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A Chomsky-Schiitzenberger-Stanley Type 
Characterization of the Class of Slender 

Context-Free Languages* 

Pál Dömösi * Satoshi Okawa * 

Abstract 
Slender context-free languages have a complete algebraic characterization 

by L. Ilie in [13]. In this paper we give another characterization of this class of 
languages. In particular, using lineax Dyck languages instead of unrestricted 
ones, we obtain a Chomsky-Schiitzenberger-Stanley type characterization of 
slender context-free languages. 

1 Introduction 
We consider slender languages, that is, languages for which the number of words 
of the same length is bounded by a constant. As proved in [16], the slender regular 
languages are exactly the disjoint unions of single loops, that is, disjoint finite unions 
of sets of the form uv*w. A similar characterization holds for slender context-free 
languages as disjoint unions of paired loops, that is, finite unions of sets of the form 
{uvnwxny | n > 0} [13, 17]. 

The characterization of language classes by algebraic operations is one of 
the most important issues in formal language theory. Chomsky-Schiitzenberger-
Stanley's characterization [1, 2, 20, 21] for the class of context-free languages was 
the first well-known result in this direction and is stated as follows: For any context-
free language L, there exists a regular language R such that L = h(RC\D) where D 
is a Dyck language and h is a homomorphism. Moreover, it is clear that h(R fl D) 
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is a context-free language for each regular language R by the closure properties of 
the class of context-free languages. A refinement of this classical result is shown in 
[11]. 

For recursively enumerable languages, a Chomsky-Schiitzenberger-Stanley type 
characterization is given in [10]. It is also proved [15] that there exists no charac-
terization of this type for context-sensitive languages. (See some other types of ho-
momorphic characterizations of recursively enumerable languages in [3, 4, 5, 7, 9].) 

In this paper we investigate a characterization of Chomsky-Schiitzenberger-
Stanley type for slender context-free languages. 

However, a Chomsky-Schiitzenberger-Stanley type characterization of the class 
of slender context-free languages is almost meaningless, because a slender context-
free language is linear but a Dyck language is not linear. If we use a Dyck lan-
guage for characterization, then, in fact, we use complex languages to characterize 
simpler ones. We consider another characterization which is similar to Chomsky-
Schiitzenberger-Stanley's one. 

This paper is organized as follows. In Section 2, we introduce some fundamental 
notions, notations, definitions of slender languages, and the loop characterization 
results for slender languages. In Section 3, we give our main theorem, which of-
fers a Chomsky - Stanley type characterization of the class of slender context-free 
languages. Section 4 gives some concluding remarks. 

2 Preliminaries 

For all notions and notations not defined here, see [6, 8, 12, 14, 18, 19]. By an 
alphabet E we mean a finite nonvoid set. An element of E is called a letter. A word 
over E is a finite sequence of elements in E. For a word w, the length |tu| is the 
number of letters in w, where each letter is counted as many times as it occurs. 
The set of all the words over £ is denoted by £*. In particular, A is a word in E* 
and is called the empty word. Thus |A| = 0. If u and v are words over an alphabet 
E, then their catenation uv is also a word over E. It is clear that A acts as identity 
for this operation, that is, for every word u over E, u\ = Xu = u. Therefore, E* 
becomes a free monoid with catenation as the multiplication and A as the identity, 
and E + = E* \ {A} is a semigroup. 

Any subset of E* is referred to as a language over E. 
Now we define slender languages. A language L C £* is said to be k-slender 

if card{w € L | |tu| = n } < k for every n > 0. A language is slender if it is 
fc-slender for some positive integer k. In particular, a 1-slender language is called 
a thin language. 

For the loop characterization of slenderness, some notation and definitions are 
introduced. For a word u, setting u° = A and un = un~1u for n > 0, we define u* 
and u+ as usual, by u* = {un | n > 0} and u+ = u* \ {A} . 

A language L is said to be a union of single loops (or, in short, USL) if for some 



A Chomsky-S'chiitzenberger-Stanley Type Characterization 27 

positive integer к and some words Ui,Vi,Wi, 1 < i < k, 

i=l 

A language L is called a union of paired loops (or UPL, in short) if for some positive 
к and some words m,Vi,Wi,Xi,yi, 1 < i < k , 

к 
(**) Ь=и{щУ?ЬЛХ?Уг\п>0}. 

i=l 

A USL language L is said to be a disjoint union of single loops (DUSL, in short) 
if the sets in the union (*) are pairwise disjoint. The notion of a disjoint union of 
paired loops (DUPL) is defined analogously considering (**). 

A grammar is an ordered quadruple G = (N, E, S, P) where N and E are disjoint 
alphabets of variables and terminals, respectively, the start symbol S £ N, and P 
is a finite set of ordered pairs (a, /3) called productions, such that (3 is a word over 
the alphabet N \JT, and a is a word over N U E containing at least one letter of N. 
Usually, a production is written a —> ¡3 instead of (a,/?). 

For a word £ over N U £ , if £ is decomposed into 

£ = 
and a —»/3 is a production in P, then a —> /3 is applicable to £ and the result of the 
application is a word 77 = £i/3£2- We say that £ derives directly rj, and write £ r). 

The language generated by a grammar G = (N, E, S, P) is the set L(G) = {w | 
w £ E* and S =>* w}, where =>* denotes the reflexive and transitive closure of =>. 

If a —» ¡3 £ P implies a £ N then G is called context-free. A context-free 
grammar is said to be linear if for every production a —>• /3 £ P, ¡3 £ E*iV£* U E* A 
linear grammar is called right-linear or regular if for every production a ¡3 £ P, 
(3 £ E*iV U £*. L С E* is a regular (linear, context-free) language if we have 
L = L(G) for some regular (linear, context-free) grammar G. 

Let G = (N,Y,,S,P) be a context-free grammar with N = { 5 } , E = {йг,а'{ \ 
i = l , . . . , n } , and P = {S A ,5 -> 5 5 } U { 5 -s- aiSa'it \ i = l , . . . , n } . We say 
that G and L(G) are a Dyck grammar and the Dyck language over the 2n-letter 
alphabet E, respectively. Furthermore, if the set of productions of a grammar Gc 
is Pc — { 5 —» A} U { 5 —» aiSa[, | i — 1 , . . . ,n}, then Gc is called a linear Dyck 
grammar and its language L(Gc) is called a linear Dyck language. 

We shall use the following well-known results about slender languages. 

Theorem 2.1. [16] The following conditions are equivalent for a language L: 
(г) L is regular and slender, 

(ii) L is USL. 
(in) L is DUSL. • 
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Theorem 2.2. [16] Every UPL language is DUPL, slender, linear and unambigu-
ous. 

• 

Theorem 2.3.[13, 17] Every slender context-free language is UPL. • 

We have the following direct consequence of Theorems 2.2 and 2.3: 

Proposition 2.4. The class of slender linear languages coincides with the class 
of slender context-fee languages. In addition, the class of slender context-free lan-
guages contains only unambiguous languages. • 

3 Results 
As stated in the Introduction, a Chomsky-Schiitzenberger-Stanley type characteri-
zation of the class of slender context-free languages is almost meaningless, because a 
slender context-free language is linear but a Dyck language is not linear. Therefore, 
we use linear Dyck languages instead of Dyck languages in our Chomsky-Stanley 
type characterization. 

Theorem 3.1. Let £ be an alphabet. Then a A, a homomorphism h : A* —> £* 
and a linear Dyck language Dc on A can be determined from £, such that for every 
slender context-free language L C S ' there can be found a regular language RCA* 
with'L — h(R fl Dc). 

Proof. Let £ be an alphabet. Then we first define an alphabet A, a homomorphism 
h, and the linear Dyck language Dc on A as follows: 

An alphabet A is defined by 
A = £ U £ ' U £ U £ ' , 

where 
£' = {a' | a e £ } , £ = {a | a 6 £ } , and £ ' = {a ' | a € £}. 

The homomorphism h : A* —> £* is defined by 
h(a) = h(a!) = a, a e £ and h(x) = A, x € A \ ( £ U £')• 

The linear Dyck language D c over A is the language generated by 

G £ = ( { S } , A , S , P £ ) , 

where 
Pc = { 5 -> aSa', S —> A | a 6 £ U £ } . 

In order to simplify the notations, we use the following abbreviations. For a 
word w = a i... ae £ E*, we have wR = at... a2a i , w' = a[ .. .a't,w = ai ... a/ , 
and w' = a'i... a'(. 

Let L be any slender context-free language over £ . By Theorem 2.3 we 
can find a finite index set I and words Ui,Vi,Wi,Xi,yi, for all i 6 I with 
L = Uig/ {UiV?WiX?yi | n > 0). 
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Define a regular grammar GL = (N, A, A, PR), where N = { A } U {BI, CI \ i € 
/ } , PR = PR U P2 U P3 U Pa U P5 as 

PI = {A MFC«^ M e / } , 

P2 = {J5i Vj i i^Bi | i £ / } , 
/ 3 = {-Bi ->• Wiiu'fCi | i e / } , 
P4 = {Ci -»• Xi'vfCi l i e / } , and 
P5 = {Ci m'uf l i e / } . 
Let i? be a language generated by GL, i.e., R = L(GL)- Then L = h(R n Dc) 

can be proved by 

a.) L C h(R fl Dc)-
Suppose w is in L and w is of the form UivfwiX^yi for some i and n. 
By the definition of Gl, it is clear that a word 

£ = uiyiR{vixiR)nwiw^(xi'vf)nyi'uf 

is generated by Gl as follows: 
A UiyinBi => UiyiRViXiRBi =>* UiyiR(viXiR)nBi => UiyiR{viXiR)nWiwfCi 
=» Uiy^iViXi^WiW^Xi'vfCi =•* UiVi^ViX^YwiW'^iXi'vfYCi 
=»* uiyiR(vixiR)nwiwf{xi'viR)nyi,uf. 

Moreover, it is clear that £ is in Dc, and therefore £ is in R fl Dc- By the 
definition of h, h(£) is a word UiV^WiX^yi, i.e., w. So w is a word in h(R fl Dc)-

b.) h{RnDc) C L. 
Let w e h(RC\Dc)- Then, there is a word £ in RnDc such that w = /i(£). By 

the definition of Gl, £ should be of the form 

£ = U i y R ( V i x R ) m W i W \ R { x\v\ R ) n yy R 

for some i e I. By the definition of D c , n = m. Hence, £ = UiyiR(vi£iR)nWiw'R 

(xi'v'R)nyi'u'R and /i(£) = UivfWiX^yi. Therefore, w = /i(£) is in L. 
This completes the proof. • 

Remark. There exists a regular language R such that h(RCI Dc) is not slender. 

For example, choose a regular language A* as R. Then, by the fact that RilDc 
is Dc and the fact that h(Dc) is £*, the remark follows. Because of the previous 
observation, it is interesting to find a class C of regular languages satisfying the 
following condition: For any slender context-free language L, we can find R in C 
such that L = h(R fl Dc), and for any R in C, h(R fl Dc) is a slender context-free 
language. 

We denote by Hd the class of regular languages that satisfy the condition 
mentioned above. 
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A language L is called a union of double loops (or UDL, in short) if for words 
Ui,Vi,Wi,Xi,yi where 1 < i < k, 

It is clear that L is regular by the definition. However, it is clear by Theorem 2.1 
that L is not slender. 

Now we have the following result, a little stronger than Theorem 3.1: 

Theorem 3.2. Let £ be an alphabet. Then an alphabet A, a homomorphism 
h : A* —> £* and a linear Dyck language Dc on A can be determined from £ such 
that for every slender context-free language L C £*, there can be found a UDL 
regular language RCA* such that L = h(Rn D c) • Moreover, for any UDL regular 
language R, h(R(l Dc) is slender context-free. 

Proof. In the proof of Theorem 3.1, one can see the fact that R is a UDL regular 
language, so the first part of the theorem holds. 

Now we consider the second part. Let R be a UDL regular language. Then, 
since the class of linear context-free languages is closed under the operation of 
intersection with a regular set, R D Dc is linear. Furthermore, by counting the 
number of words of length n in R fl Dc, we can find that R fl Dc is slender. 
Indeed, by the simmetricity of the elements of Dc, every uvewxmy € Dc has the 
form ai.. ,af(af+i.. .ag)eag+i.. .aha'h.. .a'g+1(a'g .. .a'f+1)ma'f .. ,a[ with k = i 
and |u| = |i|. Hence, by L = Ui=i{uiV*WiX*yi}, the language RC\Dc has at most k 
words of length n for every n > 1. Since the class of slender context-free languages 
is closed under homomorphisms, h(RC\ D¿) is slender context-free. 

This completes the proof. • 

4 Concluding Remarks 
In this paper, we investigated some Chomsky-Schiitzenberger-Stanley type homo-
morphic characterizations for slender context-free languages and obtained the first 
characterization as Theorem 3.1 and the second characterization as Theorem 3.2, 
by which any slender language can be represented by the homomorphic image of 
the intersection of a linear Dyck language and a UDL regular language, and for 
any UDL regular language, the homomorphic image of its intersection with a linear 
Dyck language is slender.. This means that the second result is stronger than the 
first one. 

k 

i=l 
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