of V. 

3.1 The Augmented SLD-tree of Logic Programs 
The derivation of a goal from a program P can be represented by a tree called 
SLD-tree. Each branch of the SLD-tree [17] is a derivation of a program for a goal. 
Branches corresponding to successful derivations are called success branches, while 
branches of the infinite derivations are called infinite branches-, those corresponding 
to failed derivations are called failure branches. The Prolog interpreter searches the 
SLD-tree to find success branches. The Prolog system always selects the leftmost 
atom in a goal along with a depth-first search rule. The program clauses are then 
tested in their original order in the program. 

An SLD-tree may have many failed branches and very few or just one success 
branch. Control information supplied by the user may prevent the interpreter from 
construction of failed branches. To control the search the concept of cut(!) is 
introduced in Prolog. The atom "!" is handled as an ordinary atom in the body of 
a clause. When a cut is selected for resolution it succeeds immediately (with the 
empty substitution) [18]. The node where cut is selected will be called the cut node. 
A cut node may be reached again during backtracking. In this case the normal order 
of tree traversal is altered - by definition of cut the backtracking continues above the 
node origin (!). (If cut occurs in the initial goal, the execution simply terminates). 
So cut has the following effect: after success of " !" no backtracking to the literals 
in the left-hand part is possible. However, in the right-hand part execution goes 
on as usual. 

We add these pieces of information to the SLD-tree, identify each node with 
an unique mark, and use a list (pred.defjrefQ) in order to know which program 
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clauses (corresponding to the selected predicate) are used at a node to execute the 
next step. We also deal with the pruning effect of cuts. The following definition 
provides a formal description of the modified SLD-tree. The node label contains 
the whole list of goals ((£?', R) — (01,02, • • • ,an))- The actual goal (G ' ) is the first 
in this list (ai in our case). A node has a child for every program clause whose 
head (hm ) could be unified with the actual goal. The list of these clauses for every 
node is given in pred.def.ref() (Definition 1.1). If the actual goal were cut(!), the 
corresponding branches of the tree would be pruned (Definition 1.2 and 1.3). 

Definition 1 Let P be a Prolog program and G a goal. An augmented SLD-tree 
for P U {G} is a tree which satisfies the following: 

• Each node label is triple < Mark, (G' ,R),pred.de f jref{G') > , where Mark 
is a unique identification of the node, (G',R ) is a (possibly empty) conjunction 
of goals (resolvent). G' is the leftmost goal in the resolvent (called selected 
goal) and pr ed.de f .re f(G') is a reference list for the predicate definitions 
corresponding to the leftmost goal G'. We assign the empty resolvents with 
a true value. 

• The root node is < Mark, (G, true),pred.def -ref(G) >. 

• Let < M,(ai,a2, - • •, ak), pred.de f .re f (ii, • • • ,ii) > be a node in the tree (so 
ai is the selected atom), where i m ( m = 1, • • • ,1) is the identity number of 
input clauses hm <— bmi, • • •, bmq such that ai and hm are unifiable with 
most general unifier a. 

1. Then this node has a child 
< Mim,(bmi,bm2, - •• ,bmq,a2,-- • ,ak)o,pred.def.ref(bmi) > for each 
im(m = 1, • • •,/). The edges immediately below a node and also the 
pred.def.ref() list are ordered from left to right, according to the pro-
gram clause order. 

2. If hm bmi, • • •, bmq has cuts the child is 
< Mim, (b'mi ,b'jn2,---,b'mq,a2,---,ak)o, pred.de f .ref(b'mi) >, 
where b'mi, • • •, are obtained from bmi, • • •, bmq, replacing all cuts 
with one same unique annotation such as "cut(M)", where M is the 
node's identification mark. 

3. If the following selected atom ( 6'mi or a2) were cut(M), we use the 
pruning rule below, and the next element of the list that follows cut(M) 
will be the selected goal. 
The pruning rule: If "Mark" is the argument of cut(), consider the path 
W from the actual node up to the node marked Mark. All descendants 
of this node to the right of W are removed. 

• Nodes with an empty R list in resolvent have no children. 
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We will refer to the Augmented SLD-tree simple as SLD-tree. During the ex-
ecution of a program for a goal to find the first success branch of the SLD-tree, 
only a part of it is walked by the Prolog interpreter. We will call this part of the 
SLD-tree the Trace-tree because we can build the Trace-tree from the trace of a 
program for a goal given by the interpreter. Figure 1 shows the Trace-tree of the 
program in Example 2 for the goal a(Y). 

Example 2 We now illustrate our definition of the Trace-tree in a simple example: 
. 1. a(Y):-b(X), c(Y), d(X). 
2. c(Y):-b(Y), e(Y). 
3. b(l). 
I b(2). 
5. b(3). 
6. d(2). 
7. e(3). 

•) 1. (a(Y),| true), p rd ( l )> 

•Í2(b(X )J c(Y), d(X)), prd(3,4)> 

<3 , ( c (Y ) , d ( l ) ) , p rd (2 )> -¡9, ( c ( y | , d(2)), prd(2)> 

/ \ 

< K ( b ( Y ) | e (Y) ,d( l ) ) ,p rd(3 ,4 ,5)> - j lO, ( b Q o | e(Y)), d(2), prd(3,4,5)> 

4s, (e(l),| d ( l ) ) , p rd (N ILL )> < 7 , ( e ( 3 ) , d ( l ) ) , p r d ( 7 ) > 

<(6.(e(2)J d ( l ) , p rd (NILL)> <|n,(e(l),| d(2). p rd(NILL)> 

•fc, (d(l)| true), p rd (NILL)> 

•Jl2, ( e f f l . I d(2)), p rd (NILL)> 

• j l 4 . (d (2X 

d(2)), prd(7)> 

true), prd(6)> 

Figure 1: The Trace-tree for the goal a(Y) and the Debug slice in frames (see 
Section 4.2). 

Example 3 Figure 2 shows the pruning effect of the cuts in the following example 
for the goal a(X). 
1.a(X) :- b(X), c(X). 
2. a(X) :- g(X). 
3. b(X) :- c(X), !, d(X). 
4- b(X) :- e(X), h(X). 
5. c(l). 
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6. c(2). 
7. d(2). 
8. e(l). 
9. h(l). 
10-9(3). 

The removed part of the Trace-tree is depicted by a broken line (the pruning 
effect of the cut). 

<5, (e(X), h(X)), prd(9)> 

<6, (h(l), true), prd(9)> 

Figure 2: The pruning effect of the cut in Example 3 for the goal a(X). 

<4, (d(l), true), prd(NILL)> 

3.2 Skeleton(n) 
The SLD-tree representation is unsuitable for representing the data flow infor-
mation of a logic program (for a given goal). The structure Skeleton(n) [24] is 
used to represent this information, where n identifies a leaf node of the SLD-tree. 
Skeleton(n) is basically a derivation tree defined for one branch of the SLD-tree 
(from the root to the node marked by n). To improve the approximation of the 
implicit data flow Skeleton(n) contains directionality information as well. 

We will use the notion of clause instance (ca) which means that a substitution 
a is applied for every predicate of c. 

We extended the definition of the derivation tree used in [24] to our case. 
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Definition 2 Proof Tree 
For a program P a proof tree is any labeled, ordered tree T such that 

1. Every node is labeled by an instance name of a clause of P. 

2. Let n be a node labeled by an instance name < c,a >, where c is the clause 
h ai, • • •, am (m> 0) and o is a substitution. Then n has m children, for 
i = 1 ,••• ,m, the i-th child of n being labeled < c\, o[ >, where c[ is a clause 
with head h\ such that aio = h'^. 

The reasoning behind this definition is that every tree is obtained by combin-
ing appropriate instances of program clauses. The precise meaning of " appropiate 
instances" is expressed in condition 2. A logic program defines a set of derivation 
trees. This may be viewed as a semantic of definite programs, and can be related 
to the concepts of proof defined in symbolic logic. 
A derivation tree represents one branch of the SLD-tree (one derivation), but in a 
more suitable format for representing the data flow. 
Let us modify this definition to suit our present needs. 
We need not know exact the substitution itself, it is enough to know which vari-
ables are ground at call of a predicate and which are ground at success. Basically 
having to investigate directionality information of the tree using some groundness 
annotation. 
Let us suppose that we can identify each argument position of the clauses of a 
derivation tree with a tuple (the formal definition of the argument position is given 
at the end of this subsection). 

Groundness information associated with a derivation tree will be expressed as 
an annotation of its argument positions. The annotation classifies the argument 
positions of a derivation tree. The positions are classified as inherited (marked 
with J,), synthesized ( f ) and dual An annotation is partial if some positions are 
dual. Formally speaking, an annotation is a mapping v from the positions in the 
set [6]-

The intended meaning of the annotation is the following. An inherited argu-
ment position is a position in which every variable is ground at time of calling, 
that is when the equation involving this position is first created during the con-
struction of the derivation tree. A synthesized argument position is a position 
in which none of the variables are ground at time of calling, and every variable is 
ground at success, that is when the subtree having the position in its root label is 
completed in the computation process. The dual argument positions of a proof 
are those which are neither inherited nor synthesized. The annotations are collected 
during the execution of a program for a given goal. We notice that the argument 
positions are annotated at the present version of our tool. But the annotation of 
the variable positions would provide more precise dependences so we are planning 
to extend the annotation to variable positions. 
We now introduce the following auxiliary terminology relevant to the annotated 
positions of a LP program. The inherited positions of the head atoms and the 
synthesized positions of the body atoms are called input positions. Similarly, the 
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synthesized positions of the head atoms and inherited positions of the body atoms 
are called output positions. The others are dual. Note that dual positions are 
not strictly classified as input or output ones. Alternatively, if we say that a posi-
tion is annotated as an output we mean that it is annotated as inherited provided 
it is a position in a body atom, or annotated as synthesized if it is a position of the 
head of a clause. 

Now we are ready to define Skeleton(n). 

Definition 3 Skeleton(n) 
LetT be a SLD-tree, < n,(G',R), pred.defjref(G') >£ nodes(T) a leaf node iden-
tified by n. Consider the path W in T from the root to n, which identifies a deriva-
tion for the root goal. 
Then, Skeleton(n) is a labeled ordered tree such that 

1. Every node is labeled by a double < Mark,v{c) >, where Mark is an unique 
identification, and i/(c) is the annotated clause instance. 

2. The root node is labeled by < 1 ,v(c) >, where the root goal was unified with 
c during the given derivation. 

3. Let k be a node labeled by 
< Mark,p([Xu v{Xi)}, • • •, [Xk0, "№»])) : -

([n MYl)],---, [nt, v{Ykl )]),•••, am([Vi, 1/(^)1, •••,[Vkm, u(Vk J)) >. 
Then k has m children, for i = 1, •••,m, the i-th child of k being labeled 
< MarkfU^) >, where c[ is a clause whose head was unified with aj during 
the given derivation. 

Figure 3 shows Skeleton(5) of Example 2. The variable Y of a(Y) in node 1 
is annotated as output, since it would be ground at success of a(Y), and a(Y) is 
a head atom. For the same reason X in node 2, Y in node 3 and in node 4 are 
annotated as output. The variable Y in node 5 is ground at call, so it is annotated 
as input. 

< 1 , a([Y, O ] ) b ( [ X , I ] ) , c « Y , I ] ) , d( [X, D ] ) > 

< 2 , b ( [ X , 0 ] ) . > < 3 . c « Y , 0 ] ) : - b ( [ Y , I ] ) , e( [Y.O]) .> 

<4 , b([Y, 0 ] ) .> <5 ,e ( [Y , I ] ) . > 

I : Input , O : Output, D: Dual 

Figure 3: Skeleton(5) for Example 2. 
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We can refer to the k-th argument position in each node of the skeleton by 
the tuple (Mark,i, k, V) , where Mark is the identity number of the node, i is the 
number of the predicate in the clause (from 0 to m), k is the argument position 
of aj and V is the set of variables at this position. If V also contains Input and 
Output variables it is annotated as Dual. 
Denote Pos(S) the set of argument positions of the Skeleton(n) S. 

As can be seen from the definition of the Augmented SLD-tree and Skeleton(n), 
there is an one to one correspondence between the nodes belonging to one branch 
of the SLD-tree (identified by n) and the nodes of the corresponding Skeleton(n). 
This correspondence is based on the fact that both structures describe the same 
derivation for a goal step by step. In our formalism the Mark of a node highlights 
this correspondence. 

Let T be an SLD-tree for the goal g, n € nodes(T) a leaf of T, and S the 
Skeleton(n). Then, there is a map from the nodes of 5 to the nodes of T such 
that: 
<f>: nodes (S) -¥ nodes(T) 
< Mark, v(p : —ai, • • • ,am) >—• < Mark, (p, R), pred.def .ref(p) >. 
If S' C nodes(S) then denote 4>(S') the corresponding subset of nodes(T) such that 
0(S') = {0(n)|n G S ' } . 

For n G nodes(T) let (j> 1 (n) = m £ Pos(S), such that <fi(m) = n. 

Now we are ready to define the Proof Tree Dependence Graph. 

3.3 Proof Tree Dependence Graph 
We would like to represent the data flow of a derivation tree. In a logic program 
data can be transferred in two ways: firstly from one clause to another via unifi-
cation, and secondly within a clause multiple occurrence of variables result in data 
dependences [3, 4]. The following definition reflects these conditions. 

Definition 4 Proof Tree Dependence Graph (PTDG: T9>n = (Pos(S), ~ T ) ) 
Let T be an SLD-tree for the goal g, n £ nodes(T) a leaf of T and S the 
Skeleton(n), /3,5 e Pos(S). 

• The nodes of PTDG are the elements of Pos(S). 

• ¡3 S iff one of the following conditions holds: 

1. 18 and S have common variable in their variable set V (local edge,) 

2. the predicate of 5 was unified with the predicate of ¡3, and /3 and 6 are 
both the k-th argument position of their predicate ^transition edge). 

It follows directly from the definition that the dependence graph is constructed 
only for one branch of the SLD-Tree (identified by n), for Skeleton(n). But of 
course we can construct a PTDG for every Skeleton(n) (n is a leaf node of T) , that 
is for every branch of the SLD-tree T. Figure 4 shows the PTDG for Skeleton(5). 
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<1 , a([Y, 01) b([X, I ] ) , c([Y, I ] ) , d([X, DJ)> 

1 I 1 I 1 
<2 , b( [X, 0 ] ) .> 1 

<3 , c([Y. 0 ] ) : - b ( [ Y , I | ) , e ( [Y ,01 )> 

<4 , b([Y, 0 ] ) .> <5 , e([Y, !]).> 

I : Input , 0 : Output, D: Dual 

Figure 4: The Proof Tree Dependence Graph for Skeleton(5) 

3.4 Directed Proof Tree Dependence Graph 
As mentioned earlier we would like to better approximate the implicit data flow 
by introducing directionality using an annotation technique. The annotations can 
be collected during the execution of the program. Based on this annotation the 
Proof Tree Dependence Graph can be directed because the data flows from an 
Input position to an Output one via a local edge, and from an Output position to 
an Input one via an transition edge. This can be expressed more precisely in the 
following definition. 

Definition 5 Directed Proof Tree Dependence Graph 
Let Tg = (Pos(S), ~T) be a proof tree dependnece graph, A,P € Pos(S). Then the 
directed proof tree dependence graph is Tg>n = (POS(S),^T), where 

1. a —¥t (3 if a ~ r (3, ~T is a local edge and one of the following conditions 
holds: 

• a is an Input position and ¡3 is an Output position 

• a is a Dual position and (3 is an Output position 

• a is an Input and ¡3 is a Dual position 

• a is a Dual and ¡3 is a Dual position (in this case a ->T ¡3 and 0 —>T OL) 

2. a —>y ¡3 if a ~r ¡3, the positions being connected by a transition edge and 
satisfying one of the following conditions: 

• a is an Output position and (3 is an Input position 

• a is a Dual and 0 is a Dual position (in this case a —>T P and /3 —>T &) 
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It is quite easy to check the validity of these rules. It is possible to define more 
precise conditions to direct the edges (referring to the textual occurrences of the 
positions), but it would be too complicated to present them here. Our experience 
shows that the use of these rules (which permit in some cases non realisable data 
flow) gives good results. Our slicing algorithm applies to this Directed Proof Tree 
Dependence Graph. The Directed Proof Tree Dependence Graph for Skeleton(5) 
is depicted in Figure 5. 

f ] 
<1 . a([Y, O]) b([X. I ] ) . c((Y, ID , d( [X, D l ) > 

<2 , b([X. OJ).> 1 . 
< 3 . c ( l Y . 0 1 ) : - | b ( [ Y , I ] ) | | e ( [ Y . O | ) . t 

J 1 
~ e ( [ Y . I l ) > I < 4 , b([Y, 0 ] ) > 

I : Input, O : Output, D: Dual 

Figure 5: The Directed Proof Tree Dependence Graph and the data flow slice (see 
Section 3.5) with respect to (5,0,1, { Y } ) 

3.5 General Data Flow Slice 
In this section a general slice definition is given, which shows that a given argument 
position of Skeleton(n) which other argument positions depends on (from the aspect 
of data flow). 

Definition 6 Slice(T9,n, a) 
Let P be a logic program, T a SLD-tree for the goal g, n £ nodes(T) a leaf of 
T, S Skeleton(n) and Tg<n = (Pos(S), ->T) the corresponding Directed Proof Tree 
Dependence Graph. Let a € Pos(S). 
A slice (Tgtn,a) over Ts,n with respect to a 

• is a subgraph of Tg n 

• a node € Pos(S) is in the slice iff /? a 

This is a general data flow slice definition that is valid for one derivation path 
of the SLD-tree which may be a failed branch. 

Figure 5 shows slice(Ta^ 5,(5,0,l, {Y})). The argument of e(Y) in node 5 
((5,0,1, { V } ) ) is an Input position, the slice being constructed with respect to this 
position. The set of all positions from which there is a directed path to this argu-
ment position (this is the slice with respect to (5,0,1, { Y } ) ) contains the argument 
position of e(Y) and b(Y) in node 3, and b(Y) in node 4. 
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The data flow slice given in [9] is a special case of this slice definition, which is 
defined only for the success branch of the SLD-tree. 

4 Debug Slice of Logic Programs 
As mentioned before our aim is to combine our slicing technique with an algorithmic 
debugging tool [14] in order to locate the source of a bug with fewer user interactions 
by avoiding posing unnecessary questions. In [9] a data flow slice was defined 
for the success branch of the SLD-tree (Trace-tree). We extended the data flow 
slice definition to the full SLD-tree (Trace-tree), based on the Directed Proof Tree 
Dependence Graph. 

To take care of the control flow mentioned in Subsection 4.1 we specify the 
Potentially Dependent Predicates Set (PDPS) which contains the predicates that 
actually did not affect the selected argument, but could have done so had they been 
evaluated differently (i.e. had they succeeded or failed). 

Lastly in Subsection 4.2 the Debug slice is defined on the Augmented SLD-tree 
(Trace tree) which includes the Potentially Dependent Predicates, their associated 
data dependences and the predicates affected by some cut. 

4.1 Potentially Dependent Predicates 
Sometimes we cannot find the source of a bug just by analyzing the data flow for 
the success branch of the Trace-tree. So we have to examine which predicates might 
cause a branch of the Trace-tree to fail, or what would have happened if a predicate 
had succeeded but actually failed, or if it should have failed but actually succeeded. 
We concentrated on the leftmost (goal) predicate of an SLD node so the slice is 
defined for these predicates. The following definition covers these cases. 

Definition 7 Potentially Dependent Predicate (PDPS) 
Let P be a logic program, T the Trace-tree for the goal g. A leftmost (selected) pred-
icate in a node of T is in the Potentially Dependent Predicate Set (PDPS) 
if it actually did not affect the value of an argument of a predicate in the success 
branch of T, but could have affected it had its boolean outcome been different. 

In the following we try to identify those predicates which satisfy this condition. 

Lemma 1 Let P be a logic program, T the Trace-tree for the goal g. Then 
PDPS= { The predicates of the success branch ofT} U { The predicates of the failed 
leaves ofT}. 

Proof To prove the validity of this Lemma we have to demonstrate that these 
predicates really satisfy the condition of Definition 7 while the other predicates of 
T do not. To achieve this, we classify the predicates of T in such a way that the 
categories cover all predicates belonging to T. Notice that we use "the selected 
variable" expression but it could have been any variables of the program whose 
values do not satisify our expectations (i.e. where a bug was manifested). The 
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PDPS is the same for every selected variable, so it is created for a Trace tree built 
up for a given goal. 

• If a predicate should have failed but actually succeeded 

1. If this predicate (selected goal) belongs to the success branch of the 
Trace-tree, then its boolean outcome could have affected the value of 
the selected variable (argument), so it could have been the source of 
the bug. We notice that this situation caused the modification of the 
structure of the Trace-tree. 

2. If this predicate belongs to a failure branch of the Trace-tree, then its 
boolean outcome could not have affected the value of the selected vari-
able because if had it failed it would then have caused the pruning of 
the subtree below this predicate. But this would have not modified the 
structure of the other parts of the Trace-tree. 

• If a predicate should have succeeded but it failed 

Then this predicate is a leaf of a failed branch of the Trace-tree (because these 
are the only failed predicates). Its boolean outcome could have affected the 
value of the selected variable because it might have modified the structure of 
the Trace-tree. 

To extend this lemma we notice that if the user had found a bug in a success 
branch of the SLD-tree which was not the first one, then the predicates of the 
previous success branches did not belong to the PDPS because if they had failed it 
would not have affected the structure of the later branches of the SLD-tree. 

Example 4 The PDPS of the Trace-tree in Figure 1 is the following (The nodes 
are identified with their marks): 
PDPS={ 1,2,5,6,8,9,10,11,12,13,14}. 

4.2 Debug Slice 
In this section our main result the Debug slice is specified based on the definitions 
and Lemma of the previous sections. The Potentially Dependent Predicate Set 
of a Trace-tree (for a logic program P and goal g) includes all those predicates 
whose boolean outcome may affect the value of an argument in a success branch's 
predicate. The Debug slice deals with control dependences as well. The Debug slice 
is a set of predicates which contains the Potentially Dependent Predicates [Section 
4.1], their data dependences [Section 3.5] and the predicates affected by some cut. 
Since the Debug slice contains all predicates of the success branch of T, the Debug 
slice is the same with respect to every selected argument. Hence the Debug slice is 
defined for a logic program P and goal g. 
An interesting question is the effect of cuts. If there is a node in the Trace-tree 
whose leftmost goal is cut(Mark) we remove all descendants of this node to the 
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right of the path W up to the node marked Mark. We denote this kind of path by 
cut(W). 

An informal definition for the Debug slice is the following. 
Let P be a logic program, T be the Trace-tree for the goal g. 
The Debug slice of T consists of the following predicates: 

1. The predicates of the Potentially Dependent Predicate Set (PDPS) 

2. The predicates specified by the data flow of the predicates of PDPS 

3. The predicates that belong to some cut(W) of T 

1. The predicates of the Potentially Dependent Predicate Set (PDPS) 

The Potentially Dependent Predicate Set of an Trace-tree includes all predicates 
whose boolean outcome may affect the value of an argument in a success branch's 
predicate. So these predicates affect the control dependences. Lemma 1 describes 
those predicates which belong to the PDPS. 
We would like to extend this set. But then we must first see how is it possible to 
describe the new predicates that are introduced by the data flow and then see why 
cut(W) belongs to the Debug slice too. 

2. The predicates specified by the data flow of the predicates of PDPS 

Since PDPS consists of two subsets, the first point is dealt with by examining 
two cases in turn. 

1. The predicates that belong to the success branch of T 

Here the data flow does not introduce new predicates into the Debug slice as 
the data flow slice is valid for one given branch of the Trace-tree (T), and all 
predicates of the success branch of T are in the Debug slice. 

2. The predicates of the failed leaves of T 

Let n G PDPS such that n is a leaf node of a failed branch of T, S the 
Skeleton(n), T9,n the corresponding directed Proof Tree Dependence Graph 
(see Section 3.4), and (f>~l{n) the corresponding node of S (see Section 3.2). 
Suppose that </>_1(n) is labeled by <n,p : —a\, • • •, am >. 
Next, construct s/ice(Ts,n, a) for every a £ Pos(S) such that a is an argument 
position belonging to the head predicate p. 
Let H = Un,a{k € nodes(S) | k has at least one head argument position in 
slice(Tgin,a), a is an argument position of p, n is a failed leaf of T}. 
Afterwards, map H back to the Trace tree (<f>(H)). So <j>{H) contains those 
predicates which are specified by the data flow of the failed leaves of T. 
Let the set of these predicates be denoted by S\. 
For example, one can see in Figure 5 that n = 5 is a failed leaf of the Trace 
tree (Figure 1), then <£-1(5) is < 5, (e(Y,I) >. As the clause contained in this 
node is a fact, the head predicate is e(Y), which has one argument position 
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Y. Constructing the slice with respect to this argument position it contains 
head argument position from node 4 and 5. So 4>(Sl) in this case contains 
nodes 4 and 5 of the Trace tree in Figure 1. 

Now we will address the second point. 

3. The predicates that belong to some cut(W) of T 

If there is a node in the Trace-tree whose leftmost goal is cut (Mark) we 
remove all descendants of this node to the right of the path W up to the node 
marked Mark. So a cut may effect the control dependences and those nodes that 
belong to W have to be added to the Debug slice. The removed part of the Trace-
tree might have the right solution. 

Let the set of these predicates be denoted by S2 • 

Example 5 In Example 3 if we had not had cut in clause 3, we would have got 
X = 1, so < 5,e(X) > and < 6,h(X) > would have affected the value of the 
variable X in a(X), but this would not have shown up in data flow analysis. 

Definition 8 The Debug slice of an Augmented Proof Tree for a goal g is the 
following set: 
Debug slice= PDPS U Sx U S2. 

Example 6 In Example 1 the PDPS contains the buggy predicate A > 0, so A > 0) 
is in the Debug slice, but the data flow slice does not have it because this predicate 
belongs to a failed branch of the SLD-tree for the goal p(0, X). 

Example 7 We will now go on with Example 2. 

In order to construct the Debug slice we furnish the sets PDPS, Si, S2. 

1. We know (see Section 4.1) that PDPS = {1 ,2 ,5,6,8,9,10,11,12,13,14} for 
the Augmented SLD-tree in Figure 1. 

2. To get Si we have to construct a Skeleton(n) for every n £ {1 ,2 ,5 ,6 ,8 ,9 ,10, 
11,12,13,14} and the corresponding Proof Tree Dependence Graphs. We also 
have to specify a slice{Tg<n, a) for every a argument position of n in the Proof 
Tree Dependence Graph and to state every node of T that belongs to these 
slices. Figure 5 shows the Proof Tree Dependence Graph for Skeleton(5) and 
slice(Tgtn, (5,0,1, {Y})). We urge the reader to construct all the slices for 
each argument position of {1,2,5,6,8,9,10,11,12,13,14}. In our case the 
only node in T specified by these slices is node 4. So Si = {4} . 

3. We had no cut in this example, so S2 is empty. 

Then, Debug slice= { {1 ,2,5,6,8,9,10,11,12,13,14} U {4 } U { } } = 
{1,2,4,5,6,8,9,10,11,12,13,14} 

In this example the only nodes that are not in the Debug slice are 3 and 7. 
The Debug slice of the Trace-tree built for Example 2 is emphasised and framed 
on Figure 1. 
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5 Prototype Implementation 
We have developed a prototype in Sicstus Prolog using the complete framework 
described for slicing Prolog programs. The implementation handles specific pro-
gramming techniques (cut, if-then, OR). The Trace-tree is constructed from the 
call ports of the trace given by the Interpreter. The slice with respect to a node of 
the Trace-tree is created. The slicing technique, if desired, can be combined with 
Shapiro's debugging method [14, 19]. To first approximation the slice is built up 
for the success branch of the Trace-tree. The slice is then constructed with respect 
to the given argument position, and during a debugging session the system asks 
for the validity of just those nodes that are in the slice. If it is unsuccessful in 
locating the source of the bug, the Debug slice is constructed and the user can 
then request data flow information as well for any leaf node predicate of the Debug 
slice. A graphical interface draws the Trace-tree and highlights those nodes that 
are included in the data flow slice and in the Debug slice [10]. 

We tested our Debug Slice algorithm on several small Prolog programs. These 
programs can produce big fail branches for some inputs. The test results are shown 
in the Table below. We examined the number of nodes and arguments in the whole 
Trace tree, in the success and failed branch of the Trace tree, and lastly in the 
Debug slice. 

Complete Tree Success Branch Failed Branch Debug Slice 
Nodes Arg. Nodes Arg. Nodes Arg. Nodes Arg. 

1. 14 14 6 6 8 8 13 13 
2. 15 26 6 9 9 17 7 10 
3. 19 39 7 11 12 28 11 20 
4. 34 64 15 15 19 49 23 39 
5. 267 618 11 13 256 605 16 - 23 
6. 316 769 15 15 301 754 23 39 
7. 520 1393 24 49 496 1344 181 423 
8. 622 1240 6 9 616 1231 7 10 
9. 1142 2687 5 9 1137 2678 7 13 

The test results demonstrate that if the number of the failed branch's nodes is 
high and the data flow slices for the failed branch's leaf predicates do not contain 
too many predicates, then the Debug slice is significantly smaller than the whole 
Trace tree. The test results of course depend on the size and type of input, as well. 
The Debug slice method handles types of bugs which the conventional data-flow 
slice technique misses. Certain types of bugs were found during testing which were 
missed by the data-flow slice but were identified using the Debug slice method, as 
they appeared in the failure branches of the SLD-tree. These types include cases, 
when: 

• a cut is mis-placed. 

• a failed predicate is mis-printed (its name or arity) or a condition ( < , > , = ) 
is failed. 
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• a wrong data value has reached the failed node; so in the data-flow from the 
root to the failed node, a wrong constant value, a mis-printed predicate or a 
failed condition has appeared. 

We notice that the system finds only those mis-printed predicates of the failure 
branches of the SLD-tree which occur in the data-flow of a failed predicate, or are 
affected by a cut. 

6 Related Work and Discussion 
While program slicing has been widely studied for imperative programs [23], rela-
tively few papers have dealt with the problem of slicing logic programs [9, 20, 22, 27]. 

Gyimothy and Paaki present in [9] a specific slicing algorithm for sequential 
logic programs in order to reduce the number of user queries of an algorithmic 
debugger. But they only analyzed the data dependences for the success branch of 
the SLD-Tree (Trace-tree). Sometimes it is insufficient to locate the source of a 
wrong solution because the cause of the erroneous result may also be an invalid the 
proof tree structure. We solved this problem by dealing with control dependences, 
as well. So the data flow slice given in [9] is a special case of our approach. 

Schoening and Ducase have proposed a backward slicing algorithm for Prolog 
which produces executable slices [20]. An executable slice is usually less precise 
than a general slice [23], and their algorithm is only applicable to a limited subset 
of Prolog programs. Our aim was to develop a tool for debugging Prolog programs 
that also handles specific programming techniques. 

In [27] Zhao at al. presented a new program representation called the argument 
dependence net for concurrent logic programs in order to produce static slices at the 
argument level. Dynamic slicing usually produces more precise slices than static 
ones because it only considers a particular execution of a program. We chose the 
dynamic version because our application focuses on debugging . 

In [17] Pereira and Calejo examined the wrong solution suspect set (WSS) and 
the missing solution suspect set (MSS). It is possible to refine WSS using our general 
slice definition. 

In [22] a dynamic slicing method was presented for constraint logic programs 
based on variable sharing and groundness analysis. In the paper the declarative 
formulation of the slicing problem for constraint logic programs was also described. 

The Debug slicing method for Prolog programs was introduced in this paper. 
This slicing technique is very appropiate for debugging because it deals with con-
trol dependences as well. This slicing method will be integrated into the IDTS 
interactive algorithmic debugging tool [14]. This tool employs an improved version 
of Shapiro's debugging method [19] for identifying a buggy clause. By using slicer 
modules the number of user interactions can be reduced during the debugging pro-
cess. The data flow slice is usually much smaller than the Debug slice, so in the first 
step we can try to locate the bug in the data flow slice. However it may happen that 
the data flow slice does not contain the buggy clause. In this case the debugging 
process has to be extended to the nodes of Debug slice. We tested our slicing tool 
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on small Prolog programs [10]. Now we plan to improve the implementation of the 
tool so that it will be able to analyze real-sized Prolog programs. We also would 
like to compare the size of different slices of big SLD-trees. 
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