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Difference Functions of Dependence Spaces 

Jouni Järvinen * 

Abstract 
Here the reduction problem is studied in an algebraic structure called de-

pendence space. We characterize the reducts by the means of dense families 
of dependence spaces. Dependence spaces defined by indiscernibility relations 
are also considered. We show how we can determine dense families of depen-
dence spaces induced by indiscernibility relations by applying indiscernibility 
matrices. We also study difference functions which connect the reduction 
problem to the general problem of identifying the set of all minimal Boolean 
vectors satisfying an isotone Boolean function. 

1 Introduction 
Z. Pawlak introduced his notion of information systems in the early 1980's [11]. 
Information concerning properties of objects is the basic knowledge included in in-
formation systems, and it is given in terms of attributes and values of attributes. 
For example, we may express statements concerning the color of objects if the in-
formation system includes the attribute "color" and a set of values of this attribute 
consisting of "green", "yellow", etc. It should be noted that relational databases 
can be viewed as information systems in the sense of Pawlak. 

In an information system each subset of attributes defines an indiscernibility 
relation, which is an equivalence on the object set such that two objects are equiva-
lent when their values of all attributes in the set are the same. It may turn out that 
a proper subset of a set of attributes classifies the objects with the same accuracy 
as the original set, which means that some attributes may be omitted. An attribute 
set C is a reduct of an attribute set B, if C is a minimal subset of B which defines 
the same indiscernibility relation as B. The reduction problem means that we want 
to enumerate all reducts of a given subset of attributes. 

This work is devoted to the reduction problem in a dependence space. It is based 
on some papers of the same author, in particular on [5]. The fundamental notion 
appearing in the present paper is the concept of a dense family of a dependence 
space. We prove that our definition of dense families agrees with the definition pre-
sented earlier in the literature [10]; this result appeared also in [7]. Proposition 4.1 
characterizes reducts in dependence spaces by the means of dense families. Also 
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difference functions are defined by using dense families (cf. [5]). Proposition 5.2 
characterizes reducts by the means of difference functions and Proposition 6.1 con-
tains a construction of a dense family in the dependence space of an information 
system starting with its indiscernibility matrix; this result appeared also in [6]. 

As stated above, this paper gives a survey of some results concerning reducts and 
their construction, but the presented formulations are simpler than the formulations 
published earlier. It also completes proofs of some theorems published without 
proofs in the quoted papers. 

2 Preliminaries 
All general lattice theoretical and algebraic notions used in this paper can be found 
in [2, 4], for example. An oredered set (many authors use the shorthand poset) 
(P, <) is a join-semilattice if the join a V 6 exists for all a, b £ P. An equivalence 
relation 0 on P is a congruence relation on the semilattice (P, V) if ai©6i and 
a20£>2 imply (ai V a2)0(6i V 62) for all 01,02,61,62 £ P- We denote by a / 0 the 
congruence class of a, that is, a / 0 = {6 £ P | a©6}. 

An ordered set (P, <) is a lattice if a V 6 and a A 6 exist for all a, 6 £ P. Let us 
consider a lattice (P, <) . An element a € P is meet-irreducible if a = 6 A c implies 
a = 6 or a = c. We denote the set of all meet-irreducible elements a ± 1 (in case 
P has a unit) of (P, < ) by M(P). The following lemma can be found in [2], for 
example. 

Lemma 2.1. If (P, < ) is a finite lattice, then 

a = f\{x £ M(P) | a < x) 

for all a £ P. • 

Let (P, < ) be an ordered set. A subset S of P is meet-dense (see e.g. [2]), if 
for all x £ P there exists a subset X of S such that x = f\p X. Now the following 
lemma holds. 

Lemma 2.2. If (P, < ) is a finite lattice, then S(C P ) is meet-dense if and only if 
M(P) C S. 

Proof. Let S C P. be meet-dense and a £ M (P). Since S is meet-dense and 
a / 1, there exists a finite nonempty subset X = { a i , . . . , a n } of S such that 
a = ai A • • • A an. Because a is meet-irreducible, we obtain that a £ X and so 
a £ S. Hence, M{P) C S holds. 

Conversely, suppose that M(P) C S C ? . Then for all a £ P , 

{x £ M{P) | a < x} C {x £ S | a < x} C {x £ P | a < x}, 

which implies 

a = f\{x £ M(P) | a < x} > f\{x £ S \ a < x) 

> /\{x £ P \ a < x} = a. 
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Hence a = / \ { a ; £ S | a < x } . This means that S is meet-dense. • 

Let (P, < ) be an ordered set and a,b € P. We say that a is covered by b, and 
write a —< b, if a < b and a < c < b implies a = c. It is known (see e.g. [2]) that 
in a finite lattice (P, < ) the set of the elements of (P, <) covered by exactly one 
element of P is M{P). Thus, by Lemma 2.2, a subset of a finite lattice (P, < ) is 
meet-dense if and only if it contains all elements of P which are covered by exactly 
one element of P . ; 

A family £ of subsets of a set A is said to be a closure system on A if £ is closed 
under intersections, which means that for all 7i C £ , we have f"| H £ £ . We denote 
by p(A) the power set of A, i.e., the set of all subsets of A. A closure operator on a 
set A is an extensive, idempotent and isotone map C: p(A) —> p(A); that is to say, 
B C C(B), C(C(B)) = C(B), and B C C implies C{B) C C{C) for all B, C C A. A 
subset B of A is closed (with respect to C) if C(B) — B. A closure system £ on A 
defines a closure operator Cc on A by the rule 

Cc(B) = f ] { x e£\Bcx}. 

Conversely, if C is a closure operator on A, then the family 

Cc = {B C A I C(B) = B} 

of closed subsets of A is a closure system. The relationship between closure systems 
and closure operators is bijective; the closure operator induced by the closure system 
Cc is C itself, and the closure system induced by the closure operator Cc is C. It 
is well-known that if £ is a closure system on A, then the ordered set (C, C) is a 
lattice in which 

XA Y = XnV and XvY = Cc(XuV) 

for all X,Y E C. 
Next we consider meet-dense subsets of the lattice (£, C), where £ is a closure 

system on a finite set. 

Proposition 2.3. Let T be a meet-dense subset of a lattice (£, C), where C is a 
closure system on a finite set A. 

(a) For all B C A, Cc(B) = f ) {A: £ T \ B C X}. 
(b) For all B,C C A the following three conditions are equivalent: 

(i) Cc(B)CCc(C); 
(ii) for all X £ T, C c X implies B CX; 

(iii) for all X £ T, B - X ^ 0 implies C - X ^ 0. 

Proof, (a) Because Cc(B) £ £ , and B C X if and only if Cc{B) C X for all 
X £ £ , we obtain by Lemmas 2.1 and 2.2 that 

Cc(B) = f | { X £ M(C) | Cc(B) C X} = f | { X £ M(C) \ BCX} 

d eT\Bcx} D P|{X eC\Bcx} = cc(B). 



622 Jouni Jarvinen 

o j 1 ' 2 ' 3 ' 4 ) 

{1 .2 ,4 } o : O {2 ,3 } 

{1} " 
6 

{3} 

Figure 1: The closure lattice (£z>, Q) 

Hence, Cc(B) = {X £ T | B C X). 
(b) Let Cc(B) C Cc(C). If X £ T and C C. X, then B C Cc(B) C Cc(C) C 

= X. Conversely, if for all X £ T, C C X implies B C X, then {X £ T \ 
C C. X} C. {X £ T \ B C.X}. Hence by (a), Cc{B) = G T | B C X} C 
H i * G T I C C X } = C £ (C) . Thus, (i) and (ii) are equivalent. Also (ii) and (iii) 
are equivalent since for all X, Y C A, Y C X if and only if Y — X = 0. • 

3 Dense families of dependence spaces 

We recall Novotny's and Pawlak's [9] definition of dependence spaces. We note 
that in [7] Jarvinen studied infinite dependence spaces. 

Definition. If A is a finite nonempty set and 0 is a congruence on the semilattice 
(p(A), U), then the ordered pair T> = (A, 0 ) is said to be a dependence space. 

Let V = (A, O) be a dependence space. Recalling the finiteness of A, it is 
clear that for every B(C A), the congruence class B/Q has a greatest element 
Cv(B) = U B/Q. It was noted in [8] that for all B,C C A, 

In [8] it was also observed that Cp: p(A) —> p(A), B n - ^ U - B / O i s a closure operator 
on A. We denote by £?> the closure system corresponding to the closure operator 
Cp. Hence, the family Cv consists of the greatest elements of the 0-classes. 

Example 3.1. Let A = {1 ,2 ,3 ,4 } and 0 be the congruence relation on (p(A),U) 
whose congruence classes are {0} , { { 1 } } , { { 2 } } , { { 3 } } , { { 4 } , {1 ,2 } , {1 ,4 } , {2 ,4 } , 
{ 1 , 2 ,4 } } , { { 1 , 3 } } , { { 2 , 3 } } and { {3 ,4 } , {1 ,2 ,3 } , {1 ,3 ,4 } , {2 ,3 ,4 } , { 1 , 2 , 3 , 4 } } . 
The closure lattice ( £ p , C ) corresponding to the dependence space V ~ (A, 0 ) is 
presented in Figure 1. Moreover, M{CV) = { { 1 , 2 , 4 } , {1 ,3} , { 2 ,3 } } . 

BQC if and only if CV(B) = CV{C). 
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Dense families of dependence spaces were introduced in [10]. Here we define 
them differently as meet-dense subsets of the lattice (£-d, C); recall that in (£x>, Q), 
X A Y = X fl Y for all X , Y £ C-D- We will also show that our definition agrees 
with Novotny's definition of dense families. 

Definit ion. Let V = (A, 0 ) be a dependence space. A family T C p(A) is dense 
in V if it is a meet-dense subset of the lattice (£p , C). 

By Lemma 2.2, a family T is dense in V if and only if it is a subfamily of £D 
which contains all elements of the lattice (Cv, Q) which are covered by exactly one 
element of £ p . 

Example 3.2. Let us consider the dependence space V — ( A , 0 ) of Example 3.1. 
The Hasse diagram of (£x>, C) is given in Figure 1. The dense families of V are the 
32 families T such that M{Cv) C T C C-D-

Let A be a set. Each family T C p(A) defines a binary relation r ( T ) on p(-4): 

(B, C) £ r ( T ) if and only if (VX £ T) B C X C C I 

We note that in [10] dense families were defined by the condition presented in the 
next proposition. 

Propos i t i on 3.3. Let V = (A , 0 ) be a dependence space. A family T C p(A) is 
dense in T> if and only if T(T) = 0 . 

Proof. Let T be dense and BQC. Then CV(B) = CV(C), which implies by 
Proposition 2.3(b) that for all X £ 7~, B C X iff C C X . Thus, 0 C T(T). 
Conversely, if (B ,C ) 6 T(T), then 

CV(B) = f | { x e r | B c x } - n { x e 7" | C c x } = CV(C), 

which is equivalent to BQC. Hence, also T(T) C 0 . 
On the other hand, let T(T) = 0 . We will show that M(JCV) QTCCV, which 

implies by Lemma 2.2 that T is a meet-dense subset of (£P, C). Suppose'that 
X £ T. Because X0C-D(X) and X C X , we obtain C-P(X) C X , which implies 
X € £•£>. Hence, T C C-D-

Assume that M(Cv) 2 T. This means that there exists a Y £ M(C-p) such 
that Y £ T. Since Y £ M(£v), there exists exactly one Z £ £ p such that 
Y -< Z holds in £ p . For all X £ T, Z C X implies obviously that Y C X . 
Suppose that there is an X € T such that Y C I but Z X. Since X , Z £ £ p , 
we get X n Z £ £v and Y C X n Z C Z. The fact that Y -< Z holds in 
£ p implies Y = X fl Z. Because Y is meet-irreducible, we obtain Y = X or 
Y = Z. Obviously both of these equalities lead to a contradiction! Hence, for all 
X £T, also Y C X implies Z C I Thus, (Y, Z) £ T(T) = 0 , which means that 
Y - CT>{Y) = CV{Z) = Z, a contradiction! Therefore, also M(LV) C T holds. • 
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4 Independent sets and reducts 
In this section we review independent sets and reducts defined in dependence spaces. 
Further references can be found in [8, 9, 10], for example. Our main result of this 
section gives a characterization of the reducts of a given subset of a dependence 
space in terms of dense families. 

Let V = (A, 0 ) be a dependence space. A subset B(C A) is called independent, 
if B is minimal with respect to inclusion in its O-class. We denote the set of all 
independent subsets of V by IND-p. 

The notion of reducts is important in the theory of Pawlak's information sys-
tems. Here we study reducts in the more algebraic setting of dependence spaces. 
For any B(C A) a set C(C A) is called a reduct of B, if C C B, BQC and 
C £ IN D-D- The set of all reducts of B will be denoted by RE D-D (B). In the other 
words, a subset C (C B) is a reduct of B, if C is minimal in B/Q with respect to 
inclusion. Because A is finite, it is obvious that every set has at least one reduct. 

Finding all reducts of a given set is called the reduction problem. Our next 
proposition, which appears without a proof also in [6], characterizes the reducts of 
a given set by the means of dense families. 

Propos i t i on 4.1. Let T be a dense family in a dependence space V = (A, 0 ) . If 
B C A, then C € REDj)(B) if and only if C is minimal set with respect to the 
property of containing an element from each nonempty difference B — X, where 
X £ T. 

Proof. Let C be a minimal set which contains an element from each nonempty 
difference B - X, X £ T . First we show that C C B. If C £ B, then BnC cC 
and (B n C) D (B - X) = C n (B - X) ^ 0 whenever B - X ^ 0, a contradiction! 
Thus, C C B. Now C - X = (B n C) - X = C n (B - X) ^ 0 for all X £ T 
such that B - X ± 0. This implies by Proposition 2.3(b) that CV{B) C CV{C). 
The inclusion Cv(C) C Cv(B) is obvious. Hence, BQC. Assume that C £ IND-p. 
Then there exists a D C C such that CQD. Since 0 is transitive, we obtain 
BQD and in particular C©(B) C C-D(D). This implies by Proposition 2.3(b) that 
D f l (B - X) = D - X ^ 0 whenever B - X ^ 0, a contradiction! Hence, C is 
independent and thus C is a reduct of B. 

On the other hand, suppose C £ REDV{B). Then C C B, BQC, C £ INDV, 
and especially CV(B) C CV(C). This implies that C n (B - X) = (B D C) - X = 
C — X 0 for all X € T which satisfy B — X ^ 0. Assume that there exists a 
D C C which contains an element from each nonempty difference B — X, where 
X eT. Then D - X = (B n D) - X = D (~1 {B - X) ^ 0 for all X £ T such that 
B - X ± 0. Hence, CV{B) C C©(D). Since D c B also CV{D) C CV(B) holds. 
This implies BQD, and because COB we obtain CQD, a contradiction! • 

Example 4.2. Let us consider the dependence space V = (A,©) defined in Ex-
ample 3.1. We have already noted that M{CV) = { { 1 , 2 , 4 } , {1 ,3 } , { 2 , 3 } } is the 
smallest dense family. 

Next we find the reducts of A. The differences A - X, where X £ M(£T>), are 



Difference Functions of Dependence Spaces 6251 

A - {1 ,2 ,4 } = {3 } , A — {1 ,3} = {2 ,4} , and A - {2 ,3} = {1 ,4 } . 

They are all nonempty. Because the reducts of A must contain an element from all 
of these differences, each reduct must include 3. It can be easily seen that {1 ,2 ,3 } 
and {3 ,4 } are the reducts of A. 

5 The difference function 
In this section we study the notion of difference function. Difference functions 
were introduced in [5]. Here we give an equivalent, but a clearer definition. First 
we recall some notions concerning Boolean functions (see e.g. [1], where further 
references can be found). A Boolean function, or a function for short, is a mapping 
/ : {0, l } n —> {0 ,1} . An element v £ {0, l } n is called a Boolean vector (a vector for 
short). If f(v) = 1 (resp. 0), then v is called a true (resp. false) vector'of / . The 
set of all true vectors (resp. false vectors) of / is denoted by T(f) (resp. F(f)). 

Let u = (u\,..., un) and v = (vi,... ,vn) be vectors, We set u < v if and only if 
Ui < Vi, for 1 < i < n. A function / is isotone if u < v always implies f(u) < f{v). 

In the sequel we assume that / is an isotone function. A true vector v of / 
is minimal if there is no true vector w such that w < v, and let m i n T ( / ) denote 
the set of all minimal true vectors of / . A maximal false vector is symmetrically 
defined and max F(f) denotes the set of all maximal false vectors of / . 

Let V = (A , 0 ) be a dependence space such that A — { a i , . . . , a n } and let T 
be dense in V. For any B C A, let S(B) denote the disjunction of all variables yi, 
where ai £ B. We define the difference function fg{yi, • • •, yn) as the conjunction' 

A Z ( B - X ) . 

Clearly, the function f g is isotone. A function x '• p{A)'—> {0, l } n is defined by 

B^(xx(B),...,Xn(B)), 

where 
/ 0 if a i ? B 

X i { D ) ~ \ 1 if ai£B 

for all z, 1 < i < n. The value x(B) is called the characteristic vector of B. 
Now the following lemma holds. 

L e m m a 5.1. Let T be a dense family in a dependence space V = (A, 0 ) . For all 
B,C C A, the following conditions are equivalent: 

(a) X(C) £ TUB); 
(b) C contains an element from each nonempty difference B — X, X £ T• 

Proof. Let B, C C A and {X £ T \ B - X ± 0} = {Xi... Xk). 
(a) (b) Assume that /J(x(C")) = 1. If Cn(B-Xi) = 0 for some i, 1 <i<k, 

then obviously the disjunction S(B-Xi) has the value 0 for x(C) . This implies that 
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also the conjunction Ai<i<jt $(B — has the value 0 for x(C)> a contradiction! 
Hence, C f l ( B - X{) ¿ffi for all i, 1 < i < k. 

(b) => (a) Suppose that C n {B - Xi) ± 0 for all 1 < i < n. Then for all 
1 < i < n, the disjunction 5(B — Xi) has the value 1 for x (C) . This implies that 
the conjunction f\l<i<k S(B - Xi) has the value 1 for x (C) , i.e., / J ( x ( C ) ) = 1. • 

Now we can write the following proposition. Note that for any X C A, Xc = 
A — X is the complement of X. 

Propos i t ion 5.2. Let T be a dense family in a dependence space V = (A, 0 ) . If 
B C A, then 

(a) m i n T ( / J ) = { x ( C ) | C £ REDV(B)} and 
(b) m a x F ( / J ) = max{x( (B - X ) c ) | X 6 T,B - X ? 0}. 

Proof. Let us denote fg simply by / . 
(a) Let v £ min T(f) and let C be the subset of A which satisfies x (C) = v- By 

Lemma 5.1 C contains an element from each nonempty difference B — X, where 
X 6 T. Assume, that C is not minimal set with respect to that property, that is, 
there exist a D C C which also contains an element from each nonempty difference 
B - X, where X £ T. By Lemma 5.1 this implies that x(-D) £ T{f). But D C C 
implies x(-O) < x (C) and hence x (C) $ rain , a contradiction! Therefore, C 
is minimal set with respect to the property of containing an element from each 
nonempty difference B — X, where X £ T . This implies that C is a reduct of B by 
Proposition 4.1. 

On the other hand, suppose that C is a reduct of B. Then C contains an element 
from each nonempty difference B — X, where X £ T , and thus x (C) € T(f). 
Suppose that x (C ) ^ minT( / ) . This means that there exists a vector v £ T(f) 
such that v < x(C)- Let D be the subset of A which satisfies x{D) = v. Then 
obviously D is a set which contains an element from each nonempty difference 
B — X, where X £ T. Since D C C, C is not a reduct of B, a contradiction! 
Hence, x (C) € m i n T ( / ) . 

(b) By Lemma 5.1 it is obvious that f(x(C)) = 0 if and only if there exist 
an X £ T such that B - X 0 and C n (B - X) = 0. This is equivalent to the 
condition that / ( x ( C ) ) = 0 if and only if there exist an X £ T such that B-X 0 
and C C (B — X ) c . 

Suppose that x (C) 6 max F{f). This implies that C C (B - X ) ° for some 
X £ T, B - X ± 0, and hence x (C) < x ( ( £ - Assume that x (C ) < x((B -
X ) c ) . Since x({B - X f ) £ F(J), this implies x(C) $ m a x F ( f ) , a contradiction! 
Hence, x (C) € {x((B - X ) C ) | X £ T,B - X ± 0}. Assume that there exists a 
X(D) £ {X((B - X f ) | X £ T,B - X # 0} such that X ( C ) < X(D). Clearly, 
this implies that x(-O) £ F(f) and hence x(C) ^ m a x F ( f ) , a contradiction! Thus, 
X(C) € max{x( (B - X f ) \ X £ T , B - X ± 0}. 

Conversely, suppose that x (C) £ max{x ( (5 - X ) c ) | X £ T, B - X ± 0}. 
Then obviously x (C) S F(f)- Assume that there exists a x{D) £ F{f) such that 
X(C) < x(D). This implies that there exists an X € T such that D C (B - X ) c 
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and B - X We obtain that X(G) < *(£>) < X((B - Ar)c) for some X £ T-
such that B — X ^ 0, a contradiction! Hence, x{G) G m a x F ( / ) . • 

Hence, the minimal true vectors of the difference function of B(C A) are the 
characteristic vectors of the reducts of B. 

Example 5.3. Let us consider the dependence space V = (A, 0 ) defined in Exam-
ple 3.1. The family T = { {1 ,2 ,4 } , {1 ,3 } , { 2 , 3 } } is known to be dense in V. The 
differences A — X are all nonempty for all X £ 7~. Hence, 

/J = ¿(A - { 1 , 2 , 4 } ) A ¿(A - { 1 , 3 } ) A S(A - { 2 , 3 } ) 
= 3 A (2 V 4) A ( IV 4), 

where i stands for i/j. The function f j has the minimal true vectors (0,0,1,1) and 
(1,1,1,0), which implies by Proposition 5.2 that REDV(A) = { {3 ,4 } , { 1 ,2 ,3 } } . 

The_dual of a Boolean function / , denoted by fd, is defined by fd(x) = /(x), 
where / and x denote the complements of / and x, respectively. It is well-known 
that ( f d ) d = f and that the DNF expression of fd is obtained from that of / by 
exchanging V and A as well as constants 0 and 1, and then expanding the resulting 
formula. For example, the dual of g = 3V ( lA4)V (2A4) is gd = 3A(1V4) A(2V4) = 
(3 A 4) V (1 A 2 A 3). 

It is known (see e.g. [1]) that for any isotone Boolean function / , m i n T ( / d ) = 
{u | v £ m a x F ( / ) } . Let us denote / J simply by / . By Proposition 5.2: 

v £ mmT(fd) v £ m a x F ( / ) 

v £ max{X{{B - X)c) \ X £ T,B - X ^ <&} 
v £ min{x(B - X ) | X g T,B -X ± 0}. 

The family T = { {1 ,2 ,4 } , {1 ,3 } , { 2 ,3 } } is known to be dense in the dependence 
space V of Example 3.1. Let us denote by / the difference function of the set A. 
Then 

min( / d ) = min{X (A - X) \ X £ T,A - X ^ 
= { (0 ,0 ,1 ,0 ) , (0 ,1 ,0 ,1 ) , (1 ,0 ,0 ,1 ) } . 

This means that fd = 3 V (1 A 4) V (2 A 4) and / = ( f d ) d . = (3 A 4) V (1 A 2 A 3). 
Hence, m i n T ( / ) = { (0,0,1,1) , (1 ,1,1,0)} , as stated in Example 5.3. 

Remark . Let / = f(xi,..., x n ) and g = g(x\,..., x „ ) be a pair of isotone Boolean 
functions given by their minimal true vectors minT'( /) and minT(^), respectively. 
Let us consider the following problem; test whether f and g are mutually dual. 
In [3] Fredman and Khachiyan showed that this problem can be solved in time 
fco(iogwhere k = |minT(/)| + |minT(i/)|. 

This implies that for an isotone Boolean function f given by its minimal true 
vectors and for a subset G C minT( / d ) , a new vector v £ m i n T ( f d ) - G can be 
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computed in time nk°^ogk\ where k = |minT(/)| + |G| (see [1], for example). 
This means also that for any isotone Boolean function / given by its minimal true 
vectors, fd can be computed in time nk°^°sk\ where k = | minT( / )| + | minT(/d )|. 

6 An application to information systems 
An information system is a triple S = (U, A, {Va}a€where U is a set of objects, 
A is a set of attributes, and {V^Joe/i is a n indexed set of value sets of attributes. 
All these sets are assumed to be finite and nonempty. Each attribute is a function 
a:U —> Va which assigns a value of the attribute a to objects (see e.g. [9, 10, 11]). 

For any B Ç..A, the indiscernibility relation of B is defined by 

1(B) = {(x,y) € U2 | a(x) = a(y) for all a e B}. 

It is known that I{B) is an equivalence relation on U such that its equivalence 
classes consist of objects which are indiscernible with respect to all attributes in B. 
Let us define the following binary relation Qs on the set p(A): 

(B,C) € 0 5 I{B) = 1(C). 

So, two subsets of attributes are in the relation ©5 if and only if they define the 
same indiscernibility relation. It is known (see e.g. [8, 9]) that ©5 is a congruence 
on the semilattice (p(A),U). Hence, the pair T>s = (A, ©5) is a dependence space. 
It can be easily seen that C (Ç A) is a reduct of B (Ç A) in the dependence space 
T>s if and only if C is a minimal subset of B which defines the same indiscernibility 
relation as B. 

Assume that U = {xi,..., xm}. Then the indiscernibility matrix of S is an 
m x 7n-matrix M 5 = (Ci j ) m x m such that 

Cij — {a £ A I a(x) = a(y)j 

for all 1 < i,j < m. Thus, the entry c^ consists of the attributes which do not 
discern objects Xi and Xj (cf. discernibility matrices defined in [12]). It is now 
trivial that 

' ' (xi,xj) e 1(B) B C dj. 

Next we show how matrices of preimage relations induce dense families. 

Proposition 6.1. If S = (U,A,{Va}aç_44) is an information system and M 5 = 
(cij)mxm is the indiscernibility matrix of S, then the family 

Ts = {cij I 1 < i,j < m} 

is dense in the dependence space T>s = (A, 0^). 
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Proof. By Proposition 3.3 it suffices to show that F(TS) = Os• If (B, C) G ©5, 
then for all 1 < i,j < rn, B C cy iff ( x i } x j ) G 1(B) iff (Xi,Xj) G 1(C) iff C C cy , 
which implies (B,C) G T(TS). Hence, 0 5 C r (7s ) . 

If (B,C) G T(Ts), then for all 1 < i,j < m, (xuxj) G 1(B) iff B C cy iff 
C C dj iff (xi,xj) G 1(C), which implies 1(B) = 1(C). Thus, also T(Ts) C 0 5 

and hence T(Ts) = ©s- • 

We conclude this paper by an example. 

Example 6.2. Let us consider an information system S = (U,A, {V4}ae/i)i where 
the object set U = {1 ,2 ,3 ,4 ,5 } consists of five persons, the attribute set A consists 
of the attributes Age, Eyes, and Height, and the corresponding value sets are 
VXge = {Young, Middle, Old}, Vfeyes = {Blue, Brown, Green}, and Vneight = 
{Short, Normal, Tall}. 

Let the values of the attributes be defined as in the following table. 

Age Eyes Height 
1 Young Blue Short 
2 Young Brown Normal 
3 Middle Brown Tall 
4 Old Green Normal 
5 Young Brown Normal 

For example, the indiscernibility relation 1(A) of the attribute set A is an equiva-
lence on U which has the equivalence classes {1} , {2 ,5} , {3} , and {4} . 

If we denote a — Age, b = Eyes, and c = Height, then the indiscernibility matrix 
of S is the following: 

( A- {a } 0 0 W \ 
{a} A m { c } A 
0 m A 0 {b} 
0 {c } 0 A M 

^ W A m { c } a J 

By Proposition 6.1, the family Ts = {0, {a } , {&}> { c } , A} consisting of the 
entries of M s is dense in the dependence space T>s = (A, ©5). Let us denote by / 
the difference function of the set A. Then min( / d ) = min{x(A — X) \ X £ T, A — 

= {(0,1,1) , (1,0,1), (1,1,0)} . This means that fd = (6Ac)V(aAc) V(aA&) 
and / = (b V c) A (a V c) A (a V b) = (a A b) V (a A c) V ' ( iAc ) . Obviously, (1,1,0), 
(1,0,1) and (0,1,1) are the minimal true vectors of / . Thus, {a; b}, {a, c} , and 
{b, c} are the reducts of A in T>s-

Acknowledgement 
The author thanks the referee for his valuable comments and suggestions. 



630 Jouni Jarvinen 

References 
[1] J. C. BIOCH, T. IBARAKI, Complexity of identification and dualization of 

positive Boolean functions, Information and Computation 123 (1995), 50-63. 

[2] B. A. DAVEY, H.A. PRIESTLEY, Introduction to lattices and order, Cam-
bridge University Press, Cambridge, 1990. 

[3] M. FREDMAN, L. KHACHIYAN, On the complexity of dualization of mono-
tone disjunctive normal forms, Journal of Algorithms 21 (1996), 618-628. 

[4] G. GRATZER, Lattice theory: first concepts and distributive lattices, W. H. 
Freeman and company, San Francisco, 1971. 

[5] J. JÁRVINEN, A representation of dependence spaces and some basic algo-
rithms, Fundamenta Informaticae 29 (1997), 369-382. 

[6] J. JÁRVINEN, Preimage relations and their matrices. In L. POLKOWSKI, 
A. SKOWRON (eds.), Rough sets and current trends in computing, Lecture 
Notes in Artificial Intelligence 1424, Springer-Verlag, Berlin/Heidelberg, 
139-146, 1998. 

[7] J. JÁRVINEN, Knowledge representation and rough sets, PhD Dissertation, 
University of Turku, Department of Mathematics, March 1999 (available at 
ht tp : //www. c s . utu. f i / j j arvine). 

[8] J. NOVOTNY, M. NOVOTNY, Notes on the algebraic approach to dependence 
in information systems, Fundamenta Informaticae 16 (1992), 263-273. 

[9] M. NOVOTNY, Z. PAWLAK, Algebraic theory of independence in information 
systems, Fundamenta Informaticae 14 (1991), 454-476. 

[10] M. NOVOTNY, Applications of dependence spaces. In E. ORLOWSKA 
(ed.), Incomplete information: rough set analysis, Physica-Verlag, Heidel-
berg/New York, 247-289, 1998. 

[11] Z. PAWLAK, Information systems. Theoretical foundations, Informations 
Systems 6 (1981) , 2 0 5 - 2 1 8 . 

[12] A. SKOWRON, C. RAUSZER, The discernibility matrices and functions in 
information systems. In R. SLOWINSKI (ed.), Intelligent decision support. 
Handbook of applications and advances of the rough set theory, Kluwer Aca-
demic Publisher, Dordrecht, 331-362,1991. 

Received November, 1999 


