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Unusual Algorithms for Lexicographical 
Enumeration* 

Pál Dömösi t 

Abstract 

Using well-known results, we consider algorithms for finding minimal 
words of given length n in regular and context-free languages. We also show 
algorithms enumerating the words of given length n of regular and context-
free languages in lexicographical order. 

1 Introduction 
E. Mákinen [8] described algorithms to find the lexicographically minimal words 
for regular and context-free grammars. Using well-known recent results in [1, 2, 3, 
6, 7, 9], we show similar algorithms. E. Mákinen [8] presents also an algorithm to 
enumerate the words of a regular language in lexicographical order. We give another 
algorithm for lexicographical enumeration of regular languages. In addition, using 
an extension of the well-known CYK-algorithm, we show an algorithm to enumerate 
the words of length n of a context-free language in lexicographical order. Using 
the well-known Valiant algorithm, see [11, 5], a little refinement of our solution is 
attainable. 

2 Preliminaries 
A word (over £ ) is a finite sequence of elements of some finite non-empty set £. We 
call the set E an alphabet, the elements of £ letters. If u and v are words over an 
alphabet E, then their catenation uv is also a word over E. Then we also say that 
u is a prefix of uv. In particular, for every word u over E, u A = \u = u, where A 
denotes the empty word. Given a word u, we define u° = A, « " = un~1ií, n > 0, 
u* = {un | n > 0} and u+ =u*\ {A}. In addition, we put E™ = {w G E | = n}. 

The length |iu| of a word w is the number of letters in w, where each letter is 
counted as many times as it occurs. Thus |A| = 0. By the free monoid E* generated 
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by £ we mean the set of all words (including the empty word, A) having catenation 
as multiplication. We set E + = £* \ {A}, where the subsernigroup E + of E* is said 
to be free semigroup generated by E. Subsets of E* are referred to as languages over 
E. Given a set E, let card(E) denote the cardinality of E. A language L C E* is 
said to be k-slender if card{w £ L | |u>| = n } < k, for every n > 0. A language is 
slender if it is ¿-slender for some positive integer k. A 1-slender language is called 
thin language. A language L is said to be a union of single loops (or, in short, USL) 
if for some positive integer k and words Ui,Vi,W{, 1 <i<k, 

k 
(*) L = (J UiV*Wi. 

i=1 

L is called a union of paired loops (or UPL, in short) if for some positive k and 
words Ui,Vi,Wi, Xi, yi, 1 <i < k, 

k 
(**) L = {Jiuivfwixfyi I n > 0}. 

¿=i 

For a USL (or UPL) language L the smallest k such that (*) (or (**)) holds is 
referred to as the USL-index (or UPL-index) of L. A USL language L is said to be 
a disjoint union of single loops (DUSL, in short) if the sets in the union (*) are 
pairwise disjoint. In this case the smallest k such that (*) holds and the k sets are 
pairwise disjoint is referred to as the DUSL-index of L. The notions of a disjoint 
union of paired loops (DUPL) and DUPL-index are defined analogously considering 
(**). We shall use the following well-known results. 

Theorem 2.1 [9] The next conditions, (i)-(iii), are equivalent for a language L. 
(i) L is regular and slender. 

(•ii) L is USL. 
{Hi) L is DUSL. 

• 

Theorem 2.2 J'[9] Every UPL language is DUPL, slender, linear and unambiguous. 

• 

Theorem 2.3 [6, 10] Every slender context-free language is UPL. • 

We will use the following extension of Theorem 2.3. 

Theorem 2.4 [7] A given slender context-free language can be effectively written 
as a disjoint union of (finitely many) paired loops. • 
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The next statement is a direct consequence of the constructive proof of Theorem 
2.1 in [9]. 

Theorem 2.5 A given slender regular language can be effectively written as a dis-
joint union of (finite many) single loops. • 

3 Finding minimal words of given length and enu-
meration of regular languages 

Given a total order -< on E, a lexicographical order on E* is defined as an extension of 
-< to E* such that for any pair u, v £ £*, u -< v if and only if either v = uu', u' £ £+ 

or u — wxu', v = wyv', x < y for some w, u', v' £ E* and x, y £ E. We will denote 
by first(E) the first element of E under -< . Moreover, for every u £ E* we put 
next(u) = min{i; | v £ E*,u -< i>}. In addition, we put Pref(L) = {i; | 3u £ 
L, v' £ E = vv'}. Thus Pref(L) denotes the set of all prefixes of words in L. 

Given a language L, the language Lmin is defined by taking from all words of 
L of the same length only the first one in lexicographic order. Of course, L m j „ is a 
thin language. We shall use the following results. 

Theorem 3.1 [1, 4] F°r every regular language L, the language Lmin is regular, 
and a regular grammar for it can be effectively constructed. • 

Theorem 3.2 [2] For every context-free language L, the language Lmin is context-
free. Moreover, given a context-free grammar generating L, a context-free grammar 
for Lmin co,n be effectively constructed. • 

Using Theorem 3.1 and Theorem 3.2, together with Theorem 2.5 and Theorem 
2.4, the following algorithms can be constructed. 

Algorithm regmin 
Input: A regular grammar G = (V, E, P, S) and a total order -< on E. 
Output: A finite language LG = {ui,Vi,w1}... ,un(G),vn(G),wn(G)} having 

n(G) 

Lmin = (J {UiV?Wi | n > 0}. 
»=l 

End of algorithm regmin 

Algorithm cfmin 
Input: A context-free grammar G — (V, E, P, S) and a total order on E. 
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Output: A finite language LG = {ui,vuwuxi,yi,... ,un(G),vn{G),w.n{G).,xn{G). 
Vn(G)} having 

n(G) 

Lmin - ( J {UiViWiXiVi I Tl > 0 } . 
¿=1 

End of algorithm cfmin 

On the basis of the above observations, we now show how to construct the 
following algorithms. 

Algorithm R E G M I N 
Input: A regular grammar G = (V, E,P, S), a total order -< on E and a positive 
integer n. 
Output: A finite language LG = {u i ,u i , iu i , . . . ,un(G),vn(G),wn(G)} (having 
Lmin = U t G i ] { ^ > i I « > 0}) and 

• a pair k, I of positive integers such that 1 < k < n(G) if the word of length n 
of Lmin exists and it has the form UkVekWk\ 

• an error message if Lmin has no word of length n. 

Method: Apply the algorithm regmin; k,i 0; 
for i 1 . . .n (G) do 

if the equation \uiWi \ + \vi\a = n has a positive integer solution for a 
then k i\I a; 

od 
Output: 

• k,e,ifk> 0; 

• an error message if k = 0; 

End of algorithm R E G M I N 

Algorithm CFMIN 
Input: A context-free grammar G = (V, E , P , S ) , a total order -< on E and a 
positive integer n. 
Output: A finite language La = {m, vi, wi, xx, ,..., un(G], u n ( G ) , wn{G), xn{G), 
Vn(G)} (having Lmiri = U i l ^ { u i v f w i x f y i | n > 0}) and 

• a pair k, I of positive integers such that 1 < k < n(G) if the word of length n 
of Lmin exists and it has the form UkV^w^x^yk] 

• an error message if Lmin has no word of length n. 

Method: 
Apply the algorithm cfmin; k,i 0; 
for % 4— 1. . ,n(G) do 
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if the equation \uiWiyi\ + \v{Xi\a = n has a positive integer solution for a 
then k i\ I <r- a; 

od 
Output: 

• k,e,ifk> 0; 

• an error message if k = 0; 

End of algorithm CFMIN 

It is well-known that for every pair of regular grammars G\, G2, a regular gram-
mar G having L(G) = L(G\) \ L(G2) can be effectively constructed. Therefore, by 
Theorem 3.1 and Theorem 2.5, we can consider the following idea for enumerating 
the words of length n in L(G) in lexicographical order having a regular gram-
mar G. Assume that, using REGMIN, we just get either the word of length n 
of (L(G))min or an error message that there exists no such a word in (L(G) ) m i n . 
Having the error message, we are ready. Otherwise, construct a regular grammar 
G' with L(G') = (L(G) \ (L(G))min, consider G' instead of G and use the above 
procedure again. 

In more details, we consider the following algorithm. 

Algorithm reg-enumerate 
Input: A regular grammar G = (V, £, P, S), a total order -< on E ¿nd a positive 
integer n. 
Output: 

• Lcj = {ujA,vjA,wjA ... 3 = 
(having m = card{p £ L(G) | \p\ = n} , Lj = U"!?^ uj,ivj,iwj,i> j = l,...,m 
with L0 = L(G), Li = Lmin, Lk = Lk~2 \ ¿¿t-i , k = 2 , . . . ,m, such that 

1 < kj < 
N(GJ), \Uj,kiV^k.Wjtk] | = n, j = 1 , . . . , m , U-I^y^Wi^ < U2MV2Mw2M 
- < . . . < Um,kmv l^kmwmtkm) if L(G) has a word of length n; 

• an error message otherwise. 

Method: 
P = ' no'; 
while R E G M I N has no error message do 
P =' yes'; 
Apply the algorithm REGMIN; 

Construct a regular grammar G1 having L(G') = (L(G) \ (L(G))min\ G G'\ 
od 

if P =' no' then Output: an error message; 
End of algorithm reg-enumerate 
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4 Enumeration of context-free languages 
In [8] it is conjectured that there exists no efficient enumeration algorithm for 
the lexicographic enumeration of context-free languages. We can provide an algo-
rithm for enumeration of context-free languages, running in polynomial time and 
space. First we consider the following modified version of CYI< algorithm to decide 
whether a word is a prefix of a word of given length of the language. 

Algorithm M C Y K 
Input: A context-free grammar G = ( K E , P , S ) given in Chomsky normal form, 
a word u = £>i ... bm £ (bi,... ,bm 6 E), and a positive integer n. 
Output: a variable P having the value 

• P — 'yes', if u is a prefix of an n-length word in L(G)\ 

• P ='no', otherwise. 

Method: 
if m > n then P ='no' else do 
for i <- l . . . n do 

if i < m 
then Viti <— {A | A -4 bi is a production } 
else Viti <— {A | 3a € S such that A a is a production } 

od 
for j 2 . . . n do 

for i •<— 1 . . . n — j + 1 do 
V i j < - 0; 

for k <- 1 . . . j — 1 do 
V^ Vij U {̂ 4 | A —> BC is a production, B is in V^t and C is in Vi+k,j-k} 
od 

od 
od 

if 5 6 VUn then P ='yes' 
else P ='no !; 

od 
Output: P; 

End of algorithm M C Y K 

Now we construct an algorithm to enumerate the words of length n in context-
free languages. We consider the following idea for such an algorithm. Assume we 
just output u = aia,2 • • -an and are looking for the next word in lexicographical 
order of length n in L(G). This word, when it exists, has the form 

v = ax a? • • • a,ibi+ibi+2 • • • bn, 

for some 0 < i < n — l ,a{+i -< Clearly, when v exists, we have 

i = max{ j | 0 < j < n — 1, aia2 • • -aj is the prefix of a word w 6 L(G) such that 
|uj| = n and the (j + l )si letter of u; is bigger than aj+1}, 
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bi+i = min{6 G E | ai+i -< b and a^a2 • • • aib G Pref(L(G) D £")}, 

and, for any 2 < j < n — i, 

bi+j = min{6 G E | a\a2 • • • aibi+\bi+2 • • • bi+j-\b G Pref(L(G) fl £")}. 

Now, the algorithm should be clear; find first i and bi+i and then, in order, bi+2, 
bi+3, ..., bn. Notice that v exists iff i exists and, when both do, we look for each 
bj knowing that there must be one. 

Algorithm cf-enumerate 
Input: A context-free grammar G = (V, E,P, 5) , a total order -< on E and a 
positive integer n. 
Output: 

• The words of length n in L(G) in lexicographical order if L(G) has a word of 
length n; 

• an error message otherwise. 

Method: 
Determine the minimal word pmin(G,n) of length n in L(G), if such a word 

exists (apply either methods in [8] having 0(n2) time complexity or the algorithm 
CFMIN); 
if there exists no word of length n in L{G) then P ='no'; 
Output: an error message; 
else do ai . . . an f - pmin(G,n)', P ='yes' od 
while P ='yes' do 

Output: ai . . . an ; 
P = W ; TO n + 1; 

while P ='no' and m > 1 do 
TO 4— to — 1; b <— am\ 

while P = 'no ' and next(b) G E do 
b next(b)\ bm b; 

if TO > 1 then apply M C Y K for the inputs a^ . . . am_i&m and n; 
else apply M C Y K for the inputs bi and n; 

od 
od 
if P ='yes' then do 

if m > 1 then 6i . . . 6m_i 4— ai . . . aTO_i; 
while m < n do 

TO TO + 1 
b <- first(Ti); bm 4- b\ 
Apply M C Y K for the inputs bx... bm and n; 

while P = 'no ' and next(b) G E do 
b 4— next{b)\ bm <— 6; 

Apply M C Y K for the inputs b\ ... bm and n; 
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od 
od 

ai . . . a„ 61 . . . bn \ 
od 

od 
End of algorithm cf-enumerate 
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