
Acta Cybernetica 15 (2001) 137-149.

Parallel implementation for large and sparse
eigenproblems*

E. M. Garzonf and I. Garcia t

Abstract

This paper analyses and evaluates the computational aspects of an efficient
parallel implementation for the eigenproblem. This parallel implementation
allows to solve the eigenproblem of symmetric, sparse and very large matrices.
Mathematically, the algorithm is supported by the Lanczos and Divide and
Conquer methods. The Lanczos method transforms the eigenproblem of a
symmetric matrix into an eigenproblem of a tridiagonal matrix which is easier
to be solved. The Divide and Conquer method provides the solution for the
eigenproblem of a large tridiagonal matrix by decomposing it in a set of
smaller subproblems. The method has been implemented for a distributed
memory multiprocessor system with the PVM parallel interface. A Cray T3E
system with up to 32 nodes has been used to evaluate the performance of our
parallel implementation. Due to the super-lineal speed-up values obtained
for all the studied matrices, a detailed analysis of the experimental results is
carried out. It will be shown that the management of the memory hierarchy
plays an important role in the performance of the parallel implementation.

1 Introduction
Eigenproblems arise in a large number of disciplines of sciences and engineering.
For example, they are used in: designing buildings, bridges and turbines; modeling
queuing networks; analyzing stability of electrical networks; studying the fluid flow
and so on. The matrices of these problems have a high dimension, a very low
percentage of non-zero elements and, in general, they are non-symmetric. However,
the symmetric eigenproblem constitutes the key in a lot of strategies to solve non-
symmetric eigenproblems.

The computational cost and the memory requirements of the algorithms which
provide a solution for the symmetric eigenproblem are very high when the matrix
has a high dimension. In this context, the development of parallel algorithms and

'This work has been supported by the Ministry of Education of Spain (CICYT TIC99-0361).
^Department of Computer Architecture, University of Almeria, 04120-Almeria, Spain, e-mail:

ester9ace .ual .es .
^Department of Computer Architecture, University of Almeria, 04120-Almeria, Spain, e-mail:

innaSace.ual.es.

137

138 E. M. Garzon and I. Garcia

their efficient implementations on large scale supercomputer system are the only
strategies which allow to solve this computationally expensive problem.

This paper deals with the parallel implementation of a strategy which provides
a solution to the symmetric eigenproblem on a distributed memory multicomputer
system. This strategy belongs to the so called direct methods and includes a divide
and conquer technique.

The solution of the eigenproblem of a symmetric, large and sparse matrix A £
Rnxn can be obtained by the following transformations:

A = QTQT = QMDMTQT = GDGT (1)

where D is a diagonal matrix whose non-zero elements represent the eigenvalues of
A and T, and the columns of G and M are the eigenvectors of A and T, respectively.

The eigenproblem is solved by the following consecutive stages:

1. Structuring the input matrix A. This stage generates the tridiagonal matrix
T and the orthonormal matrix Q, such that A = QTQT.

The Lanczos Method with complete reorthogonalization is used at this stage.
The complete reorthogonalization stage ensures the orthogonality of Q so that
the spectrum of T is also the spectrum of A.

2. Solving the eigenproblem ofT. At this.stage the diagonal D and the orthogo-
nal M matrices that give T — MDMT are the results of applying the Divide
and Conquer method (DC). A divide-and-conquer method, developed by
Cuppen [4], has been implemented at this stage. This method is decomposed
in the following process:

(a) Decomposing the eigenproblem of T in a set of Spo — 2Nv subproblems
(TUT2,... ,TsPo) of small dimension by rank-one transformations of T.
Nv is the number of reconstruction levels.

(b) Applying the QR method to every subproblem Tj. The corresponding
eigenvalues and eigenvectors D{ and M{, respectively, are obtained.

(c) Reconstruction: From the set of matrices Di and Ml (i = 1 , 2 , . . . , Spo),
this procedure obtains the eigenvalue matrix D and the eigenvector ma-
trix M . The reconstruction stage consists of a binary tree-structure of
Nv levels.

3; Computing the eigenvectors of A. Let G be the orthonormal matrix whose
columns gi are the eigenvectors of A; i.e. A = GDGT. This stage is solved
by a matrix-matrix product, G = QM.

From the above algorithmic description, it can be seen that the parallel imple-
mentation of the eigenproblem consists of three consecutive parallel stages. Each
stage manages a different kind of data structure. The first stage (Lanczos method)
deals with an irregular sparse matrix; the second stage involves computations on a
set of tridiagonal sub-matrices (structured data) and a set of dense matrices; the
third stage is simply a product of dense matrices.

Parallel implementation for large and sparse eigenproblems 139

The parallel implementation of the first stage (Lanczos) is based on a decom-
position in domains of the input sparse matrix which includes a computationally
inexpensive pre-processing stage, namely Pivoting-Block [9]. This preprocessing
stage guarantees that the input data partitions and its associated computations
are balanced.

The parallel implementation of the Divide and Conquer method is based on
a decomposition in domains of the input and output data [13]. The binary tree
of tasks is distributed among Processing Element (PE) so that the same number
of branches of the tree is allocated to each PE. When the number of PEs of the
multiprocessor system P verifies that P < Spo, each PE starts the reconstruction
process independently until the number of sub-problems is equal to P. When
P > Spo, a set of PEs collaborates for the solution of a pair of subproblems. As
the reconstruction stages evolve, the dimension of the subproblems are greater and
the number of PEs collaborating for the same pair of subproblems increases.

The parallel product of matrices (G — QM) is carried out starting with a
partition of Q and M by rows among PEs. We have implemented a strategy which
reduces the memory requirements.

The main contributions of this paper consists of: (a) providing a parallel imple-
mentation for large sparse eigenproblems by linking the above described stages; (b)
evaluating the proposed parallel implementation using a wide variety of problems
and (c) doing a computational analysis to determine which factors are responsible
for the super-lineal speed up values obtained from our experimental results.

This paper is organized as follows. In Section 2, the mathematical foundations of
the applied method are briefly introduced. In Section 3, parallel implementations
of every stage is described. Finally, in Section 4, new and non-standard perfor-
mance indicators for evaluating parallel implementations are defined. Moreover,
experimental results of the performance evaluation of our parallel implementation
are shown and discussed. Performance evaluations were carried out by a multicom-
puter (Cray T3E) using no more than 32 processing elements.

2 Describing the Applied Methods
The eigenproblem of large and sparse matrices is solved by a direct method which
allows to determine the matrix decompositions described by (1).

The Lanczos method, briefly described in Subsection 2.1, is applied to obtain T
and Q (tridiagonal and orthogonal matrices, respectively). The eigenproblem of T
is solved by the Divide and Conquer method [11] (Subsection 2.2), which obtains
matrices D and M from T, where D is a diagonal matrix whose elements are the
eigenvalues of T and A, and columns of G — QM are the eigenvectors of A.

2.1 Structuring Sparse Matrix
The Lanczos Method with Complete Reorthogonalization has been used for finding
a structured matrix with the same spectrum as the input sparse matrix. The

140 E. M. Garzon and I. Garcia

Lanczos method is considered an effective method for obtaining, from a symmetric
matrix A, a symmetric tridiagonal matrix T and a set of orthonormal vectors,
Qj (0 < j < n). Given a symmetric matrix A € Rnxn and a vector qi with unit
norm, the Lanczos method generates the orthonormal matrix Q and the tridiagonal
matrix T, in n iterative steps. This method is discussed in [1, 3, 12, 14]. The outer
loop of the Lanczos algorithm is an iterative procedure (index j) which at the j-th
iterative step computes the ctj and /?_,• coefficients of the tridiagonal matrix T and
the vector qj+1, where ctj and /?_, denote the elements of the main and secondary
diagonals of T, respectively. This loop includes a sparse matrix-vector product
and a reorthogonalization process. The reorthogonalization procedure used in this
work is the so called complete reorthogonalization (CR). C R is computationally
expensive but it allows to ensure that the eigenvalues of A and T are the same.
The Lanczos algorithm is particularly appropriate for structuring sparse matrices
of high dimension.

2.2 Solving the eigenproblem of T
A solution for the eigenproblem of a tridiagonal matrix based on the Divide and
Conquer method (DC) was proposed by Golub [11] and, lately, developed by Bunch,
Nielsen and Sorensen [2] and Cuppen [4].

The key of this method consists of dividing the input matrix of high dimension
into several sub-matrices of lower dimension and solving the eigenproblem of high
dimension from the solutions of eigenproblems of lower dimension. This strategy
is very useful to solve the eigenproblem of very high dimensions. The DC method
can be described as in Algorithm 1.

Algorithm 1 Divide and Conquer Algorithm: £>C(T)-> D, M
1 do i = 1,..., Sp0; i + 1
2 Div (i) T{ # SubDivision #
3 QR(Ti) D{,Mi # Solving Small Eigenproblems #
4 Sp = Sp0-,
5 do k = 1,..., Nv, k + 1 # Reconstruction Levels #
6 do i = 1,..., Sp — 1] i+ 2 # Reconstructing Couples of SubMatrices #
7 Reconstruction —> Di/2, Mi/2
8 First Deflation
9 Second Deflation

10 Solve Secular Equation Di / 2 >V

11 Mi j 2 = ^ ^ ^ V # Intermediate matrix-matrix Product#

12 Sp = Sp/2

The subdivision process by rank one modifications of T is associated with line
2. This process generates the set of sub-matrices (Ti). Then, the eigenproblem of

Parallel implementation for large and sparse eigenproblems 141

every Tj is solved by the QR method [12] which generates the (eigenvalues) and
Mi (eigenvectors) matrices. (Spo denotes the number of initial subproblems).

The loop with index k is associated with the reconstruction process (lines 5-12),
where k denotes the level of reconstruction. The total number of levels of recon-
struction is given by Nv = log2(Spo). The level of reconstruction k includes Sp/2
reconstruction processes for a couple of sub-matrices (Tj, Tj+i) whose eigenvalues
and eigenvectors are known (£>j, Mi and i, Mi + i) . The outputs of this pro-
cess are Di/2,Mi/2- These matrices are the solution of the eigenproblem for the
sub-matrix which is the result of the association of a couple of tridiagonal sub-
matrices (Ti, Tj-t-i). Details about the reconstruction process are described in [4].
This process may include deflations which reduce the computational cost of the
secular equation solution and the dimensions of the matrices which are included in
the so called Intermediate matrix-matrix Product (line 11). The number of sub-
problems at level k is denoted by Sp. When Sp=2 the eigenproblem of T is solved
(Di/2 = D,Mi/2 = M).

2.3 Computing the eigenvectors of A
The matrix-matrix product G — QM is computed in order to obtain the eigen-
vectors of the input matrix A. This last stage, which completes the solution of
the eigenproblem of A, is computationally very expensive and needs large memory
requirements. However, if the goal were only to compute the spectrum of the input
matrix, this stage could be omitted.

3 Parallel Implementation
The method for solving the eigenproblem of a symmetric sparse matrix, discussed
in Section 2, has an extremely high computational cost. Furthermore, this method
demands large memory requirements. Consequently, its implementation on a dis-
tributed memory multiprocessor is necessary, specially, when the input matrix A is
of high dimension.

The parallel implementation of the method has been carried out using a SPMD
programming model and the PVM standard library. The whole solution of the
eigenproblem (LDC) has been divided into a set of procedures: Lanczos, DC and
Final Product matrix-matrix. These procedures link their executions in a sequential
way because the data dependences prevent several procedures from simultaneous
execution. Thus, every procedure must be independently parallelized.

3.1 The Lanczos Method
In the solution of the eigenproblem, the Lanczos method is the only procedure
which manages irregular data structures; i.e. a sparse input matrix A. Since
the Lanczos algorithm works on mixed computations (dense-sparse), special care
must be taken in the data distribution among processors in order to optimize the

142 E. M. Garzon and I. Garcia

work load balance for computations on both dense and sparse data structures. A
data distribution called Pivoting Block [9] is used to balance the computational
load of this procedure. Pivoting Block estimates a permutation of the rows of
A obtaining an homogeneous density of the non-zero elements. Thus, the classical
block partition applied to the permuted matrix is able to obtain a similar number of
non-zero elements for the sparse sub-matrix allocated at every PE. Consequently,
computations linked to dense and sparse structures are balanced. Details about
parallel implementation of Lanczos algorithm can be found in [7, 8]. The outputs
of this parallel algorithm are: the tridiagonal matrix T and the orthonormal matrix
Q. The tridiagonal matrix T is stored at the local memory of every Processing
Element (PE). When the parallel Lanczos procedure finishes, every PE stores
rows of Q at its local memory, where P is the number of PEs in the multiprocessor
system.

3.2 The DC Method

An efficient parallel implementation of DC method on share memory multiproces-
sors has been proposed by Dongarra and Sorensen [5]. Moreover, parallel imple-
mentations on a distributed memory multicomputer have been described by Ipsen
and Jessup [13] and Tisseur and Dongarra [15]. In our implementation we have
used most of the ideas described in [13].

The structure of the DC algorithm suggests a natural way to split and dis-
tribute the computational work among the set of PEs. The DC method can be
represented by a binary tree of tasks which can be decomposed into P sets of tasks
and distributed among PEs.

As an illustration, the example in Figure 1 starts with T subdivided into SPo =
16 sub-matrices and a multiprocessor system with P = 4 is considered. As it can
be seen in Figure 1, for a problem which is subdivided into 16 subproblems, the
DC method consists of 4 reconstruction levels. The reconstructions at levels k = 1
and 2 are carried out by every isolated PE. When k = 3, two groups of two PEs
are defined. Thus, every group of PEs cooperates in the reconstruction of a couple
of sub-matrices. At the final level (k = 4), the four PEs cooperate in the last
reconstruction.

At the end of this stage, the non-zero elements of D and the rows of M are
distributed among the set of PEs.

3.3 The Final matrix-matrix product

In order to complete the solution of the eigenproblem of the input matrix A, the
matrix G is computed by the matrix-matrix product G = QM. The parallel im-
plementation of this matrix-matrix product is more difficult than the standard one
because every processor allocates only a subset of rows of Q and M. However,
the communication time and the memory requirements have been optimized by
re-using data structures defined and used at previous stages.

Parallel implementation for large and sparse eigenproblems 143

ItSllIiililïllilfillliillSIilSIliilftll!

I H H / JP2 \

TL T2 T3 T4

P E 1

T5 T6 T7 T8

PE2

T9 T10 T11 T12

P E 3

T13 T14 T15 T16

P E 4

Figure 1: Binary tree of tasks for the DC method, and task distribution among
PEs for a multiprocessor system with P — 4.

4 Evaluation

The evaluation of the parallel implementation for the solution of the eigenproblem
has been carried out on a multiprocessor system Cray T3E using a set of n dimen-
sional input matrices. Some of the matrices belong to the Harwell-Boeing collection
of test matrices [6]. Moreover, a subset of the test matrices has been designed to
analyze the parallel implementation of the DC method. These test matrices are
obtained by permutating a set of tridiagonal matrices denoted by [l,£t,l] or [l,fc,l]
[13], where ak — kfi or ak = k, respectively, and /3k — 1 (k = l . . . n) . These
matrices are denoted by " in" , where n is the dimension of the input matrix. The
selection of the initial Lanczos vector (qi) allows us to control the number of de-
flations the DC method produces. Consequently, it is possible to generate test
problems with a high or a low computational cost for the DC method..

In Table 1, three matrices of the set of test matrices used in the evaluation of
our parallel implementation are characterized by parameters like the dimension of
the matrix (n) and the percentage of non-zero elements (7) . The last two columns
of Table 1 provide numerical results which specify the accuracy of the applied
methods. Specifically, numerical results for the parameters ¿offio y and logwOrt
are given; where R is the norm of the residual related to the eigenproblem solution
(R =|| AG - GD ||F) and Ort =|| GTG — I ||F provides a measurement of the

144 E. M. Garzon and I. Garcia

orthogonality of the eigenvectors (|| . ||F denotes the Frobenius matrix norm).

Table 1: Numerical results of the accuracy of LDC method for several test matrices.

Matrix n 7 IUIIF logioOrt
BFW782B 782 0.9 % -15 -12
tl024 1024 0 .3% -14 -13
t2048 2048 0.1 % -14 -12

The parallel performance evaluation was carried out executing the algorithm
with P = 1,2,4,8,16 and 32 PEs and subdividing the tridiagonal matrix T into P
sub-matrices; i.e. Sp0 = P for the DC method. However, executions using only
one or a few PEs were only possible for some of the test matrices (the smaller ones)
because of the fact that the computer ran out of memory for large matrices; for ex-
ample for the matrix £7168 the multiprocessor system ran out of memory when less
than 16 PEs were used, so execution times were only obtained for P = 16 and 32
PEs. Under these circumstances it was not possible to compute the standard values
of the speed-up for evaluating the performance of the parallel implementation. As
an alternative to the speed-up, we have defined a new parallel performance estima-
tor called Incremental Speed-up (IncSpUp) which provides information about how
much the computing time diminishes when the number of PEs increases. IncSpUp
is defined as follows:

T/p = o®-1") .
IncSpUp(T) = ^ { p = 2 i) , (2)

where T(P) is the run time of the execution with P PEs. For ideal parallel imple-
mentations, the value of the Incremental Speed-up should be equal to IncSpUp — 2,
which corresponds to a lineal speed-up [10].

The experimental values for the Incremental Speed-up obtained from executions
of our parallel implementation have been plotted in Figure 2. A set of eight matrices
whose dimension n ranges between 782 and 7168 was used as test matrices; two of
the matrices belong to the Harwell-Boeing collection (BFW728B and BCSSTK27),
the remaining test matrices belong to the above described kind of matrices (tn). For
every tn matrix the parallel algorithm was run twice; one of them producing many
deflations and the other few deflations. As it was previously described, many or
few deflations may appear depending on the value of the initial Lanczos vector (qi).
In Figure 2, tn and tn* graphs correspond to the same matrix but for execution
with few and many deflations, respectively.

From Figure 2 performance of the parallel implementation can be analyzed for
every value of the number of PEs, P. For every tested matrix such that n > 2048,
the values of the IncSpUp estimator were greater than 2 when 2 < P < 16 but for
P — 32 only the largest matrices (£5120 and £7168) gave IncSpUp > 2. From the
definition of the IncSpUp it is easy to see that from the values of the IncSpUp for
2 , 4 , . . . , P PEs, it is possible to obtain the value of the Speed-up for P PEs because

Parallel implementation for large and sparse eigenproblems 145

Figure 2: Incremental Speed-up of the parallel execution of LDC against the num-
ber of processors (P) for several input matrices.

SpUp{P) = IncSpUp(P) x IncSpUp(P/2) x ... x IncSpUp(2). The values of
IncSpUp estimator obtained in our experimental results are equivalent to efficiency
values higher than 1, it means that our implementation exhibits a super-lineal
behavior.

Notice that, as the number of PEs increases, the computational work load of
every processor diminishes but the interprocessor communications and delays for
synchronizing tasks do not decrease but even may increase. Values of the IncSpUp
less than 2 can have been produced as a consequence of long delays for synchro-
nization, which are mainly due to work load unbalances among processors, or long

146 E. M. Garzon and I. Garcia

interprocessor communications.
In an attempt to determine the causes for both the super-lineal Speed-up be-

havior as well as the decreasing of the IncSpUp when the number of PEs increases,
a detailed analysis of the performance was carried out. This analysis was made
through a pair of additional parameters: the number of cache faults and the exe-
cution profiles. Execution profiles provide measurements of the percentage of the
computational work related to every procedure involved in the parallel algorithm.
Experimental results will show that the management of the memory hierarchy plays
an important role in algorithms with large memory requirements.

le+05 -

¡2 1e+04

1e+03

1e+02

G—©BFW782B (n=782)
•—EJBCSSTK27 (n=1224)
A-"At2048*
A—At2048
V-"Vt2560*
V—Vt2560
4 j-13072*

H3072

1̂4096
[>--(>15120»
[>—£>15120
O - <>17168*
O—Ot7168

Figure 3: Cache faults versus the number of PEs for several dimensions of input
matrices. (*) means many deflations.

Figure 3 shows a log plot of the number of cache faults against P. It can be
seen that the number of cache faults diminishes considerably as P increases and this
fact is more relevant for small values of P. This is mainly due to the fact that the
percentage of the total data that can be allocated at the cache memory is greater
when more PEs are used. This means that the time spent on accessing to data
memory decreases as the number of PEs increases. This justifies that super-lineal
Speedrup values (IncSpUp > 2) have been obtained in our experimental results.

Experimental results for execution profiles are shown in the Table 2. The proce-
dures included in the LCD algorithm that have stronger computational work load
are:. Lanczos (Ic), QR method (QR), intermediate product of matrices (IP, line 11
of DC) and final product of matrices (FP). The characters in brackets are referred
to the notation of the column head in Table 2. Moreover, this table has two addi-
tional columns which specify the percentages of the run time related to the waiting
time for synchronization (wt) and the interprocessor communication process (c).

Parallel implementation for large and sparse eigenproblems 147

Table 2: Execution profile of LDC for several test matrices, le, FP, IP, QR, wt and
c denote the percentage of the work load associated to the Lanczos method, the
Final Product of matrices, the Intermediate Product of matrices, the QR method,
the wait for messages time and the interprocessor communications, respectively.

Many Deflati ons Few Deflations
p le FP QR wt c le FP IP QR wt c

t2048
2 39 55 2 3 - 24 33 25 2 14 -

4 30 66 - 1 - 32 25 33 - 6 -

8 46 45 - 4 1 33 32 21 - 9 -

16 42 42 - 2 10 33 33 18 - 4 6
32 28 27 - 5 31 23 23 11 - 6 26

t3072
2 47 48 - 3 - 32 32 25 1 7 -

4 55 42 - 1 - 23 27 30 - 17 -

8 46 47 - 3 - 32 32 23 - 9 -

16 45 44 - 1 6 34 33 19 - 4 4
32 33 33 - 4 14 27 27 14 - 5 18

t5120
8 49 47 - 1 - 28 26 36 - 6 -

16 47 46 - - 3 33 31 21 - 9 2
32 38 38 - 3 15 30 30 17 - 5 11

t7168
16 50 45 - - 2 30 29 28 - 9 -

32 42 41 - 2 10 32 31 18 - 6 8

On the left side of Table 2, the results are associated with executions of the
DC procedure that include many deflations, so the reconstruction process and the
intermediate products (IP) are not very hard from a computational point of view.
On the right hand side, we can see the results associated with the DC procedure
that includes few deflations. So, the intermediate products represent a relatively
large percentage of the total computational work.

From data in Table 2, it can be seen that the communication processes are
computationally irrelevant except for execution with P = 16 and P = 32, but their
importance decreases when n increases.

Notice that the values of the wt parameter are also estimations of the work
load balance among processors since a synchronization stage always precedes every
communication among processors. For all the analyzed cases the value of wt is
extremely small. Thus, the parallel implementation has a good work load balance.
In [13], from the point of view of parallel implementation, deflations have been
described as a serious drawback, as they can produce load unbalance. Nevertheless,
the values of wt obtained in our experimental results show that deflations do not
produce a relevant work load unbalance.

148 E. M. Garzon and I. Garcia

5 Conclusions
In this paper a parallel implementation of the eigenproblem of symmetric sparse and
large matrices is proposed and evaluated. The solution is based on a direct method
which mainly consists of three consecutive stages. Parallel implementations of every
isolated stage have been described in the bibliography [7, 8, 13, 15]. However, a
parallel implementation for the whole eigenproblem solution which includes these
methods has not been reported anywhere. Our proposal is able to provide a solution
for very large matrices which can not be solved with a uniprocessor system due to
both the high computational complexity and the large memory requirements. We
have solved all the problems associated to the work load unbalance which frequently
appear when sparse matrices are involved in parallel computations.

A detailed analysis of the parallel implementation has been carried out through
the experimental values of the Incremental Speed-up, the number of cache faults and
the execution profiles. It has been proved that the designed parallel implementation
is very efficient since it includes specific devices which allow: (a) distributing the
computational work load associated with all the procedures in a balanced way; (b)
establishing interprocessor communications that do not increase considerably the
run time, and what is more, (c) improving the mamory data access time, especially
for irregular data.

References
[1] Berry, M.W. Large-scale sparse singular value computations. The International

Journal of Supercomputer Applications, 6(1) :13—49, Spring 1992.

[2] Bunch, J.R.; Nielsen C.P. and Sorensen, D.C. Rank one modification of the
symmetric eigenproblem. Numerische Mathematik, 31(1):31—48, 1978.

[3] Cullum, J.K. and Willoughby, R.A. Lanczos algorithms for large symmetric
eigenvalue computations, volume 1: Theory, volume 2: Programs. Birkhäuser,
Stuttgart, 1985.

[4] Cuppen, J.J.M. A divide and conquer method for the symmetric eigenproblem.
Numerische Mathematik, 36:177-195, 1981.

[5] Dongarra, J.J. and Sorensen, D.C. A fully parallel algorithm for the symmetric
eigenvalue problem. SIAM Journal on Scientific and Statistical Computing,
8(2): 139-154, March 1987.

[6] Duff, I.S.; Grimes, R.G. and Lewis, J.G. User's guide for the Harwell-Boeing
sparse matrix collection. Technical report, Research and Technology Division,
Boeing Computer Services, 1992.

[7] Garcia, I; Garzon, E.M.; Cabaleiro, J.C.; Carazo, J.M. and Zapata, E.L. Par-
allel tridiagonalization of symmetric matrices based on Lanczos method. In

Parallel implementation for large and sparse eigenproblems 149

M. Valero, E. Onate, M. Jane, J. L. Larriba, and B. Suarez, editors, Parallel
Computing and Transputer Applications, pages 236-245, Amsterdam, 1992.
IOS Press.

[8] Garzon, E.M. and Garcia, I. Parallel implementation of the Lanczos method
for sparse matrices: Analysis of data distributions. In ACM, editor, FCRC
'96: Conference proceedings of the 1996 International Conference on Super-
computing, pages 294-300, New York, 1996. ACM Press.

[9] Garzon, E.M. and Garcia, I. Evaluation of the work load balance in ir-
regular problems using Value Based Data Distributions. Proceedings of the
IASTED International Conference Parallel and Distributed Systems. Euro-
PDS'97, pages 137-143, 1997.

[10] Garzon, E.M. and Garcia, I. A parallel implementation of the eigenproblem
for large, symmetric and sparse matrices. In J.J. Dongarra, E. Luque, and
T. Margalef, editors, Recent advances in PVM and MPI, volume 1697 of Lec-
ture Notes in Computer Science, pages 380-387. Springer-Verlag, 1999.

[11] Golub, G.H. Some modified matrix eigenvalue problems. SIAM Review,
15(2):318-344, April 1973.

[12] Golub, G.H. and Van Loan C. F. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore,
MD, USA, third edition, 1996.

[13] Ipsen, I.C.F. and Jessup, E.R. Solving the symmetric tridiagonal eigenvalue
problem on the hypercube. SIAM Journal on Scientific and Statistical Com-
puting, ll(2):203-229, March 1990.

[14] Simon, H.D. Analysis of thé symmetric Lanczos algorithm with reorthogonal-
ization methods. Linear Algebra and its Applications, 61:101-131, 1984.

[15] Tisseur F. and Dongarra J. A parallel divide and conquer algorithm for the
symmetric eigenvalue problem on distributed memory architectures. SIAM
Journal on Scientific Computing, 20(6):2223-2236, November 1999.

