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On isomorphic representations of generalized 
definite automata*" 

Ferenc Gécseg t Balázs Imreh1' 

To Professor Magnus Steinby on his 60th birthday 

Abstract 
In this paper, the generalized definite automata are studied. In particular, 

systems which are isomorphically complete for this class with respect to the 
»¿-products are characterized. 

1 Introduction 
Generalized definite languages and recognizers were introduced by Ginzburg in [5]. 
Generalized definite automata were also studied in the works [2], [7], [8]. This class 
is so wide that the classes of definite and reverse definite automata are its proper 
subclasses (see [7]). Here, we deal with the isomorphic representations of the gen-
eralized definite automata with respect to the «¿-products. In particular, necessary 
and sufficient conditions are given for systems of automata to be isomorphically 
complete for this class with respect to the «¿-products. The paper is organized as 
follows. After the preliminaries of Section 2, we recall the characterizations of the 
subdirectly irreducible definite, reverse definite, and generalized definite automata 
in Section 3. Then we describe the isomorphically complete systems for the class 
of all generalized definite automata with respect to the «¿-products. 

2 Preliminaries 
In what follows, X always denotes a finite alphabet, and as usual X* denotes the 
set of all words over X . For every nonnegative integer j , let X^ = {w : w 6 
X* and |iy| = j } , where |w| denotes the length of the word w. 

By an automaton we mean a pair A = ( A , X ) , where A is a finite nonempty 
set of states, X is a finite nonempty set of the input symbols, and every x 6 X 
is realized as a unary operation xA : A -» A. For any word w = x\ ... xs £ X*, 
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wA : A -»• A is defined as the composition of the mappings xA,... ,xA. If A is 
known from the context, we write simply aw for awA. 

By the definition above, an automaton can be considered as a unoid. There-
fore, such notions as subautomata, congruences, homomorphisms, isomorphisms, 
embeddings, direct products, subdirect products, subdirect irreducibility can be 
defined in the usual way (see e.g. [1] or [6]). We shall use a particular isomor-
phism defined as follows. Let A = ( A , X ) and B = ( B , Y ) be two automata, 
fi a one-to-one mapping of A onto B and r a one-to-one mapping of X onto Y. 
Then the pair fi, r of mappings is called an (A, X)-isomorphism of A onto B if 
axAp, = afi(xr)B is valid, for all a € A and x £ X. In this case, it is said that A 
and B are (A, X)-isomorphic. 

We introduce some particular congruence relations which we need in the sequal. 
For this purpose, let A = (A, X) be an arbitrary automaton with at least three 
states. A congruence p of A is called elementary if p = wa U {(a, b), (b, a) } for two 
distinct states a,b £ A, where lja denotes the diagonal relation, i.e., l>a = {(&jO.) : 
a £ A}. Let us denote by Cone(A) the set of all elementary congruences of A . 

Now, let j > 0 be an arbitrary integer. Let us define the relation pj on A by 

apjb if and only if ap — bp, for all p £ X-*. 

It is easy to see that for every nonnegative integer j , pj is a congruence relation of 
A . 

For every integer j > 0, let us define the state set Aj as follows: 

j40 = {a : o, € A and ax = a, for all x £ X } , 

Aj+1 = {a : a £ A and ax £ Aj, for all x £ X}. 
Then Aj = ( A j , X ) is a subautomaton of A provided that Ao 0, and the Rees 
congruences defined by 

aojb if and only if a, b £ Aj or a = b 

are congruence relations of A . 
For any integer k > 0, an automaton A = ( A , X ) is called weakly k-definite, if 

\Ap\ = 1, for every p £ Xk. Moreover, it is said that A is definite if it is weakly 
/c-definite for some integer k > 0. In particular, if a weakly /c-definite automaton 
A has such a state a*, called dead state, that a*x = a*, for all x £ X, then A is 
called a nilpotent automaton. In this case Ap = {a*} holds, for every p £ Xk. 

For any integer k > 0, an automaton A = (.4, X) is called weakly reverse k-
definite if apx = ap is valid, for all a £ A, p £ Xk, and x £ X. A is reverse definite 
if it is weakly reverse fc-definite for some k > 0. 

Following [8], for any pair of integers h, k > 0, an automaton A = (A, X) is 
called weakly (h,k)-definite if aupv = auv is valid, for all a £ A, u £ Xh, v £ Xk, 
and p £ X*. It is worth noting that for every pair of integers hi > h, k' > k, an 
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automaton A is weakly (h!, A;')-definite if it is weakly (h, fc)-definite. An automaton 
is called generalized definite if it is weakly (h, A;)-definite for some integers h, k > 0. 
Let us denote by Q the class of all generalized definite automata. By the definitions, 
one can obtain the following observation. 

Lemma 1. If A £ Q and B is a homomorphic image of A, then B 6 G as well. 

We recall here the notion of «¿-products (see e.g. [3], [4]). This product family 
is a natural generalization of the serial connection or cascade product of automata. 

Let i be an arbitrary nonnegative integer. Let us consider the automata A = 
(X, A), Aj = (Xj, Aj), j = 1 , . . . , m, and let $ be a family of feedback functions 
below 

ipj : Ai x ... x Aj+i-x x X ^ Xj, j = 1,..., m. 

It is said that A is the on-product of Aj, j = 1 , . . . ,m, if the following conditions 
are satisfied: 

(1) A = Y[^Aj, 

(2) for all ( a i , . . . , am) £ A and x £ X, 

( a i , . . . ,am)xA = (aixAl,... ,amxAm) 

is valid where Xj = <Pj{a\,..., cij+i-i , x), for all j 6 { 1 , . . . , m } . 
For the «¿-product introduced above, we use the notation 

771 

A = Y[Aj(X,*). 
j=i 

When the component automata A j are equal, say A j = B, j — 1 , . . . , m, then 
it is said that the «¿-product A is an «¿-power of B and it is denoted by B m ( X , $ ) . 

In particular, if each of the feedback functions is independent of the states, i.e., 
if the feedback functions have the forms <pj : X —> Xj, j = 1 , . . . , m , then the 
«¿-product is called quasi-direct product. It corresponds to the parallel connection 
of automata where the sign transformation is allowed. 

Lemma 2. If an automaton A can be embedded into an ao-product of automata 
Aj, j = 1,... ,k, moreover, each automaton Aj can be embedded into an ao-product 
of automata Ajt, t = 1 ,...,m,j, then A can be embedded into an ao-product of 
automata A jt, t = 1 , . . . ,m,j\ j = 1 , . . . ,k. 

Let N be an arbitrary class and M a system of automata. It is said that M. is 
isomorphically complete for Ai with respect to the «¿-product if for any automaton 
B £ M, there exist automata Aj £ M, j = 1,... ,m, such that B can be embedded 
into an «¿-product of the automata Aj, j = 1 , . . . ,m. 
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3 Isomorphic representations 
We shall use the subdirectly irreducible definite, reverse definite, and generalized 
definite automata, whose charcterizations can be found in [2]. 

Proposition 1 ([2]). A definite automaton A with |A| > 3 is subdirectly irreducible 
if and only if Cone(A) = {pi}. 

To characterize the subdirectly irreducible reverse definite automata we need 
some preparations. 

For any m > 2, let Xm = {xi,..., xm} and define the sets A(m, k), k = 0 , 1 , . . . , 
inductively so that 

A(m, 0) = { 0 ,1 } , 

A(m, 1) = {0 ,1 } U { ( ¿ i , . . . ,im) £ {0, l } " 1 : iT ± is for some 1 < r < s < m}, 

and for any k > 1, 

A(m,k + 1) = 

A(m,k) U{(H,...,im) £ A(m,k)m : {»!,... ,im} n (A(m, k) \ A(m, k - 1)) ^ 0} . 

For any m > 2 and k > 1, we define an automaton A ( m , k ) = (A(m,k),Xm) as 
follows: 

(1) for both i £ A(m, 0) and x £ Xm, let ix = i\ 

(2) for all ( ¿ i , . . . ,im) £ A(m,k)\A(m,0) andz s £ Xm, let ( ¿ i , . . . ,im)xs = is. 

It is clear that for any m> 2 and k > 1, A(m, k) is a subautomaton of A ( m , k + 
1). 

We recall that an automaton A = (A, X) is input reduced if xA ^ yA for all 
pairs of distinct input symbols x,y £ X. 

Proposition 2 ([2]). Let A = ( A , X ) be an input reduced automaton such that 
> 3 and — m. If A is subdirectly irreducible and reverse k-definite, but not 

nilpotent, then m > 2, k > 1 and A is (A, X)-isomorphic to a subautomaton of 
A (m,k). 

From this statement the next observation follows immediately. 

Corollary 1. If A (|.4j > 3) is subdirectly irreducible and reverse k-definite, but 
not nilpotent automaton, then there is an m > 2 such that A can be embedded into 
a quasi-direct product of A(m, k) with a single factor. 

Proposition 3 ([2]). A generalized definite automaton A with at least three states 
is subdirectly irreducible if and only if Cone(A) = [p\} or Cone(A) = {ao}. 

We also need some particular automata. Let R = ( {0 ,1 } , { i , j / }) denote the 
two-state reset automaton defined by 0a;R = l z R = 1 and 0 y R = l y R = 0. 
Finally, for every positive integer s > 2, let Is = ( { 0 , . . . , s } , {xi,..., z s } ) denote 
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the automaton defined as follows: for all i £ { 0 , 1 , . . . , s } , i ^ s — 1 and Xj £ 
{xi,... ,xs}, let 

ixi. = ii + 3 if i + j < s , 
i \ s otherwise, 

(s - l)x]> = s - l . 

It is easy to see that each of the automata defined above is generalized definite. 

Now, we are ready to characterize the isomorphically complete systems for Q. 

Theorem 1. A system A4 of generalized definite automata is isomorphically com-
plete for Q with respect to the ao-product if and only if there exists an automaton 
R' £ M. such that R Can be embedded into a quasi-direct product of R ' with a 
single factor, moreover, for every positive integer s >2, there exists an automaton 
Vs £ M having at least s + 1 distinct states denoted by 0 , 1 , . . . , s, such that for every 
i < j £ { 0 , 1 , . . . , s } , {i, j} ^ { s — 1, s } , there exists an input symbol Xij of with 
ixn = j, and there is an input symbol x of I's with sx = s and (s — l)x = s — 1. 

Proof. To prove the necessity of the conditions, let us suppose that M is an 
isomorphically complete system of generalized definite automata for Q with respect 
to the ao-product. Since R £ Q, there exist automata Aj = (Aj,Xj) £ M, 
j = 1 , . . . ,m, such that R can be embedded into an ao-product n^Li Aj(X, 
Then it is easy to see that R can be embedded into a quasi-direct product of some 
A j with a single factor. Similarly, by our assumption, I s can be embedded into an 
ao-product UT=i Aj{X, $ ) of automata in M, since Is £ Q. Let p denote a suitable 
embedding and let tp, = (ati,..., atm), t = 0 , . . . , s. Moreover, let us denote by r 
the least integer for which a s _ i , r asr. 

First we show that aiT £ { a s _ i > r , a s r } , for any 0 < i < s — 1. Contrary, 
let us suppose that CLir — st 

for some 0 < i < s — 1. Then there exists an 
input symbol y — ipr(an,... , Q-i^T—1) %$—1 — i) £ Xr such that asry = airy = a s _ i , r . 
On the other hand, by our assumption, a s _ i ) r z = a s_i t T and asrz = asr, where 
z = ipT(asi,..., a s , r _ i , x\). Therefore, asrzhyzk = a5_i)T. and asrzhzk = asr is 
valid for every pair of integers h, k > 0. This contradicts the fact that A r is a 
generalized definite automaton. Consequently, air / asr, for any 0 < i < s — 1. 
One can prove in similar way that a ^ ^ a s - i > r , for all i £ { 0 , 1 , . . . , s — 2} . 

Next we show that the elements atr, t = 0 , 1 , . . . ,s — 2, are pairwise different. 
Contrary, let us suppose that for some integers 0 < i < j < s — 2. Since 
i < j and p, is an embedding, there exists an input symbol x £ XT such that airxh = 
air holds, for every nonnegative integer h. Moreover, there are such input symbols 
y,xi,x2 £ XT for which airy = as_2,r, as-2,rii = a s - i , r , and as_2)T.x2 = asr. 
Finally, asrz = asr and as-i>rz — as_\tT, where z = ipr(asi,... , a s , r - i , x i ) again. 
Then airxhyx\zk — as_i i 7 . and a.irxhyx2Zk = aS i r hold, for every pair of integers 
h,k > 0, which contradicts the fact that A r is generalized definite. Therefore, 
air ajr, for any integers 0 < i < j < s — 2. By the two observations given above, 
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we obtain that the elements ао,Г) air, • • • ,QSt are pairwise different. This results in 
that A r can be considered as the required automaton IJ.. 

In order to prove the sufficiency of the conditions, let us suppose that Л4 has 
the required properties. We prove that M. is an isomorphically complete system 
for Q with respect to the ao-product. For this reason, let us consider an arbitrary 
generalized definite automaton A = (A, X ) of n states. We prove by induction on 
n that A can be embedded into an ao-product of automata in M . If n = 1 or 
n — 2, then the statement is obviously valid. Now, let n > 2 and suppose that 
the statement is valid for every m < n. If A is subdirectly reducible, then it can 
be embedded into a direct product of generalized definite automata having fewer 
states than n. By our induction hypothesis, each component automaton of this 
direct product can be embedded into an ao-product of automata in M , and thus, 
by Lemma 2, A can be also embedded into an ao-product of automata in Л4. 

Let us suppose now that A is subdirectly irreducible. Then, by Proposition 
3, Cone(A) = { p i } or Cone(A) = {сто}. We distinguish two cases depending on 
Con e ( A ) . 

Case 1. C o n e ( A ) = { p i } . Let сф d £ A with cpid for some states c ,d £ A. 
Then, by the definition of p\, cx = dx, for all x £ X. Let Xj = {x : x 6 
X and cx = c } . Moreover, let 0, 1 and u, v denote the states and the input 
symbols of R ' for which Ou = lu = 0 and 0w = lw = 1 hold. Let us consider the 
ao-product A / p i x R ' ( X , Ф) defined as follows. For all a g A \ {c , d} and x 6 X, 
let 

H : d (/>i(c),l), 

where p\ (c) denotes the equivalence class containing c. Then it is easy to see that p. 
is an embedding of A into the ao-product A / p i x R ' ( X , $ ) , and thus, our induction 
hypothesis and Lemmas 1 and 2 imply that A can be embedded into an ao-product 
of automata in M . 

Case 2. Cone(A) = { c o } . Let c ^ d £ A with caod. Then cx = c and dx = d, 
for all x £ X. Let us suppose that A is weakly (h, fc)-definite for some h > .0, 

<P 1 (ж) = x 

and 

Let us define the mapping p,: A -> А/p\ x { 0 , 1 } by 

p,: a ( { a } , 0 ) , for all a € A \ {c,d}, 

•{j. : с [pi (c), 0), 
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k > 0. For all a £ A and u £ Xh, let us define the subautomaton Aau — (4a« , X), 
where Aau = {aup : p £ X * } . Then A a u is a weakly /c-definite automaton. Indeed, 
let v £ Xk be an arbitrary word and a1 £ Aau. Then there is a word p £ X* such 
that a' = aup. Since A is weakly (h, /c)-definite, a'v = aupv = auv is valid for all 
o! £ AaUi and hence, Aauv = {auv}. 

Now, we distinguish two subcases depending on the subautomata Aau. 

Subcase 1. There exist a state a £ A and a word u £ Xh such that Aau is 
not singleton. Then Aau is a subdirectly irreducible definite subautomaton of A , 
since for any congruence 7 of A a u , the relation 7 U u>a is a congruence relation of 
A . If \Aau\ > 3, then by Proposition 1, Cone(Aau) = { p i } , where p[ denotes the 
corresponding relation belonging to Aau. Then there are states e,f£ Aau such 
that ex — fx, for all x £ X. Then it is easy to see that the relation 6 defined on A 
by 

a'Qa" if and only if {a ' , a " } C { e , / } or a' = a" 

is an elementary congruence of A distinct from <70 which contradicts our assumption 
that Cone(A) = {cto}. If |Aau| = 2, then Aau = { e , / } for some states e, / £ A 
and ex = fx is valid, for all x £ X. Then one can define 0 in the same way as 
above, and 0 is an elementary congruence of A which results in a contradiction 
again. Consequently, this subcase is impossible. 

Subcase 2. For all a £ A and u £ Xh, Aau is singleton. Then, aux = au, 
for all u £ Xh and x £ X, and hence, A is weakly reverse /i-definite, moreover, 
by Cone(A) = {uo} , A is not nilpotent. Since A is subdirectly irreducible, by 
Corollary 1, A can be embedded into a quasi-direct product of A ( m , h) with a single 
factor for an integer m >2. Without loss of generality, we may assume that h is the 
least integer with this property. Let r denote a suitable embedding of A into the 
quasi-direct product of A ( m , H) with a single factor. Let BI = (AT fl A ( m , z ) ) r _ 1 , 
i = 0 , 1 , . . . , h. Since r is an embedding, it is easy to show that 

(3) {c , d} = B0 C B1 C . . . C Bh = A 

(4) BiX A C B ^ 1, for all 1 < i < h and x £ X. 

Let us consider now the ao-product A/cr0 x I 'A + 1 (X, $ ) defined as follows. For 
all a £ A \ {c , d} and x £ X, let 

ipi(x) - x, 

if a £ Bj \ Bj-i and axA £ Bi\ £¿ -1 
for some 1 < i < j < h, 
if a 6 Bj \ Bj-1 and axA = c for some 1 < j <h,-
if a £ Bi \ B^ 1 and axA = d for some 1 < j < h, 

<P2 (a,x) -
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where x' denotes now the input symbol of I^+i for which hx' = h and (h + \)x' = 
h + 1 hold. By (3) and (4), the feedback functions are well-defined. 

Let us define the mapping p. of A A/a0 x { 0 , 1 , . . . ft + 1} as follows. For every 
a € A \ {c, d}, let 

p : a ( { a } , h — j) if a € B j \ B j - i for some 1 < j < h, 
({c,d},h), 

p,: d ( { c, d}, h + 1). 

Now, it is easy to check that p, is an embedding of A into the Qo-product under 
consideration. Then, the induction assumption and Lemmas 1 and 2 yield that A 
can be embedded into an ao~Pr°duct of automata in M . This ends the proof of 
the statement. 

From Theorem 1, the next observation follows. 

Corollary 2. There is no finite system M. of generalized definite automata which 
is isomorphically complete for Q with respect to the ao-product. 

The following statement shows that we can obtain finite isomorphically complete 
systems by allowing automata as components which are not necessarily generalized 
definite. 

Theorem 2. A system M. of automata is isomorphically complete for Q with 
respect to the ao-product if and only if M satisfies the conditions below: 

(1) there exists an automaton R' E Ai such that R can be embedded into a quasi-
direct product of R' with a single factor, 

(2) (a) for every positive integer s > 2, there exists an automaton I's £ M. 
which has s + 1 distinct states, denoted by 0 , 1 , . . . , s, such that for all 
i < j £ { 0 , 1 , . . . , s } , {¿, j) yi {s — 1, s } , there exists an input symbol xij 
ofI's with ixij = j, and there is a further input symbol x of I's such that 
sx = s and s — Ix = s — 1, 

or 

(b) there exists an A € M which has a state a and not necessarily distinct 
input symbols u,v,w,z such that au = a, av ^ aw, avz = av, and 
awz = aw. 

Proof. To prove the necessity of the conditions, let us suppose that M is isomor-
phically complete for Q with respect to the ao-product. The necessity of (1) follows 
from the proof of Theorem 1. 

Now, we prove that (2)(a) or (2)(b) is valid for M. For this purpose, let us 
suppose that (2)(a) is not valid. Then there is a positive integer So > 2 such 
that Ij0 £ M . By our assumption, ISo can be embedded into an ao-product 
I l /Li of automata in M since ISo 6 Q. Let p denote a suitable isomor-
phism and let tp. = ( a n , . . • ,atm), t = 1,... ,sq- Let r be the least integer for which 
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a S o _ i ! r aSo,r• Let us observe that if the elements a o r , a i r , . . . ,aS 0 : r are pairwise 
different, then Ar can be considered as I'So which is a contradiction. Consequently, 
there are i < j £ { 0 , 1 , . . . , so}, { i , j} ^ {so — 1, so} such that a¿r = a,jr. Now, it is 
easy to show that Ar satisfies condition (b), and therefore, (2)(b) is valid for M. 

In order to prove the sufficiency, let us suppose that M satisfies the conditions. 
If (1) and (2) (a) are valid, then Theorem 1 implies that M. is isomorphically com-
plete for Q with respect to the a0-product. Let us assume now that (1) and (2)(b) 
are valid for M. with R' and A, respectively. Then, by Lemma 2 and the sufficiency 
of conditions (1) and (2)(a), it is suffficient to show that I s can be embedded into 
an ao-product of automata in {R , A } , for every positive integer s > 2. For this 
purpose, let s > 2 be an arbitrary positive integer. Let us define the ao-product 

R x • • • x R x A ( { 2 i , . . . ,xs}, $), 

where the number of the occurences of R is equal to s — 1, in the following way. 
For every ( n , . . . , r s _ 0 £ { 0 , 1 } S " \ xk £ {xi,..., a;s}, and j £ { 2 , . . . , s - 1}, let 

<Pi(xk) = x, 

where a and u, v, w, z denote the suitable state and input symbols of A, respectively. 
Now, let us consider the mapping p defined by 

/u : 0 ( 0 , 0 , 0 , . . . , 0, a), 
/ i : l ^ ( l , 0 , 0 , . . . , 0 , a ) , 

( 1 , 1 , 0 , . . . , 0 , a ) , 

H : s — 2 (1,1,... 1,0, a), 
p : s - 1 ( 1 , 1 , . . . , 1,1,aw), 
/i : s -» ( 1 , 1 , . . . , 1, l , aw) . 

Then it is easy to see that p, is an isomorphism of I s into the ao-product R x 
• • • x R x A ( { x i , . . . , ! , } , $ ) under consideration which ends the proof of Theorem 
2. 

The next statement directly follows from the definition of the «¿-products. 

Lemma 3. If the automaton A can be embedded into an ao-product of automata 
A j, j = 1 , . . . , n , and each A j can be embedded into an a\-product of automata 
A j t , t = 1 , . . . ,mj, then A can be embedded into an ai-product of automata Ajt, 
t = I,...,my, j - l , . . . , n . 

' u ^ 52t=i rt+k < s - 1 

w d E i = ] l r t ^ s - l , 
. z otherwise. 
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Now, let i > 1 be. an arbitrary integer. Then the isomorphically complete 
systems of generalized definite automata with respect to the a¿-product can be 
characterized as follows. 

Theorem 3. A system, M of generalized definite automata is isomorphically com-
plete for Q with respect to the ai-product (i > 1) if and only if there exists an 
automaton R " € M such that'R" has two distinct states denoted by 0,1 and four 
not necessarily distinct input symbols v,x,y,z such that lv = 0, Qx = 0, 0y = 1, 

Proof. The necessity of the conditions can be proved in a similar way as in the 
case of Theorem 1. . 

Regarding the sufficience, let us observe, that R can be embedded into an oti-
product of R " with a single factor, and this product is an ai-product of R " with 
single factor. Now we show that for every integer s > 2, the automaton I s can be 
embedded into an ai-power of R " . 

Let s > 2 be an arbitrary integer. Let us consider the ai-power 
( R " ) s ( { x i , . . . , x s } , $ ) defined as follows. For all 1 < k < s, (vi,... ,vk) 6 {0, l } f c , 
and Xj G { i i , . . . , x s } , let 

p : 0 - > ( 0 , 0 , 0 , . . . , 0 ) , 

: 1 -»• ( 1 , 0 , 0 0 ) , 

A» : 2 7-> ( 1 , 1 , 0 , . . . , 0 ) , 

p : ( s - 1) ^ ( 1 , 1 , . . . , 1 , 0 ) , 

( 1 , 1 , . . . , 1 , 1 ) , 

is an embedding of I s into the ai-power under consideration. 

By Theorem 1, the system K. = { R } U {I s : s = 2 , 3 , . . . } is an isomorphically 
complete system for Q with respect to the ao-poduct. Therefore, every generalized 

lz = 1. 

x if Et=i vt= s-1, . 
x if J2t=i vt <s - 1 and j + J2t=i vt < s - 1, 
V i f E t = i vt < s ~ 1 a n d 3 + Yft=i vt > s i 
2 i f E t = i u t = s. 

s 

VsiíVlj.-.tVs^j) = < 

Then it is easy to see, that the mapping p given by 
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definite automaton can be embedded into an ao-product of automata in K. On 
the other hand, we have proved that every automaton in /C can be embedded into 
an ai-power of R " . Then, by Lemma 3, we obtain that every generalized definite 
automaton can be embedded into an ai-power of R " , and consequently, { R " } , and 
also M, are isomorphically complete systems for Q with respect to the «¿-product. 

The following assertion shows that we obtain the same characterization of the 
isomorphically complete systems consisting of not necessarily generalized definite 
automata with respect to the aj-product (i > 1). 

Theorem 4. A system M of automata is isomorphically complete for Q with 
respect to the a.i -product (i > 1) if and only if it contains an automaton R " such 
that R " has two distinct states, denoted by 0, 1, and four not necessarily distinct 
input symbols x,y,z,v with 0 i R = 0, Ch/R = 1, l z R = 1, lv R = 0. 

Proof. The validity of Theorem 4 follows immediately from Theorem 3. 

References 
[1] Burris, S., H. P. Sankappanavar, A Course in Universal Algebra, Springer-

Verlag, New York-Berlin, 1981. 

[2] Ciric, M., B. Imreh, M. Steinby, Subdirectly irredicible definite, reverse 
definite, and generalized definite automata, Publ. Electrotechn. Fak. Ser. 
Mat., 10 (1999), 69-79. 

[3] Gecseg, F., Composition of automata, Proceedings of the 2nd Colloquium 
on Automata, Languages and Programming, Saarbrücken, LNCS 14 (1974), 
351-363. 

[4] Gecseg, F., Products of Automata, Springer-Verlag, Berlin - Heidelberg- New 
York - Tokyo (1986). 

[5] Ginzburg, A., About some properties of definite, reverse-definite and related 
automata, IEEE Trans. Electronic Computers EC-15 (1966), 809-810. 

[6] Grätzer, G., Universal Algebra, 2nd edn. Springer-Verlag, New York-Berlin-
Heidelberg-Tokyo, 1979. 

[7] Petkovic, T., M. Ciric, S. Bogdanovic, Decomposition of automata and tran-
sition semigroups, Acta Cybernetica 13 (1998), 385-403. 

[8] Steinby, M., On definite automata and related systems, Ann. Acad. Sei. 
Fenn., Ser. A I, 444 (1969). 

Received October, 2000 


