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On Kleene Algebras of Ternary Co-Relations 

Igor Dolinka * 

Abstract 

In this paper we investigate identities satisfied by a class of algebras made 
of ternary co-relations - contravariant ("arrow-reversed") analogues of bi-
nary relations. These algebras are equipped with the operations of union, 
co-relational composition, iteration, converse and the empty co-relation and 
the so-called diagonal co-relation as constants. Our first result is that the 
converse-free part of the corresponding equational theory consists precisely 
of Kleenean equations for relations, or, equivalently, for (regular) languages. 
However, the rest of the equations, involving the symbol of the converse, are 
relatively axiomatized by involution axioms only, so that the co-relational 
converse behaves more like the reversal of languages, rather than the rela-
tional converse. Actually, the language reversal is explicitely used to prove 
this result. Therefore, we conclude that co-relations can offer a better frame-
work than relations for the mathematical modeling of formal languages, as 
well as many other notions from computer science. 

1. Introduction 

The study of the equational theory of. Kleene algebras dates back to sixties, and' 
since then it has a vivid history. However, the term 'Kleene algebra' is of more 
recent date, while the above equational theory was in the first place considered as 
the collection of regular identities: pairs of regular expressions denoting the same 
language. It was Redko [23] who proved first that regular identities have no finite 
base of equational axioms, but that result became available for a larger audience 
only with the famous booklet of Conway [6] in 1971. Conway's model-theoretic 
argument is probably the best known proof of Redko's result so far. 

What is even more important, Conway's ideas eventually led to further progress 
in the field. However, the explicite determination of a nontrivial equational base-
of Kleene algebras had to wait until the last decade, when Krob [19] and. Bloom 
and Esik [3] solved the problem: the axiomatization from [19] was based on the 
discovery of a beautiful connection between regular languages and finite groups, 
while the one in [3] came out from some deep investigations in category theory and 
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its applications in computer science (see [2]). These approaches were quite recently 
unified in [5, 12]. 

It was realized in the late seventies by relation algebraists that language algebras 
and Kleene relation algebras are very closely related: they satisfy precisely the same 
(regular) identities, so that both of these two classes generate the same variety (of 
Kleene algebras). Moreover, the algebras of regular languages turned out to be just 
the free Kleene algebras, as proved by Kozen [18] in 1979 (although this result was 
originally formulated in the context of dynamic algebras). 

But when one considers the operations of the converse of relations and the rever-
sal of languages, respectively, the above symmetry between languages and relations 
is lost. Namely, the involution axioms suffice to capture the equational properties 
of the reversal of languages [4], while for the converse of relations one should involve 
an additional identity [13], which does not hold for languages. Therefore, relations 
are not 'good enough' to model the language reversal. 

On the other hand, the concept of a co-relation is quite new. Yet, it belongs 
to the collection of 'co-algebraic' phenomena, which have been studied for some 
time. Roughly speaking, the main idea is to dualize the notion of an algebra and 
the main algebraic constructions. The pioneering papers along this line were the 
ones of Eilenberg and Moore [11] and Kleisli [17], but it was Aczel and Mendler [1] 
who opened new directions in applying co-algebra in computer science. With this 
approach at hand, they managéd to model (binary) trees, different deterministic 
and nondeterminstic transition systems, etc. Since then, co-algebraic concepts were 
widely applied e.g. in object-oriented programming [24] and program verification 
[14]. For basic notions of co-algebra, see [15, 25]. 

In 1971, Drbohlav [10] started to investigate co-operations on a set, which one 
obtains from the notion of an operation by reversing arrows and replacing products 
by coproducts in the category of sets. Later, this inspired Csákány [9] to introduce 
clones of co-operations (see also [20]). But as the classical clone theory needs its 
'relational part' in order to develop full strength, so the theory of clones of co-
operations needs appropriate co-objects as invariants. Hence, Pöschel and Röfiiger 
[22] proposed the concept of a co-relation. While an n-ary relation on X can be 
thought of as a family of n-ary vectors over X, that is, functions n X, an n-ary 
co-relation on X is a collection of functions X —> n (n-ary co-vectors on X), which 
should be imagined just as colourings (partitions) of X in n colours (into n classes). 

In [20], the operation of composition was defined for arbitrary co-relations; 
however, the result of the composition of two n-ary co-relations is again an n-
ary co-relation if and only if n = 3. Of course, binary co-relations quite clearly 
correspond to unary relations (subsets). Thus it is natural to expect that the role 
and importance of binary relations is inherited by ternary co-relations on a set. 

In this paper, we consider algebras consisting of ternary co-relations, endowed 
with the operations of union, composition, iteration (in the sense of the complete 
union of composition powers), co-relational converse and with two distinguished 
constants. Our main result is that such algebras generate the same variety as the 
language algebras equipped with the operations of union, concatenation, Kleene 
star, reversal and the empty lanugage and the language containing the empty word 
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only, as constants. In particular, it follows that the converse-free reducts of these 
co-relation algebras are indeed Kleene algebras, justifying the title of the paper. 
Therefore, we are going to eventually conclude that', from the equational point bf 
view, co-relations model (the operations on)ianguages better than relations. : -

For basics of universal algebra we refer to [21] and for the theory of binary 
relations to [16]. The same references hold for all undefined notions throughout the 
paper. 

2. Preliminaries 

2.1. Kleene algebras 
Let X be any set. Consider the following algebra: 

Rel (X) = (V(X x X), U, o , r t c , 0, A x ) , 

where U is the union, o is the composition of relations, r tc is the formation of the 
reflexive-transitive closure, while A j is the diagonal relation on X . The algebra 
Rel(X) is called the full Kleene algebra of relations on X. Any algebra which 
can be embedded into some full Kleene relation algebra is called representable, (or 
standard) Kleene algebra. The variety generated by all algebras Rel(AT) we denote 
by K.A. A Kleene algebra is just any member of K.A. 

Beyond algebras of relations, the most important example of Kleene algebras is 
the language algebra over an alphabet E: 

Lang(£) = <?>(£*),+ )-.*,0,{A}>, ' 

where £* is the free monoid on £ (which consists of all words over £) , + denotes 
the union, • is the concatenation, * is the Kleene star (iteration), and' finally, A 
denotes the empty word. The fact that language algebras indeed belong to K.A is 
a consequence of a more general observation. 

Lemma 1. Let M be any monoid. Then K(M) = (P(M), U, •,* ,0, {1}), where 
• is the complex multiplication, * the generation of a submonoid, and 1 the unit of 
M, is a Kleene algebra. 

Proof (in outline). Consider the mapping £ : V(M) V(M x M) defined for 
every A C Jli by 

£(A) = {(z,£a) : x G M,a G A} = (J ga, 
A€A 

where ga denotes the right translation of the monoid M. It is a routine matter to 
show that £ is an embedding of K ( M ) into Rel(M). • 

By taking M = £*, from the above lemma we immediately obtain that 
Lang(£) = K(£*) is a Kleene algebra for any alphabet £ . 
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The elements of the subalgebra of Lang(£) generated by the languages of the 
form {a } , a £ £ (or, equivalently, by all finite languages), are called the regular 
languages over £ . This subalgebra is denoted by Reg(£). Now, the algebras of 
regular languages have the following remarkable property. 

Proposition 2. (Kozen, [18]) Reg(£) is the free Kleene algebra on £, freely 
generated by the map a >-4 {a } , a 6 £. 

Thus, it follows that an identity p = q holds in K.A if and only if the regular 
expressions p, q represent the same (regular) language. Also, the above proposi-
tion implies that if we denote by C the variety generated by all language algebras 
Lang(£), then C = K.A. 

We are not going to state here the well known nonfinite axiomatizability result 
for K.A, due to Redko [23], nor the explicite axiomatizations given by Krob [19] 
and Bloom and Esik [3]. However, when one is concerned with Kleene algebras or 
relations and languages, it is quite customary to consider one more operation. First, 
we have the natural operation of the reversal of languages. If w = a\a2... an £ £* 
is a word, we define 

wv = an ... a2ai. 

Now we have 
Ly = {wv : we L}. 

By adding the operation of the reversal of languages to Lang(£) we obtain the 
algebra Langv(£). The variety generated by algebras of this form we denote by 

Proposition 3. (Bloom, Esik and Stefanescu, [4]) The variety £v is axioma-
tized relatively to K.A by the involution axioms, that is, by the following identities: 

( x + y ) v 
V , V = X + y , (1) 

= Y V Z V , (2) 
( x T = ( * V r , (3) 
( * T = X, (4) 

ov 
= 0, (5) 

i v = 1. (6) 

There is one more way to define an involutorial operation on language algebras, 
which can be useful in some applications. For an alphabet let £ ' denote a 
bijective copy of £ ' = {a' : a £ E}. For w = hb2 .. • bn € ( £ U £')* define 

w'= b'n...b'2b'1, 

where for all 1 < i < n, 
bi = a e H, 
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Finally, let Lang'(£, £ ' ) be the language algebra Lang(E U £ ' ) endowed with the 
unary operation ', where, of course, L' = {w' : w 6 L}. 

By Proposition 4.3 and Theorem 5.1 of [4], algebras Lang'(£, £ ' ) also generate 
the variety £ v . 

On the other hand, the operation which extends Kleene algebras of relations is 
the converse: 

= {(y,x) • (x,y) e Q}. 
By equipping the algebra Rel(X) with v , we obtain the algebra Relv(AT). All 
algebras of the latter form generate the variety K.AV, which turns out to be a 
proper subvariety of £ v . 

Proposition 4. (Esik and Bernatsky, [13]) The equations (l)-(6) and 

x + xxy x = xxy x (7) 

axiomatize the variety ICAV relatively to K.A. 

Therefore, we may conclude that the equational properties of the language re-
versal are not faithfully modeled by the relational converse and hence, it is natural 
to look after a different setting which would allow to capture those properties, 
preserving at the same time the Kleenean equations. 

2.2. Co-Relations 
Clearly, an n-ary relation on X can be thought of as a collection of n-ary vectors 
over X, that is, functions n —> X. Dually, an n-ary co-relation on X is a set 
consisting of n-ary co-vectors, i.e. of functions X —> n. Of course, the notion of a 
n-ary co-vector is equivalent to the notion of a colouring of a given set in n colours. 
In particular, a ternary co-relation is a family of functions X —» 3. It is convenient 
to represent a ternary co-vector / : X —> 3 through the corresponding partition 
of X into A = /_1(°)> B = / - 1 ( 1 ) and C = f~1{2), so that / is written as 
(A, B, C ) v (we use the symbol v to indicate that we are not dealing with a ternary 
vector whose elements are A,B,C). In order to introduce a more intuitive (and 
visualisable) terminology, we are going to call the colours 0,1,2 (i.e. the elements 
from A,B,C) respectively red, green and blue. 

In this paper, we deal with algebras of ternary co-relations of the form 

cRelu(X) = ( 7 > ( 3 x ) , U , . , * , u , 0 , e x ) 

(the reduct without u is denoted by cRel(X)), where the operations and the con-
stants are defined below. First of all, U is simply the set-theoretic union, while the 
constant ex is the co-relation consisting of all green-free colourings of X , that is, 

The definition of the co-relational composition • is the following: 

e*a = {(A,BUE,F)V : (3 C,D C X)((A,B,C)V € gA(D,E,F)v e o AC = X\D)}. 
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In other words, two co-vectors can be composed if the blue set of the first one 
coincides with the non-red part (green+blue) of the second one (or, equivalently, 
red+green elements of the first are precisely the red elements of the second co-
vector). If that is the case, green elements are added together, the red colour is 
copied from the first and the blue from the second factor. 

Since one can define arbitrary unions of co-relations, the unary operation * is 
just the co-relation analogue of the reflexive-transitive closure of relations, or of the 
Kleene iteration. If for a ternary co-relation g and n > 1 we define 

gn = £>#...• Q 
n 

and g° = Ex, then 
6*= [J Qn• 

n>0 

Finally, the co-relational converse u is defined as the interchanging of the red 
and the blue colour: 

gu = {(C,B,A)V : (A,B,C)veg}. 

In the sequel, we shall need the following fact (whose proof is omitted as being 
immediate). 

Lemma 5. For any set X, the algebra cRelu(X) satisfies the identities (1)-
(6). 

However, note that for all nonempty X , c R e l u ( X ) does not satisfy (7), because 
for g = { ( 0 , X , 0 ) V ) we have g*gu»g=®. 

3. The Results 
First of all, we prove that the co-relation algebras c R e l ( X ) are Kleene algebras. 
Moreover, all such algebras are representable. 

Proposition 6. For any set X, the algebra cRel(X) is isomorphic to a sub-
alegbra of Kel(V(X)). 

Proof. Define a mapping 0 : V(3X) V(V(X) x V(X)) by 

Q(q) = {(A,AUB) : (A,B,C)V eg}. 

It is immediately clear that 0 is injective and completely additive. It remains to 
prove that for all g,a C 3 X we have Q(g • a) — Q(g) o 0 ( a ) (for then it follows 
from the the complete additivity that we have ©(ß*) = (0(ß)) r t c ) . 

Indeed, let (A, B) £ Q(g»a). Clearly, this is the same as saying that AC B and 
(A,B\A, X\B)V £ g*a. The latter condition is just equivalent to the existence of 
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BUB2,C,D C X s u c h t h a t C = X\D, (A,BUC)V £ G, (D,B2,X\B)V £ A a n d 
B\\JB2 = B\A. Note that from here C can be eliminated, namely C = X\( J 4uSi ) , 
so that we arrive at (A, A U Bi) € Q(g) and {A U BX, A U BX U B2) £ 0(CT), 
where BX U B2 = B \ A. But recall that A C B, so that (A,B ) £ Q(G • A) is 
the same as (A,A\JB{) £ Q{G) and (A\JBI,B) £ Q(cr) for some J3i C B, i.e. 
(A,B) £ @(Q) O 0(CT), which finishes the proof. • 

The combined effect of Lemma 5 and the above proposition is just as follows. 

Corollary 7. For all X, cRelu(X) £ £ v . 

Now let E be an alphabet, x £ E, and let 

w = aia2 .. ,an £ (E U E')* 

be any word (E' is, as in the previous section, a bijective copy of E). Define a 
mapping i/jw : E —> V(3—) (where we use the following notation: n = { 1 , 2 , . . . ,n } 
and 0 = 0) by 

= {(i_zzl>{i}>n\i)V '• ai-x}U {(n \ j, - 1)V : at = x'}. 

Since by Proposition 4.2 from [4] we have that Lang ' (E,E') is the free object 
on E in the category of completely idempotent semirings with involution (to which 
cRel u (X ) certainly belongs, for all X ) , the mapping defined above can be extended 
(by identifying x and {x} for all x £ E) to a morphism : Lang ' (E,E ' ) _» 
cRelu(n) (recall that n = |iu|). 

It is not difficult to see that the following assertions hold: 

(a) < M ( u ; } ) = *w({ai})...iBw({an})=xl>w(a1)...%l>w(an) = { ( 0 , n , 0 ) v } . 

(b) ^ ( { A } ) = e„. In particular, * A ( { A } ) = = { ( 0 ,0 ,0 ) v } -

(c) If u is a nonempty subword of w, say u = a ; . . .aj, then, similarly as in (a), 

* « . ( { " } ) = { ( ¿ - l , i \ t - l , n \ j ) v ) . 

Otherwise, ^ „ ( { u } ) = 0. 

(d) If L is a language over E U £ ' , then 

$ l iJ(L) = : u is a subword of w such that u £ L}). 

Therefore, for any word w, we have the following equivalence: 

w £ L (0 ,n ,0 ) v e *v,(L). (8) 

Finally, let 
^ : Lang '(E, E') JJ cRel u (H) 

tu6(EuE')* 

be the target tupling of the morphisms that is, the (unique) function satisfying 
the condition \I> o nw = for all w £ (£ U E')* (where nw is the projection of the 
above direct product corresponding to w). 
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Proposition 8. is an embedding of completely idempotent semirings with 
involution (and thusof Kleene algebras with involution). 

Proof. Since all functions "fu, are morphisms of completely idempotent semirings 
with involution', it suffices to prove that <5 is injective. But this easily follows from 
the equivalence (8), because if L\,L2 are two different languages over S u S ' and 
w0 E LI\L2i n0 = K l , then by (8) we have that (0 ,no ,0) v 6 $W0{LI)\$W0(L2). 
Hence, $„ , 0 (Li) ^ VWO(L2), and so i - (Li) ± $(Z,2). • 

As the algebras Lang'(£,E') generate the variety £ v , we have just proved 

Theorem 9. The variety generated by all algebras of co-relations cRelu(AT) 
coincides with £v. 

Hence, we may say that the equational behaviour of the language reversal is 
modeled by ternary co-relations. 

On the other hand, it is interesting to see how one obtains Kleene algebras of 
relations from those of co-relations, provided that we drop the converse operation. 
It turns out that we do not need the (slightly cumbersome) construction of the 
direct product: we shall prove that Rel (X) € HS(cRel(w x X ) ) for all X , i.e. that 
Rel(X) is a quotient of a subalgebra of cRel(w x X). It is worth noting tha.t LJ x X 
is just the w-copower of X (coproduct of u copies of X) in the category of sets. 

First of all, choose a linear order < on X, so that (X, < ) is a chain. Further, 
define a linear order relation ^ on u x X as follows: 

(k,xi) •< (£,X2) if and only if k < £ or k = i, xi < x2. 

A ternary co-vector over X (3-colouring of X) of the form = (A,B, C ) v , 

A = {(n,x) : (n, x) < (k, u)}, 
B = {(n, x) : (k,u) < {n,x) < (i,v)}, 
C = {(n,x): (i,v) < (n,x)}, 

where (k, u) (£, v), we call a cutting of the set w x X. Now for m € w let 

X2v = {<i-- i~k = m}. 

Note that Xu v nonempty if and only if u < v. 
A ternary co-relation on ui x X is a closed set of cuttings if it is representable as 

a union of co-relations of the form xUV Alternatively, we can define a closed set 
of cuttings as a family g of cuttings satisfying, for all u,v 6 X, the condition 

(3p,q € cj) G e. 

Finally, we call a ternary co-relation on w x X good if it is a union of a closed set 
of cuttings and a green-free co-relation (that is, a subset of euxx) which contains 
no cuttings. The set of all good co-relations on w x X is denoted by G(X). 
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Lemma 10. G(X) is the universe of a subalgebra G(X) of cRel(w x X). 

Proof. First of all, it is clear that G ( X ) is closed for arbitrary unions and that 
0 6 G(X). Also, euxX € G(X), because 

e„xx = ( (J Xx,x) Ue', 
\ I € X / 

where e' is the set of all green-free co-vectors over UJ x X which are not cuttings. 
Hence, the lemma will be proved if we show that the composition of two good 
co-relations remains good. 

Therefore, let 

ei = и £ ь 
\ie/ / 

82 = j ^ U x ^ . j u e a , 

where £i,£2 are green-free co-relations containing no cuttings, and I, J are disjoint. 
Since • is completely distributive over U (recall Proposition 6), we have: 

= ( ( J ' x™/»,) J u ( U ^ U ' £ 2 ) ) u ( U # x^.%,) I U(£1 .£ 2 ) . 

\(i,j)€lxJ J \i€i ) \jeJ J. . 

It is easy to see that the following holds: 
yk * = i xtf' v = z> 
Xu,v Xz,t ^ v фг. 

Also, note that a со-vector which is a cutting can be composed (from the left or from 
the right) with a green-free co-vector only if the latter is a cutting, too (because 
the blue part of the considered green-free co-vector must coincide either with the 
green+blue part, or with the blue part of the cutting which it is composed with). 
Thus for all u, v £ X and m g UJ we have 

Xu,v • £2 = £i • Xu,v = 0-

Finally, it is not difficult to see that the composition of two green-free co-relations 
coincides with their intersection (because two green-free со-vectors can be composed 
if and only if they are equal), so 

£j «£2 = £l П £2, 

which is a green-free co-relation containing no cuttings. We conclude that Qi • q% 
is a good co-relation. • • 
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Now define a relation = on G(X) by 

ei = 62 if and only if (V«,1» e X)((3k e u) xku,v Q 01 e w) xi,v Q ea)-

Proposition 11. TTie relation = is a congruence of G(X) and 

3 Rel(X). 

Proo/. Define a mapping T : G{X) V(X x X ) by 

T ( e ) = { < « , « ) : ( 3 f c 6 o ; ) x £ , „ C e } . 

It is obvious that the kernel of T coincides with = . Thus it remains to prove that 
T is a surjective morphism of complete semirings. 

First, for a C X x X define 

U 
(u,v)e<r 

According to the above definition, T(g„) = o. Hence, T is surjective. 
Now we prove that T is completely additive. We have: 

T(U<ft) = : (3fc € £ U<6/ ft}-
But all the co-relations are good, which means that if € then Xu~«p — ft-
Therefore, if & ^ 0 > t h e n C g u and so Xu,v Q Uig/ ft implies xt,v Q 
for some io G / . Clearly, the converse of the latter conclusion is true, which amounts 
to say that T ( U i 6 / e<) = Uie/ T(ft)-

Finally, let QI = 9i U E\ and g2 = 92 U e2 be two good co-relations, where 
9\,92 are closed sets of cuttings and ei ,e2 are green-free co-relations containing no 
cuttings. As seen in the previous lemma, we have 

Bi • 92 = (9i *02 ) U (ex •e2) . 

Now we have the following chain of equivalences: 

(u,v) er(ei*g2) <S> (3k e w) xi,v C Qi • g2 

(3k6w)XtiVC01»ff2 

& (3 z € X)(3p, q € u)(xPUt2 C 6X C gx A x l „ C 0 2 C g2) 
(3z e * ) « " > * ) € T ( e i ) A <z,v) € T i f t ) ) 

«> < u , i ; ) G T ( e i ) o T ( e 2 ) 

So, T ( g i • g2) = o T(g2), and the proposition is proved. • 

Finally, it is well known that any direct product of full Kleene relation algebras 
(possibly with converse) is a represetable Kleene algebra. Namely, such a direct 
product (say, of Rel v (X j ) , i e I) can be embedded into the full Kleene algebra of 
the relations on [ J i 6 / Xi , the coproduct (disjoint union) of the base sets X{. In the 
last assertion of this paper, we note that the direct product of co-relation algebras 
cRelu (Xj) can be in a similar fashion represented by co-relations. 
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Proposition 12. Any direct product of algebras of the form cRelu(Ji) is. em-
beddable into an algebra of that form. More precisely, the direct product of algebras 
cRelu(X i), i e I, is isomorphic to a subalgebra o/cRelu(]J i € i A^), where \JiefXi 
denotes the coproduct of the sets Xi. 

Proof (in outline). In order to relax the notation, we may assume that the 
sets Xi are already disjoint and argue that Hie/ c R- e l U (^ i ) is embeddable into 
cRelupO, where X = \JieI X{. Consider the mapping <p : fliej-V(3Xi) -> V{ZX) 
given by 

¥>««!< = i € I)) = U Si-
i€l 

One shows in a routine way that (p is an injecitve morphism of complete semirings 
with involution. ® • 

Therefore, the embedding $ from Proposition 8 composed with the embed-
ding <p from the above proposition gives an embedding of the language. algebra 
Lang'(£, £ ' ) into cRelu(S), where 5 is a set of cardinality |£| -I- No-

4. A n Open P r o b l e m 

The algebras cRelu(X), whose identities were investigated in this paper, turned 
up as categorical duals of Kleene relation algebras (with converse).. However, we 
can consider another kind of co-relation algebras which arise from the analogy with 
relation algebras of Tarski (by droping the operation of iteration and taking all of 
the Boolean operations): 

cR(A') = ( P ( 3 x ) , U , n , - , 0 , 3 - \ . , U , ^ > -

It is well known (Monk, 1964) that the variety generated by the corresponding re-
lation algebras is not finitely axiomatizable. Also, several explicite axiomatizations 
are known. Here we raise the question whether the same is true for. the variety 
determined by algebras of the form cR(X). First of all, it would be interesting.to 
give any nontrivial equational axiomatization for this variety (or any other descrip-
tion of its equational theory). Of course, we have proved in the present paper that 
the equations of co-relation algebras cR(X) not involving n,~, 3 X , are just those of 
idempotent unitary semirings with involution. However, the equations of relation 
and co-relation algebras which contain the above symbols are not equal, since the 
famous Tarski identity: 

(x v o (xo~y)) n y — 0, 

does not hold for co-relations (see [20]). 

Aknowledgement. The author is grateful to Dragan Masuiovic for providing 
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ternary co-relations. 



594 Igor Dolinka 

References 

[1] Aczel, P. and Mendler, N. P., A final coalgebra theorem. In: eds. D. H. Pitt et 
al., "Category Theory and Computer Science", Lecture Notes Comput. Sci., 
Vol. 389, pp. 357-365, Springer-Verlag, 1989. 

[2] Bloom, S. L. and Esik, Z., "Iteration Theories: The Equational Logic of It-
erative Processes". EATCS Monographs on Theoretical Computer Science, 
Springer-Verlag, 1993. 

[3] Bloom, S. L. and Esik, Z., Equational axioms for regular sets. Math. Struct. 
Comput. Sci. 3 (1993), 1-24. 

[4] 'Bloom, S. L., Esik, Z. and Stefanescu, Gh., Notes on equational theories of 
relations. Algebra Universalis 33 (1995), 98-126. 

[5] Bloom, S. L. and Esik, Z., The equational logic of fixed points. Theoret. Com-
put. Sci. 179 (1997), 1-60. 

[6] Conway, J. H., "Regular Algebra and Finite Machines". Chapman & Hall, 
1971. 

[7] Crvenkovic, S. and Madarász, R. Sz., On Kleene algebras. Theoret. Comput. 
Sci. 108 (1993), 17-24. 

[8] Crvenkovic, S., Dolinka, I. and Esik, Z., The variety of Kleene algebras with 
conversion is not finitely based. Theoret. Comput. Sci. 230 (2000), 235-245. 

[9] Csákány, B., Completeness in coalgebras. Acta Sci. Math. (Szeged) 48 (1985), 
75-84. 

[10] Drbohlav, K., On quasicovarieties. Acta Fac. Rerum Natur. Univ. Comenian. 
Math., Special Issue (1971), 17-20. 

[11] Eilenberg, S. and Moore, J. C., Adjoint functors and triples. Illinois J. Math. 
9 (1965), 381-398. 

[12] Ésik, Z., Group axioms for iteration. Inform. Comput. 148 (1999), 131-180. 

[13] Esik, Z. and Bernátsky, L., Equational properties of Kleene algebras of relations 
with conversion. Theoret. Comput. Sci. 137 (1995), 237-251. 

[14] Jacobs, B., Objects and classes, co-algebraically. In: eds. B. Freitag et al., 
"Object-Orientation with Paralelism and Persistance", pp. 83-103, Kluwer 
Academic Publishers, 1996. 

[15] Jacobs, B. and Rutten, J. J. M. M., A tutorial on (co)algebra and 
(co)induction. EATCS Bull. 62 (1997), 222-259. 



On Kleene Algebras of Ternary Co-Relations 595 

[16] Jónsson, B., The theory of binary relations. In: eds. H. Andréka, J. D. Monk 
and I. Németi, "Algebraic Logic" (Budapest, 1988), Colloq. Math. Soc. János 
Bolyai, Vol. 54, pp. 245-292, North-Holland, 1991. 

[17] Kleisli, H., Every standard construction is induced by a pair of adjoint functors. 
Proc. Amer. Math. Soc. 16 (1965), 544-546. 

[18] Kozen, D., A representation theorem for models of '-free PDL. Report RC 
7864, IBM Research, Yorktown Heights, 1979. 

[19] Krob, D., Complete systems of B-rational identities. Theoret. Cornput. Sei. 89 
(1991), 207-343. 

[20] Masulovic, D., "The Lattice of Clones of Co-Operations" (in Serbian). Ph.D. 
thesis, viii+216 pp., University of Novi Sad, 1999. 

[21] McKenzie, R. N., McNulty, G. F. and Taylor, W. F., "Algebras, Lattices, 
Varieties", Vol. I. Wadsworth & Brooks/Cole, 1987. 

[22] Pöschel, R. and Rößiger, M., A general Galois theory for co-functions and co-
relations. Preprint MATH-AL-11-1997, Technische Universität Dresden, 1997. 

[23] Redko, V. N., On defining relations for the algebra of regular events (in Rus-
sian). Ukrainian Math. J. 16 (1964), 120-126. 

[24] Reichel, H., An approach to object semantics based on terminal co-algebras. 
Math. Struct. Cornput. Sei. 5 (1995), 129-152. 

[25] Rutten, J. J. M. M., Universal coalgebra: A theory of systems. CWI Technical 
Report CS-R9652, 1996. 

Received February, 2000 


