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Abstract 
New computability models called P systems, based on the evolution of 

objects in a membrane structure, were recently introduced. In this paper, 
we consider two variants of P systems having "complex objects" like pictures 
as the underlying data structure. The first variant is capable of generating 
pictures with interesting patterns. We also investigate the generative power 
of this variant by comparing it with the families of two dimensional matrix 
languages. The second variant has some applications in pattern generation. 

1 Introduction 
The name 'picture processing' is generally used to describe that area of computer 
science which is concerned with the analysis and generation of pictures. Pioneering 
work in suggesting and applying a linguistic model for the solution of nontrivial 
problems in picture processing was done by Narasimhan [4]. Narasimhan has also 
proposed and implemented schemes for the recognition of handprinted letters of 
the English alphabet and for the generation of poster pictures [5, 6]. 

Various classes of pictures have also been generated using grammars [11]. A 
matrix model to describe digital pictures viewed as matrices (m x n rectangular 
arrays of terminals) is given in [13]. There has been considerable interest in applying 
the methods of mathematical linguistics to picture generation and description. The 
concept of substitution of regular sets into languages of Chomsky type are defined in 
[13] and the concept of substitution of regular sets into L-systems are defined in [7]. 
When a picture is described as a rectangular array of terminals, it is advantageous 
to assign attribute values to members of the array, the typical attribute values 
being intensity or grey level, color and opaqueness or transparency [12]. 

P systems, introduced by Gh.Paun, [8] form a new class of biologically inspired 
distributed computing models. P systems can be used as a support for a computing 
device based on any type of objects and any type of evolution rules associated with 
them. In basic variants of P systems, the objects are represented either by symbols 
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from a given alphabet or by strings over a given alphabet. In the case of string 
objects, the objects can evolve in many ways defined by string processing rules [8], 
[10] such as rewriting (sequential and parallel)[2], point mutations and so on. 

Generalizing the passing from symbol objects to string objects, an immediate 
further step is to consider still more complex objects, such as trees, graphs of 
arbitrary forms, arrays etc, [9]. Such generalizations are classic in language theory 
(graph grammars, array grammars and even picture grammars are well developed 
domains). So, it is natural to start considering P systems with complex object 
descriptions. With such motivation we introduce picture objects into P systems 
and evolve the pictures by specific rules. 

In the following section, we give a few preliminary notions and notations. In 
Section 3, a variant of P systems with picture objects is introduced and in the 
next section, certain examples are given. In Section 5, the generative power of 
this variant is investigated by comparing it with the existing families of matrix 
languages PSML, CSML, CFML and RML. In Section 6, it is proved that an 
online tesselation automata can be simulated using this variant. Another variant 
of P systems with picture objects is introduced in Section 7, and the application of 
this variant in pattern generation is illustrated with a few examples. 

2 Preliminaries 

In this section, we give some preliminaries which will be useful in subsequent sec-
tions. 

• A two dimensional string (or a picture) over an alphabet £ is a two dimensional 
rectangular array of elements of E. The set of all two dimensional strings over E 
is denoted as £**. 

Given a picture p € .£** , let hip) denote the number of rows of p and hip) 
denote the number of columns of p. The pair (hip),hip)) is called the size of 
the picture p. The empty picture is the only picture of size (0,0) and it will be 
denoted by A. Pictures of size (0,n) or (n,0) where n > 0 are not defined. The 
set of all pictures over E of size (m,n) with m,n > 0 will be indicated by £ m x n . 
Furthermore, if 1 < i < hip) and 1 < j < hip), Pi,j denotes the symbol in p with 
coordinates (i,j). 

Now we will give some simple examples of two dimensional languages. 

1. Let £ = {a } be a one letter alphabet. The set of pictures of a's with three 
columns is a two dimensional language over E. It can be formally defined as 
L = {p \ pe £ " and hip) = 3}. 

2. Take a two letter alphabet F = {0 ,1 } , and consider the set of squares in which 
áll letters in the main diagonal are 1, whereas the remaining positions carry 
letter 0. An examplels the following one: 
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1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

Two dimensional online tesselation automata (2OTA) introduced by Inoue and 
Nakamura is a particular model of two dimensional cellular automata (2CA) [1]. A 
2 O T A is a restricted type of 2 C A in which cells do not make transitions at every 
time-step: rather a "transition wave" passes once diagonally across the array. Each 
cell changes its state depending on the two neighbors to the top and to the left, 
respectively. 

A non-deterministic (deterministic) two-dimensional on-line tesselation automa-
ton, referred to as 2 OTA (2 DOT A), is defined by A - (£,Q,q0,F,8), where: 
— E is the input alphabet; 
— Q is a finite set of states; 
— I C Q {I = {¿ } C Q) is the set of "initial" states; 
— F C Q is the set of "final" (or "accepting") states; 
— <5 : Q x Q x E 2Q (<5 : Q x Q x E Q) is the transition function. 

# # # # # # # # 
# # 
# # 
# Pi-1 j # 
# Pi j-1 Pi j # 
# # 
# # # # # # # # 

A run of A on a picture p consists of associating a state from Q to each position (i, j) 
of p. Such a state is given by the transition function S and depends on the states 
already associated with positions (i,j — 1) and (i — 1, j ) and on the symbol . At 
time t = 0 an initial state go is associated with all positions of the first row and of 
the first column of p. The computation consists of l\(p) + h(p) — 1 steps. It starts 
at time t = 1 by reading pi ti and associating the state ¿(<7o> iOiPi.O'with position 
(1,1). At time t = 2, states are simultaneously associated with positions (1,2) and 
(2,1), and so on, to the next diagonals. At time t = k, states are simultaneously 
associated with each position (i,j) such that i + j — 1 = k. A 2 O T A recognizes a 
picture p if there exists a run of A on p such that the state assigned to position 
{hip),hip)) is a final state. 

Now we give an example of a language recognized by a 2 O T A . Let E = { a } and 
let L C £** be the language of all pictures over E with an odd number of columns. 
That is, L = {p | l2(p) is odd }. A 2 OTA can recognize pictures of L by associating 
states "1" and "2" with the positions of each odd and even column, respectively. 
A picture is accepted if positions of the rightmost column contain state "1" . More 
formally, L is recognized by the 2 O T A A = (E, Q, I, F,6) defined as follows: 
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Q = { 0 , 1 , 2 } , / = {0 } , F = { 1 } , 
<5(0,0, a) = 5(0,2, a) = ¿(1,0, a) = ¿(1,2, a) = 1, ¿(0,1, a) = ¿(2,1, a) = 2. 

A matrix grammar with appearance checking is a construct G — (N, T, S, M, F), 
where N, T are disjoint alphabets, S £ N, M, a finite set of sequences of the 
form (A\ xi,...,An xn), n > 1, of context-free rules over NuT (with 
Ai £ N,Xj £ (N UT)*, in all cases), and F, a set of occurrences of rules in M (we 
say that N is the nonterminal alphabet, T is the terminal alphabet, S is the axiom, 
while the elements of M are called matrices). 

For w, z £ (N U T)* we write w => z if there is a matrix (Ai —> x\, . . . , An —> 
xn) in M and the strings Wi £ ( .NUT)* , 1 < i < n +1, such that w — w\,z = iwn + 1 , 
and, for all 1 < i < n, either wx = w'iAiw",wi+1 = w\xxw'l, for some w\, w" £ 
(N U T)', or Wi = 1, Ai does not appear in Wi, and the rule Ai —> Xi appears 
in F. (The rules of a matrix are applied in order, possibly skipping the rules in 
F if they cannot be applied; we say that these rules are applied in the appearance 
checking mode.) If F — 0, then the grammar is said to be without appearance 
checking (and F is no longer mentioned). W e denote by = > * the reflexive and 
transitive closure of the relation =$>. The language generated by G is defined by 
L{G) = {w £ T* | S =$>* w}. The family of languages of this form is denoted 
by MATac. When we use grammars without appearance checking, then the family 
obtained is denoted by MAT. It is known that MAT c MATac = RE and that 
each one-letter language in the family MAT is-regular. 

A matrix grammar G = (N, T, S, M, F) with appearance checking is said to be 
in the binary normal form if N = Ni U N2 U {5 , # } , with these three sets mutually 
disjoint, and the matrices in M are one of the following forms: 

1. ( 5 - > XA), w i th X £NUA£ N2, 

2. {X Y, A ->• x), with X,Y £ N1, A £ N2, x £ (N2 U T)*, 

3. (X Y, A -»• # ) , with X,Y £ N1, A £ N2, 

4. (X -> A, A -> a;), with X £ N1, A £ N2, and x £ T*. 

Moreover, there is only one matrix of type 1 and F consists exactly of all rules 
A —> # appearing in matrices of type 3; # is a trap-symbol, once introduced, it is 
never removed. A matrix of type 4 is used only once, at the last step of a derivation. 

A 2D-matrix grammar is a 2-tuple 

G = (GUG2) 

where 

G1 = (Hi,Ii,Pi,S) is a grammar, 

Hi is a finite set of horizontal nonterminals, H\ fl /1 = 0, 
Ix = {Si, 52, •.., Sk}, a finite set of intermediates, 
Pi is a finite set of production rules called horizontal production rules, 
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S is the start symbol, S £ Hi, 

G2 = (£2,1, G2,2, • • •, G2,k), 

G2i = [V2i, I2,P2i,Si), 1 < i < k are regular grammars, 

I2 is a finite set of terminals, 

V2i is a finite set of vertical nonterminals, V2i fl V2j = 0, i ^ j, 

Si is the start symbol, 

P2i is a finite set of right linear production rules. 

The type of G\ gives the type of G, so we speak about regular, context-free, context-
sensitive, recursively enumerable 2D-matrix grammars if Gi is a regular, context-
free, context sensitive or arbitrary respectively. Derivations are defined as follows: 
First a string Si1 S i 2 . . . Sik £ / * is generated horizontally using the horizontal 
production rules Pi in G\. That is, 5 =>• S ^ S ^ . . .Sik £ /j". Vertical derivations 
proceed as follows: We write 

...Ain 

a-
an - * • din 
Bi • • - Bn 

if Aij —>• aijBj are rules in P2j, 1 < j < n. The derivation terminates if Aj —> amJ 

are all terminal rules in G2. The set M(G) of all matrices generated by G is 
defined to be the set of m x n arrays [a^] such that I < i < m,l < j < n and 
S ==>GÎ Si.. .Sn = > a 2 [a-ij]- Now we shall recall the definition of P systems with 
string objects from [8]. A rewriting P system of degree m , m > 1, is a construct 

n = (V, T, p, Mi, M2,..., Mm, (Ri, pi), (R2, p2),..., (Rm, pm)) 

where V is the total alphabet, T Ç V is the output alphabet, p is a membrane 
structure consisting of m membranes labeled with 1 , 2 , . . . , m , Mi,... ,Mm, are 
finite languages over V associated with the regions 1 , 2 , . . . , m of p, Ri,...,Rm are 
finite sets of developmental rules over V associated with the regions 1 , 2 , . . . , m of 
p. and pi,... ,pm are partial order relations over Ri,..., Rm, specifying a priority 
relation among the rules. The rules in Ri are of the form X -» (v,tar), where 
tar £ {here, out, inj}-, j is the label of a membrane. In each step, each string which 
can be rewritten is rewritten (in a context-free manner) by a rule from its region. 
The rule is nondeterministically chosen, and the resulting string will be moved to 
the membrane indicated by the target tar associated with the rule: here means 
that the string remains in the same membrane, out means that the string exits 
the membrane, and inj means that the string goes to the membrane with label j 
providing that it is directly inside the membrane where the rule X —(v,inj) is 
applied. This way, we pass from a given configuration to another one; a sequence 
of transitions forms a computation. We consider as successful computations only 
the halting ones (computations which reach a configuration where no further rule 
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can be applied); the result of a halting computation consists of all strings over T* 
which are sent out of the system during the computation. 

3 Basic definitions 
Here, we directly define the system which we are going to work with. 
Definition 3 .1 A P System of degree n, n > 1 with picture objects is a construct 

n = (V, T, fi, S', Mx, M2,..., Mn, (Ru Pl), (R2, p2),. . ., (Rn: pn)), 

where 

• V is the total alphabet of the system, V = U " = 1 Hi U U"=i h u U7=i u 

U U T, where Hj,Ij and Vj are the set of horizontal nonterminals, interme-
diates and vertical nonterminals associated with membranes j, 1 < j < n. U 
is a set of nonterminals disjoint from any of Hj,Ij,Vj and T. 

• T C V is the output alphabet. 

• p is the membrane structure of degree n, with membranes labeled by 
1,2 , . . . . n . 

• S' is the set of horizontal and vertical scanners. If a membrane has scanners 
in it, then any picture in the membrane can be scanned. The presence of 
scanners in a membrane is optional. 

• Each Mj is the union of three finite sets, M , = S'j U L'j U Uj, where S'j is the 
set of scanners associated with membrane j, L'j is a finite language over V 
associated with membrane j and Uj is a multiset of objects over U associated 
with membrane j. 

• R j and Pj are the set of rewriting rules and partial order relations associated 
with the regions j, 1 < j < n, of /i; the form of rules will be specified below. 

Mi, M2,..., Mn can be empty and the same is valid for Ri,R2, ... ,RN and their 
associated priority relations pi,p2, • • • , p n . Now we shall explain how the scanners 
work. 

The scanners are of two types : horizontal and vertical. The horizontal scanners 
scan the rows and the vertical scanners scan the columns. Suppose that there are 
m horizontal scanners hi, h2,..., hm and n vertical scanners vi,v2,... ,vn in a 
membrane k. If p is a picture of size m x n, present in k, then hi scans the ith row 
of p and Vj scans the j t h column. The horizontal scanner hi starts scanning the 
ith vbw from the left boundary. That is from position (i, 1). Similarly, the vertical 
scanner Vj starts scanning the jth column from the position (1, j). 

At any point of time, the horizontal scanners hi and vertical scanners Vj hold in-
formation about the current element under scan and the previous element scanned. 
By hi (or Vj) scanning the i th row ( jth column), we mean that hi (or Vj) is reading 
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the elements of the ith row ( j th column) starting from the left end (top) and pro-
ceeds in a systematic way reading one element in each step till it reaches the last 
element in the ith row ( j th column). The scanners hi,.... hm,vi,... ,vn can start 
working simultaneously unless there are priority relations specifying the order in 
which they should work. 

To specify the position in the picture where the scanning is done, we denote by 
hi{\,Pi,i) (or Vj(X,pij)), the scanners hi and Vj, during the first step of scanning. 
This indicates that the current elements under scan are the elements at positions 
( i , l ) ( (1, j) ). The scanners hi,Vj can continue the scanning in the next step, pro-
vided there are no rules (horizontal, vertical or transition) having a higher priority. 
If the scanning is continued in the next step, /ii(A,pj,i) (vj(X,pij)) is changed to 
hi(Pi,i,Pi,2) (vj(pi,j,p2j))- This means that pifi( P2j ) and piA( pij ) are the 
current (previous) elements scanned by hi and Vj respectively. 

Since each scanner has information about the current element and its previous 
one, two operations : p extract and c extract are defined on them, p extract stands 
for extracting the previous element scanned by the scanner and c extract stands for 
extracting the current element scanned. These are denoted as follows: The opera-
tion p extract denoted as h?(pitj,pij+i) (vf(Pj,i,Pj+i,i)) gives pij (pj,i), and the 
operation c extract denoted as h^(pij,pij+1) (v$(pjti,pj+i,j)) gives pi j+i (pj+i ¿)-
These operations are useful for accessing and changing any particular element in a 
given picture. For instance, if we want to change the element at position (i,j) in 
a picture, there are two ways: (1) One way is to use the horizontal scanner hi and 
wait till it reaches the jth element. Once it reaches the j t h element, h j ( p i j - i , p i j ) 
contains the element at position (i,j).• At this step, if an assignment of the form 
hi(pij-i,pij) -> t is made, then the element at position (i,j) is changed to t. A 
similar way is to use the rule h?(pitj ,pi:j+i) —> t. (2) Using the vertical scanner 
Vj also, this can done. Rules of the form h?(X,piti) —> t are not valid as there is 
no element to the left of the first element in any row. Similarly, rules of the form 
v?(\,pij) —»• t are also not valid as there are no elements on top of the first element 
in any column. The work of each scanner hi (or Vj ) comes to an end after it has 
finished scanning all the elements in the ith row ( jth column). After this it can 
start scanning again from the first position of each row (column). 

Now we shall explain the three kinds of rules: horizontal, vertical and transition. 

Each membrane j has a set Ij of intermediates, horizontal nonterminals Hj 
and vertical nonterminals Vj and rules associated with each of them. In addition, 
we also have a set of nonterminals U which can be associated with some or all of 
the membranes. Also, U is disjoint from all Hj, Vj and Ij. Note that Hj fl Vj = 
0, Hj n Ij = 0 for all j but it is not necessary that Hl n Ij = 0 or Hl n Vj = 0 or 
H i n H j = 0 or ViCiVj = 0 or I iOVj = 0 or / ¿ D / j = 0 for i ^ j. Horizontal rules are 
associated with nonterminals, vertical rules are associated with the intermediates 
and vertical nonterminals and transition rules are associated with the elements of U. 
By default, preference is given to the horizontal rules over the vertical rules in each 
membrane. A string over the intermediates is generated using the horizontal rules 
after which, the vertical rules are applied. The transition rules are applicable always 
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unless they axe controlled by priority relations. With suitable priority relations, the 
transition rules can be used to control rules involving scanners; viz., rules of the form 
hCi(ai,j,Oi,j+1) -»• t (h?(aitj,aij+i) t) orv?(ai-ij,aij) t (v^(ai-ij,aij) t). 

The horizontal rules in each membrane j are of the following two forms: 

1. Rules of the form a (P1J1, tari)... ( / ? „ 7 „ , tarn) 
or a -t (/3i,tari)... (¡3n,tarn) where a,7» € Hj,Pi € If and tari is one 
of {here, out, ink), k is a membrane adjacent to j. Rules of this form are 
called right linear rules. The elements of Ij formed during the evolution are 
terminals with respect to horizontal derivation rules, since only vertical rules 
are applicable to them. 

2. Rules of the form a -»• (Pi, tari) • • • (Pn,tarn) where a 6 Hj and Pi € (Hj U 
Ij)*. Rules of this form are called context free rules. As above, tari has to 
be one of here, out or ink for some membrane k adjacent to j. 

If n > 1 in the above rules of types 1, 2, we say that the horizontal rules are 
replication rules. The horizontal rules are applied sequentially: we apply exactly 
one rule to a string at a time. If the number of horizontal nonterminals in a string 
is more than one and if there are applicable rules to each one of them, then a 
horizontal nonterminal is chosen nondeterministically and one occurrence of it is 
replaced. The parallelism of the system refers to applying rules to strings in all 
membranes. If a rule of the form a ( / ? 7 , tar) is applied, the string moves as a 
whole to the membrane indicated by tar after replacing a by P*y. Since preference 
is given to the horizontal rules in each membrane and each horizontal rule gives rise 
to some intermediates, a string over intermediates is obtained when the horizontal 
derivations come to a halt. 

The intermediates are the start symbols for vertical rules in all membranes. 
The vertical rules are applied in parallel: that is, all the intermediates or vertical 
nonterminals which can be replaced in a step should be replaced. The vertical 
rules in a membrane j are of the form a ( / ? 7 , tar)/(/3, tar) where a £ Ij or Vj, 
P E T*,7 6 Vj or Ij and tar is one of {here,out,ink} where k is a membrane 
adjacent to j . Hence, the vertical rules are always right linear. 

The vertical rules result in the string growing downward; that is if there is 
a string XYZ in a membrane and if there are vertical rules X —> + + +,!' 
. + +, Z —>• . .+, then we get the picture 

+ . . . 
+ + . + + + 

Assume that we rewrite in this way n symbols, by rules which have associated 
targets of the form here, out, inj of several types and that there are ntar targets 
of each type. Then, the structure obtained by rewriting is sent to the membrane 
indicated by the target with the maximal ntar (the target which appears the max-
imal number of times in the used rules). As usual, when several targets have the 
same maximal number of occurrences, then one of them is nondeterministically 
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chosen. For instance, if we have the structure given below in some membrane k 
and rules A\ —> (w,ini), A2 —> (ç,¿7x2), A3 —> ( 7 , ¿713), A4 —> (/«,¿714) where 1 ,2 ,3 ,4 
are membranes adjacent to k, then 

a A2 c d a ç c d 
e f h e f h 

Ai A3 i w 7 i 
A4 K 

and the resultant structure can be moved to any of the membranes since each target 
has occurred an equal number of times. 

The priority among rules in any membrane can be summarized as follows: All 
horizontal rules have higher priority than vertical rules; once all horizontal deriva-
tions are over and a string over intermediates is obtained, all symbols in the string 
which can be rewritten are rewritten according to priority relations that exist be-
tween the vertical rules. 

In any membrane i, the transition rules for objects of U are of the form u —• v, 
where u 6 U and v = v' or v = v'S, where v' is a string over (U x {here, out}) U 
(U x {irij I 1 < j < n } ) , j is a membrane adjacent to i and <5 is a special symbol 
not in V. The strings u,v are understood as representations of multisets over U. 
We use these rules mainly for controlling the action of the scanners. Thus, the 
horizontal and vertical rules are rewriting rules whereas, the transition rules are 
evolution rules [8]. 

Thus, this variant of P systems has a combination of symbol objects described 
by U and string objects over Hj, 1 < j < n. By applying transition rules to objects 
of U, horizontal rules to strings over H j and then vertical rules to objects over 
Ij U Vj, pictures are developed. If a picture purely over T is obtained by applying 
rules of the above type and if it is sent out of the system at the end of a halting 
configuration, we list it in the language generated by the system. Any picture not 
over T or any non rectangular array over T sent out of the system are not listed 
in the language. Similarly, pictures over T remaining in the system after a halting 
configuration will not be included in the language generated. 

If the horizontal rules in all membranes are right linear, then we say that the 
P system with picture objects uses right linear rules for its horizontal derivations. 
If the horizontal rules used in some membranes are right linear and the horizontal 
rules used in some membranes are context free, we say that the P system with 
picture objects uses context free rules for its horizontal derivations. 

The work of this class of systems can be summarized as follows: in each time 
unit, each string which can be rewritten is rewritten using the horizontal rules; once 
a string over intermediates is formed, vertical rules are applied simultaneously to 
all symbols which can be rewritten. In addition, transition rules can be applied to 
symbols of U present in all the membranes. We thus pass on from one configuration 
to another one. A sequence of transitions form a computation, and we consider as 
successful computations the halting ones (the computations which reach a configu-
ration where no rule can be applied); the result of a halting configuration consists 
of all pictures over T sent out of the system during the computation. 
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We denote by -P(II) the language generated by a P system II with picture 
objects; the family of all languages of this type, generated by systems with at 
most m membranes, using right linear rules (context free rules) for its horizontal 
derivations, is denoted by RLPm(H)(CFPm(n)); if no bound on the number of 
membranes is considered, then the subscript m is replaced by *. 

E x a m p l e 4.1 In this example, we generate a four pronged fork without handle, 
which is known to be generated only by a CSMG [13]. Consider a P system 
with picture objects, having no priorities and using only right linear rules for its 
horizontal derivations, 

n = (V,T,p, A, M x , M 2 , M 3 , M 4 , Ms, (Ri,(f>), (R2,cf>), (R3, 4>), (RiA), (R5,<P)) 

V = {S,X,S[,Yi,S'i ,Y2,Y3,X' ,X" ,Si,S2,Y,Y' ,Y" ,V(,V2} U { * , . } , 
T = {*,.}, 

Mi = {S}, Mi = \,i^l, 

V = [l [ih [3 [4 U]5]4]3 ]l, 

Hi. = { 5 , X , S J , Y i ,S " , Y2, Y"3, A', A"} , 
h = {SUS2, Y, Y', Y"}, Vi = {V/, V2'}, 

H2 = {Y',Y"}, I2 = {A}, V2 = {A} , 
H3 = {Y,Yi},h = {S2},V3 = {A}, 

Ha = {Y',Yn,h = {S2},V4 = {\}, 
H 5 = { y " } , / 5 = {S2},y5 = {A}, 
Ri = {S -» S\X, X ->YS{, S1Y1, Yx -> Y'S'{, S" -> SiY2} 

U {Y2 (Y"Si,in3), Y3 (A , in2 ) , A' -»• (A,in2) , A" A} 

U {V{ (*,out),V2 (.,out)}(vertical rules), 
R2 = {Y' (A1,out), Y" (A", out)}(horizontal rules), 
R3 = {Y (S2Yi,ini), Yi (Y3,out), Yi -> Y}(horizontal rules), 
R4 = {Y' -> (S2Y{,in5), Y( (Y', out)}(horizontal rules), 
R5 =. [Y" (S2Y",out)}(horizontal rules). 

In membrane two, the string S i S 2 S i S 2 S i S 2 S i is generated as a result of horizontal 
derivations. This string is passed on to the skin membrane where as a result of 
vertical derivations, we get the four pronged fork without handle. 

4 Examples 

with 

(horizontal rules) 
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• 

* 

• 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

A four pronged fork without handle 

Example 4 .2 Consider the P system with picture objects having no priorities, no 
scanners and using right linear rules for its horizontal derivations, 

with 

V 

T = 

ß 

M L 

Hi 

H2 

H 3 

Hi 

H5 

H6 

Hr 

H 8 

h 

H9 

H10 

H H 

H12 

H i3 

Ri 

N = (V, T, M, A, Ml, M 2 , . . . , MI3 , (Ri, cj>), (Ä2 A), • • • № 3 , 4 ) ) 

s c y v1 v1 v" V1" v 4 v 5 c c c C C C v " v " V " ' ) 2 > 2 > 2 > I2 ' I2 > °1> °2! ^3! ^îi 02, °3> 1 i-rli-r 

Y4, Y 5 , Y ® , Y6}, 
{ • > * } > 

[l [2 [3 [4 [5 [ö ]6]5]4]3]2 [7 ]t[8 ]8 [9 [lo[ll [12 [13 ]l3]l2]ll]lo]9 ]l , 
{S},Mi = \,iïl, 

{S, X, Y , Y 2 ' } , / I = {SuS2,S3,S'i,S'2,S'3},Vi — { A } , 

{ Y " , Y 1 " } , 7 2 = { 5 3 } , ^ 2 = { A } , 

{Y"',Y{"},h = {S3},V3 = { A}, 
{Yi,Yi4},h = {S3},Vi = {X}, 

{ r 5 , F 1 5 } , / 5 = { 5 3 } , y 5 = {A} , 

{ F 6 } , / 6 = Y 6 = { A } , 

{\},I7 = {S1,S2,S3},V7 = {S[,S'2,S'3}, 
S Y C V" C V'" C V 4 C" V 5 C" V6\ °3! M 1 °1 ! 11 ) '-'2 > ^ 1 > ! M > °3 > 11 J' 
{ Y ' , S 3 , Y " , S I , Y ' " , S 2 , Y 4 , Y 5 , Y 6 } , V 8 = { A } , 

{ Y " , Y 2 " } , I 9 = V9 = {A}, 

{ Y " ' , Y 2 ' " } , I I O = V10 = { A } , 

{ Y 4 , Y 2 4 } , I N = V11 = { A } , 

{ R 5 , Y 2 5 } , 7 1 2 = T/I2 = { A } , 

{ y 6 } , / i 3 = Vi3 = {A } , 
{S (SiX,in8), Y1 -» (S3Y{,in2), Y' ( Y 2 ' , I N 9 ) , F2 ' - > A } 

(horizontal rules) 

y / " , r 4 

U 

U 

^ S i ' 5 3 ^ S 3 
S 2 

* 

s2 

Mi. ' ffîf * 
S 3 

ÎT17 
, 5 2 

* 

S 2 

IU7 
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U {S 2 (-.out), S'3 (..out), S[ (*,out)}(vertical rules), 
R2 = { y " (S3Y(',in3), Y" (y",oui)}(/ior^onia/ rules), 
R3 = {Y'" (S3Y(",in4), Y{" -4 (Y"1, out)}(horizontal rules), 
i?4 = { Y 4 (S3Yi4 ,m5) , Yj4 (Y4 ,out)}(horizontal rules), 
R5 = { y 5 (S3Y?,in6), Y? -» (y5 ,out)} (horizontal rules), 
R6 = { y 6 —f (S3Y6, out)}(horizontal rules), 

Rr = { 5 ^ * 'S2^ ^ ' S s - . ^ } 

Rs = {X Y ' S 3 , S 3 -»• S3Y/ ' , y / ' -»• y " 5 i , Si S i Y / " } 

U {Y/ " Y"'S'2, S'2 S ^ 4 , Y4 Y 4 S" , 5 " -> S iYf } 
U {y l5 -»• Y5Si,', -> S3Yi6, Yj6 ->• (Y6SU out)}(horizontal rules), 

Rq = { Y " ->• (Y2 ,inw),Y2 ->• (X, out)}(horizontal rules), 
R10 = { y ' " (Y2",in 11), y2" (X,out)}(horizontal rules), 
Rn = {y4 —> (Y24,mi2), Y24 —> (X,out)}(horizontal rules), 
R12 = {Y5 ^ (Y2,ini3),Y2 ^> (X,out)}(horizontal rules), 

R13 = { Y 6 ( X , out)}(horizontal rule). 

This system generates a four pronged fork with handle which cannot be gen-
erated even by a PSMG, [13]. Initially, we have the start symbol S in the skin. 
Then, S iY 'S ' 3 Y"SiY" 'S 2 Y 4 SiY 5 S 3 Yi 6 is generated in membrane 8 and in the next 
step, the string Si Y ' S 3 Y " S 1 Y " ' S 2 Y 4 S i y 5 S 3 Y 6 S i is sent to the skin by applying 
the rule Y® —>• (Y 6 Si ,out) . This string then passes through membranes 2,3,4, 5 
and 6 in order, applying rules for Y, Y ' , . . . ,Y 6 and comes back to the skin. This 
cycle can then be repeated or terminated by applying the rule Y' —(Y2,ing). The 
string their passes through membranes 9, 10, 11, 12, 13 and comes back to the 
skin in the form Si S^n + 1 Si S£ S2 S3n Si S32n+1 ̂ . Now vertical rules can be applied 
suitably to get a four pronged fork with width n in between the prongs. 

U 

(vertical rules) 

* * 

* * 

* * 

A four pronged fork with handle 
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5 The Generative Power 
In this section, we compare the power of P systems with picture objects with the 
families of 2D matrix languages. 

Theorem 5.1 A P system with picture objects, having horizontal scanners h\, no 
priorities and using only right linear rules for its horizontal derivations can generate 
any picture which belongs to the families of PS ML, CSML, CFML and RML. 

Proof. Since all the vertical derivations are right linear by definition, and the 
highest family of matrix languages is obtained using a PSMG where the horizon-
tal rules used are of type-0, we prove here that a P system with picture objects 
having horizontal scanners and which uses only right linear rules for its horizontal 
derivations can generate as a result of its horizontal rules any string belonging to 
a type-0 language. A P system with picture objects with the above property can 
then simulate any PSMG, the vertical rules of the P system being the same as 
that of the PSMG. 

Now we construct a P system with picture objects, having horizontal scanners, 
no priorities and using only right linear horizontal rules to generate any type-0 
language by its horizontal derivations. Let G = (N, T, S, P) be a type-0 grammar 
in Kuroda normal form. So the rules in G are of the following forms: 

(1) X -»• AB,X,A,B G N 

(2) XY —>• AB, X,Y,A,B € N 

(3) X a,X e N,a£T 

(4) X A, X G N 

For any X G N, let k be the maximum number of rules of the form XY —K AB. 
For X G N, if there exist nonterminals Xi, X2,..., Xk in G having rules XXx —» a, 
a G N+, | a |= 2, then we associate to X the membrane structure 
Px = U[xlx]xlx [x2x]x2x • • • [xkx]xkx]x- Construct the P system with picture 
objects II having degree less than or equal to n(k + 1) + 2, | N |= n, given by , 
{V,T',p,S',Ml,Mv,Mx,MXlx,...,MXkx,...,MZkz, 

{Ri, 4>), (Rv,<(>), (Rx,<t>), • • •, (RZkz, 4)) 
with 

V = J V U T U T ' U {X',Ax \ A,X'e N,XY A B G P } , 
T' = T UVi, 

M = [l I1x PY • • - ^z [i' ]i' ]i, the number of sub membrane constructs px 
embedded within p depends on the number of nonterminals X 
in the given grammar that have rules of the form XY AB, 

s' = {M, 
Ml = { 5 } , Mx = {/»1 | x G N), Mi = {A}, V other i, 
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Hi = { X | X e i V } , 
h = {a\a£T}U{A' \A£ N}V{AX \ XY ^ AB £ P,A,X £ N}, 

V1 = {Any set \H1nVi=hnV1= 0}, 
Hv = {A'\Ae N}, Iv = {A\AE N}, Vv = {A}, 
HX = H1U{A'\Ae N}, IX = {A\A£ N}, Vx = {A}, 

HYx = {Ax\XY-+ABeP,A,X€N}, IYx={A'\A€N},VYx = {\}, 

R1 = {X ->• a, A | X ->• a, A E P, X £ N, a £ T} 

U {X ( A ' 5 , m r ) j X —• AB E P } U {X (Ax,inx) | XY ->• AB £ P] 

U { X X \ X £ N and has no rules inP}(horizontal rules) 

U {Arbitrary vertical rules}, 

Rv = {A' (A, out) | A £ N}, 

Rx = {Y (B,inYx) | ft?(on element of V, Y) = A x and XY^ABeP} 

U {A'-*(A,out)\AeN}, 

RYx = ( i4 ' ,out)} . 

Initially, the start symbol S is in the skin membrane. Rules in G of the form 
X —> a, A where a £ T are retained as such in Ri. A rule of the form X —> AB is 
simulated by applying X (A'B,iny) where A' £ I\. This makes the rule right 
linear with respect to the skin membrane. The rule A ' —> (A, out) is then applied 
to the string in membrane 1'. Thus the rule X —> AB in G is simulated correctly 
and the string is back in the skin membrane. To simulate the rule X Y - » AB, 
the rule X —> (Ax,inx) is applied first. In membrane X , we have the horizontal 
scanner hi. The rule Y —> ( B , i n Y x ) is now applied only if the element to the 
left of Y in the string is Ax- The scanner scans the whole string and if there is 
atleast one configuration in which ft?(ai„, Y ) equals Ax, that occurrence of Y is 
replaced and the string moves to membrane Yx. Here, we convert the Ax into 
A' and send the string out. Back in membrane X , the rule A' —> (A, out) is 
applied and the string goes back to the skin membrane after simulating the rule 
X Y AB correctly. Proceeding in this way, we get a string over Ii in the skin 
membrane (Corresponding to getting a string over T in G). Now any vertical rule 
can be applied to generate a picture. Thus, any picture generated by the matrix 
languages PSML, CSML, CFML and RML can be generated by a P system using 
horizontal scanners and right linear rules for its horizontal derivations. • 

Theorem 5.2 A P system with picture objects, no scanners, no priorities and 
using context free replicated rules for its horizontal derivations can generate any 
picture belonging to the families of PSML, CSML, CFML and RML. 

Proof. It is proved in [3] that any string can be generated by a replicated 
rewriting P system with no priorities. In proving this result we considered a matrix 
grammar G = (N, T, S, M, F) in the binary normal form with matrices m i , . . . , m^ 
of type 2 or 4 and m k + 1 , . . . , m/ of type 3 and constructed a P system having the 
membrane structure /z = [i [2 k • • • U ]* U+i]*+i — [/ ]i li-
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Here, we construct a P system with picture objects having the membrane struc-
ture [o p ]o, with H0 = Hx = N,Hi = N U {Xi \ X e N, k + 1 .< i < I}, Hi = 
N | 1 < i < k,Vj = 0 , j 0 , I j = T,Vj, where T and N are respectively the 
set of terminals and non terminals of the given grammar G. The set Vo can be 
chosen to be disjoint from Ho and Io and the vertical rules in the skin membrane 
can be chosen arbitrarily. M i = { S } , the start symbol of G, Mi = '0 , i ^ 1. We 
introduce the horizontal rules S XA in membrane one and {A —> A \ A £ N} 
in the skin membrane; the horizontal rules in the rest of membranes are the same 
as in [3]. The strings reaching membrane zero are the strings which were sent out 
of the system in the above lemma. If a string which is not purely over T* (here 
J j ) reaches membrane zero, the rule A -> A is applied for all nonterminals A oc-
curring, in the string and hence the computation never stops. Only when a string 
over II reaches the skin membrane, can the vertical rules be applied. In this way, 
any picture belonging to the families of PS ML, CSML, CFML and RML can be 
generated. • 

Theorem 5.3 A P system with picture objects having priorities for horizontal 
rules, no scanners and using context free rules for horizontal derivations can gen-
erate any picture belonging to the families of PSML, CSML, CFML and RML 
with just 3 membranes. 

Proof. We recall the result RE — ERP2(Pri) proved in [2]. In proving this result 
we consider a matrix grammar G — (N, T, S, M, F) in the binary normal form with 
matrices m i , . . . , mjt of type 2 or 4 and nik+i, • • • ,mi of type 3 and construct a P 
system having the membrane structure p = [i [2 ]i-

Here, we construct a P system with picture objects having the membrane struc-
ture [OM]O, Ho = HI = H2 = N, I0 = h = I2 = T, Vq = any set disjoint from 
H0 and J0, Vi = V2 = {A } , M 0 = M 2 = { A } , M X = { S } , the start symbol of G. 
The horizontal rules and priorities for membranes one and two are the same rules 
and priorities used in the proof of the theorem RE = £ i ? P 2 ( P r i ) . As in the above 
theorem, we add rules {A A | A S HO} for all nonterminals in the skin mem-
brane. This ensures that vertical derivations start only from a string over 7q . The 
vertical rules may be chosen arbitrarily. This way, any picture in the families of 
PSML, CSML, CFML and RML can be generated by a 3-degree P system with 
picture objects. • 

6 P Systems and OTA 
In this section we simulate the action of an OTA using P systems with picture 
objects. We prove that given a 2 DOT A recognizing or not recognizing a given 
picture, there exists a P system with picture objects that works exactly in the 
same way as the 2 DOT A. " 

Theorem 6.1 Given a 2DOTA recognizing or not recognizing a picture, we can 
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construct a two degree P system with picture objects having scanners which can 
simulate the 2D0TA. 

Proof. Let A = (%,Q,qo,F,6) be a 2 DOT A and let p be a picture of size 
my. n. A recognizes p if there exists a run on p such that the state associated to 
the position (m, n) is a final state. 
We construct a two degree P system with picture objects which simulates A. 
Let 

n = [2 h ] 1 > { 1 {PJ Co, h\, h2,..., hm,V\,V2,..., vn}, (Ri, <ft), (R2, P2)) 

where p is the given picture of size m x n for which transitions of the 2 DOT A 
are defined, hi,..., hm and vi,... ,vn are the horizontal and vertical scanners in 
membrane two, which depend on the size of the given picture p. 

V = E u g u { 7 i , 7 2 , i i , d , t } u { d 9 | g £ Q } U { c j | 0 < i < m + n) U { M i } , 
u = { t , 7 i , 7 2 , d , M i } U {dq,Ci | q £ Q, 0 <i<m + n}, 
S1 = {hx,h2,... ,hm,vi,v2,. • • ,vn}, 

Hi h=V1 = {A } , 

H2 h=V2 = {A} , 

Ri - { i i -* (t, out)}(transition rule), 

i?2 - {co ci7! ,Ci -> ci+i,l < i < m + n - 2 , c m + n _ 2 -»• c m + n _ i d } 
u •,{7l 72,72 7 l , t d iK (p m - l , „ , p m . „ ) , C(Pm,»-l,P™,»),Pm,»)} 
U {dq -t ti5 | q £ F} U {dq -» f | q $ F] (transition rules). 

For l < j < m + n— 1, 1 <i <m, scanner rules: 

hCi(Pi,j-i,Pi,j) 
5(uj(pi-i,j,p»j), if vPj(Pi-i,j,Pi,j), ^(Ptj-^Pt.j) / A 
Hqo, / i f (p ' i , j - i ,Pi. j ) ,Pi, i ) if Vj(Pi-i,j,Pi,j) = A, / i f (Pi , i - i ,P», i ) ^ A 
6(Vj(Pi-i,j,Pi,j),Qo,Pi,j) if hi(Pij-i,Pi,j) = ^vj(Pi-i,j,Pi,j) x 

. $(qo,qo,Pi,j) otherwise 

p2 = {h i -1 > hi ,Vi - i > Vi Vi; 71 72 > all scanning rules-, 

~ > / d «S(Pm-l.„ , P m . „ ) , h*m(p Pm.„), Pm.„)' 
\ all rules with LHS cj and h1(piti-i,pij) 

Ci -> Ci+i > all rules with LHS hj(pjti-i,pjti) such that i + 1 ^ j + /}. 

We start the proof by giving the details of the rules applied during the first few 
steps. 
Step 0 :We have an mxn picture and a counter Co in membrane two. 
Step 1 : the scanners h\ and v\ start working and Co —> C171 is applied. So we have 
in the second membrane / i i (A,pi i i ) and ^i (A,pi i i ) in addition to c\ and 71. 
Step 2 : the rules 7J - » 72, ci c2 and ft-f (A,pi,i) -¥ S(q0,qo,pi,i) are applied. In 
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this step, we assign to pthe state ¿(<70,9o>Pi,i) of the 2DOTA by applying the 
rule hl(X,phi) 5(q0,q0,p1A). 
Step 3 : 72 71 and scanning rules /ii(pi,i, p1>2), ui(pi,i, p2 , i ) , h2{\,p2ti), 
W2(A,pi,2) are applied. 
Step 4 : 71 72, c2 c3 , / i î (pi , i ,pi ,2 ) % o , / i ï ( p i , 1 , ^ 1 , 2 ) ) and hc2(\,p2,i) 
¿(ui(Pi,1)P2,i),90,^2,1) are applied. In this step, states are assigned to the next 
diagonal elements pi j 2 and p2,i depending on h\{pit i ,Pi,2) and vf(pi , i ,p2 , i ) - That 
is, depending on the state stored at the position to the left of (top of ) p\t2 and 
i>2,l-
Clearly, this is the same way the 2D OTA works; assigning states to diagonal ele-
ments depending on the states of the elements at the top and left. 

The rules 71 72 and 72 —> 71 characterize the assigning phase and scanning 
phase respectively. If the rule 71 —> 72 is applied in a step, then values are assigned 
to the current elements scanned. No scanning is possible in this step due to the 
priorities. Similarly, when 72 —> 7 1 is applied, no values can be assigned to any of 
the elements; only the scanning takes place. The scanners are activated in the order 
h\,h2,... and v\,v2, Due to this, at each step the elements under scan are the 
elements falling along a diagonal and the previous elements scanned by hi and Vj 
are respectively the elements to the left and top of the currently scanned elements. 
This helps in assigning states to the currently scanned elements by referring tb the 
states at the top and left positions. 

In the fcth assigning phase, we apply ck —> ck+1 and assign states to positions 
(i,j) for which i+j — 1 = k. Note that the priority Ck c^+i > all rules with LHS 
h i ( p i j - i , p i j ) for which i + j ji k + 1 ensures that at each step only the elements 
along the diagonal are assigned values. Proceeding in this manner, we assign to the 
element at the (m,n)th position the state 5(u^(pm-i,n,Pm,n),ftm(Pm-i-,n,Pm,n))-
If this happens to be a final state, the rule dq t\5 is applied and the membrane 
dissolves. In the next step, the rule t\ —> (t,out) is applied. Thus, if the given 
picture is recognized by the 2 D O T A , a t will be sent out and thé system halts. 
Otherwise, the rule dq —> f is applied and the computations never halt. • 

7 A Variant of P Systems with Picture Objects 
In this section, we consider a variant of P systems with picture objects. Operations 
like reflection, rotation, magnification on an m x n picture produce another picture. 
To achieve the effect of such operations on a picture using membranes, we define 
a new class of P systems with picture objects. Because of the form of the basic 
operation it uses, we call such a system a block-rewriting P system. As we will see, 
this variant is useful for exemplifying the power of membrane structures. Formally, 
we give the definition as follows: 

Definition 7.1 A block-rewriting P system with picture objects of degree n is a 
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construct 

II = (V,T,p,M1,...,Mn,R1,...,Rn) 

where 

• V is the total alphabet of the system; 

• T is the output alphabet; 

• p. is the membrane structure; 

• Mi,..., Mn are sets of pictures initially present in the regions 1,... ,n of p; 

• Ri,l < i < n are rules associated with the regions 1,... ,n of p; 

The objects considered here are pictures of the form . 

# # # 
# a n • • din # 
# a 21 • • 0.2n # 

# Oral .. amn # 
# # # 

Rules 

are applied to sub pictures of any given picture. We consider a sub picture of a 

picture to be a rectangular block of the form 

Pi 
P2 

Pn 

or P i - P n ,Pi e ( V u { # } ) * , 

of size i x n or n x 1. Any block which contains the boundary marker # at one 
or both its ends is called an end block. We apply rules to blocks of size 1 x n or 
n x 1 replacing them by blocks of size l x m o r m x l , m > n . For blocks which are 
not end blocks, the replacement is made with a block of the same size, and for end 
blocks the replacement is done with blocks of the same or higher dimension. This 
is to take care of the shearing effect which occurs otherwise. For an end block, the 
increase in length of the resultant block does not affect the positions of any of the 
symbols in the picture. For instance, consider the block 12 . . . n # 
12 . . . n # - » a i . . . a n + i # # . On applying this rule, the block 
picture is replaced by 

12 ...n# 

and the rule 
in the 

aiü2... an+1 and # # is placed next to that, increasing the 
column size of the picture. Since the increase was made at the end, the positions 
of all other symbols in the picture are not distorted. Similar is the case when 

applying such rules to 

# 1 
1 

or 
n 

n # 

or. # 1 2 . . . n . As in the case of rewriting P 

systems, we can attach targets to the rules. The rules are applied in a maximally 
parallel manner, that is, we replace all blocks in the picture for which there are 
rules available in the given region. If any two rules involve overlapping blocks 
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say for instance, #ai,iûi,2 • • • Oi,n and then we choose one of the blocks 

nondeterministically and apply the rule. Assume that we rewrite in this way n 
blocks, by rules which have associated targets of the form here, out, inj of several 
types and that there are ntar targets of each type. Then, the picture obtained by 
rewriting is sent to the membrane indicated by the target with the maximal ntar 

(the target which appears the maximal number of times in the used rules). The 
result of a computation consists of the set of pictures over T* sent out of the skin 
membrane at the end of a halting configuration. We illustrate the effectiveness of 
this system with a few examples. 

Example 7.1 Consider the P system 

n = {V,T, [xlalsUls IBMSMI, M i , • •., MB, Ru . . . , R5) 

with 

V = {a, b, c, d, # , # ' , # " , #1 , #2 , #a , #6, # c , #!>}, 
T = {a,b,c,d,#}, 

# " # # # ' 

# C d # > M i - W l , 
# " # # # ' 

= {##' (###1 ,in2),b# ^ (bb#b,in2),d# -»• (dd#d,in2)} 
u { # ' - > ( # , out). # " - > ( # . o u i ) , # 6 

c \ i d 

M i = 

Ri = 

Ri = 
c ->• 
# 

d 
m 3 

U # 

C , J I D , 

# c / \ #d 

# \ » • / # d 

# , in3 J , * I #d , in3 

#2 / \ #1 
U { # a " • ( # , OUt), #c ->(#, OUi)}, 

•Rs = { # a - > ( # a a a , i n 4 ) , # c - > - ( # c c c , m 4 ) , # " # - > • ( # 2 # # , i n 4 ) } 
# c / # c 
# 3 I # " , oui 

# b 
b 
b 

u { # 2 # c ( # 3 # c # c , m 4 ) , # 3 (#3,out), 

Ra = m 5 ins 
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U 
# 2 
# a 

# 3 # 1 
#6 

# a , 
# a 

# 3 ( # " 

#a V #a , OUt 

R s = { # d # l ( # d # ' , O W i ) , # 6 # 4 ( # t # ' , O U < ) } . 

# 4 

#fc , in5 

#6 

U 

Clearly, this system scales up the given picture (excluding the boundary marker #J 
factors of 2. Hence, the system generates all pictures of dimension 2" x 2 n , n > 1 

oi;er a, £>, c, d. 

Example 7.2 Consider the P system 

IL = (V,T,l1[2}2}1,M1,M2,R1,R2) . 

V = { . , * , # , # ' , $ } , 
T = {.,*,#;$}, 

# # # # # # ' 
$ . * . . $ 

. * ' . . $ 

. * . . • . $ ' 
$ . * * * $ # # # # # # ' 

= { . $ ( . . $ , o u i ) , . $ ( , . $ , i n 2 ) , * $ ( * * $ , o u i ) , * $ ->• ( * * $ , m 2 ) } 

u { # # ' ( # # # , o u i ) , # # ' ->• ( # # # ' , ¿ n 2 ) } , 

M I = A, M 2 = 

= 

u 

u 

# u 
$ ( 5 # U 

(* * 

* 

# •k 
\ # 

out 

out 
# 

out 

(• 

V # 

M 
out 

out 
/ 

Initially, membrane two contains a picture with an 'L' shape engraved in it. The 
system sends out pictures after enlarging the 'L' in both directions. Thus this system 
is capable of producing pictures with L's of any size engraved in it. 

Example 7.3 Consider the P system 

N = ( V , - T , [ 3 [ I [ 2 1 1 1 3 J M I J A , A , R \ , R 2 , R 3 ) 
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with 

V = 

T = 

M i = 

Ri = 

u 
u 
u 
u 

R2 = 
u 
u 

R3 = 

{ $ , $ ' , $ " , # , o, a', a", b, b', b", c, c', c"}, 

{$,#,a,b,c}, 

# # # # # 
$ # a b c 
$ # b c a 
$ # c a b 
# # # # # 

$ # # $ , { $ x $ 

# 
# 
# 
# 

'$* I x € { a ^ c } } ^ 1 2/$* I a;,l/ € {ß ,ö ,c} } 
$x# {x'#,in2) I x £ {a,6,c}}U{$V -> (y'x",in2) \x,y£ {a,b,c}} 

$'x" -> I x e {a, fe, c}} U {$ "x " x "$ " I x € {a, b, c}} 
$"x Î'S31 I x G {a, b, c}} U {$"x' x'$" | x € {a, b, c}} 
$ " # - 4 ( # $ , o u i ) } , 
{yx' -> $ y x" I X, y 6 {a, b, c}} U {x$w -> $yx | x, y 6 {a, 6, c} } 
x"$y ( x " y , o u t ) I x,y G {a, 6, c}} U {$'x' ->• (%'x",out) \ x € {a ,b,c}} 

-)• ($'x", out) I x S {a, b, c } } } , 
{x" (x ,out ) I x 6 {a, 6, c}} } . 

Given a picture or a set of pictures in membrane one, the system outputs those 
pictures which are obtained from the initial ones by taking a vertical reflection. In 

our case, because we start from 

# # # # # # 
$ # a b c 
$ # b c a 
$ # c a b # 
# # # # # # 

# # # # # # 
# c b a # $ 
# a c b # $. 
# b a c # $ 
# # # # # # 

8 Conclusion 
We have introduced a variant of P systems having pictures as the data structure. 
It has been shown that this variant is able to generate the family PSML with no 
priorities, scanners and no bound on the number of membranes. The family PSML 
can also be generated by two other variants of this system: one with replicated 
rewriting as the underlying control structure with no bound on the number of 
membranes, another one having three membranes and using rewriting and priorities 
among the rules. A different type of P systems with picture objects is defined in 
section 7, which is motivated by the idea of simulating an operation on a picture 
using membrane structures. A further study of this variant is worthwhile. 
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