Acta Cybernetica 14 (2000) 461-468.

Unusual Algorithrhs for Lexicographical
Enumeration®

P&l Domosi |

Abstract

Using well-known results, we consider algorithms for finding minimal
words of given length n in regular and context-free languages. We also show
algorithms enumerating the words of given length n of regular and context-
free languages in lexicographical order.

1 Introduction

E. Makinen [8] described algorithms to find the lexicographically minimal words
for regular and context-free grammars. Using well-known recent results in [1, 2, 3,
6, 7, 9], we show similar algorithms. E. Makinen [8] presents also an algorithm to
enumerate the words of a regular language in lexicographical order. We give another
algorithm for lexicographical enumeration of regular languages. In addition, using
an extension of the well-known CYK-algorithm, we show an algorithm to enumerate
the words of length n of a context-free language in lexicographical order. Using
the well-known Valiant algorithm, see [11, 5], a little refinement of our solution is
attainable.

2 Preliminaries

A word (over ¥) is a finite sequence of elements of some finite non-empty set X.. We
call the set ¥ an alphabet, the elements of ¥ letters. If u and v are words over an
alphabet ¥, then their catenation uv is also a word over . Then we also say that
w is a prefiz of uv. In particular, for every word u over &, uA = du = u, where A
denotes the empty word. Given a word u, we define u® = A, v = u* lu, n > 0,
u* = {u™|n >0} and u™ = u*\ {A}. In addition, we put £" = {w € T | |w| = n}.

The length |w| of a word w is the number of letters in w, where each letter is
counted as many times as it occurs. Thus |A| = 0. By the free monoid ©* generated

*The research has been supported by the Academy of Finland grant 137358 and the Hungarian
National Foundation for Scientific Research grants OTKA-T019392 and OTKA-T030140.

tL. Kossuth University, Institute of Mathematics and Informatics, 4032 Debrecen, Egyetem
tér 1, Hungary, domosi@math.klte.hu

461

462 Pal Démési

by & we mean the set of all words (including the empty word \) having catenation
as multiplication. We set ©¥ = £*\ {A}, where the subsemigroup £* of ¥~ is said
to be free semigroup generated by X. Subsets of £ are referred to as languages over
Y. Given a set I, let card(Z) denote the cardinality of ¥. A language L C ¥~ is
said to be k-slender if card{w € L | |w| = n} <k, for every n > 0. A language is
slender if it is k-slender for some positive integer k. A 1-slender language is called
thin language. A language L is said to be a union of single loops (or, in short, USL)
if for some positive integer k and words u;,v;, w;, 1 <1 < k,

k
(¥*) L= U UU; Wi
. 1=1

L is called a union of paired loops (or UPL, in short) if for some positive k£ and
words Uq, Y4, Wey T,y Y4, 1 _<_ i S k:

k
() L= |J{uwfwiz?y; | n > 0}.

i=1

For a USL (or UPL) language L the smallest k such that (x) (or (*x)) holds is
referred to as the USL-index (or UPL-index) of L. A USL language L is said to be
a disjoint union of single loops (DUSL, in short) if the sets in the union () are
pairwise disjoint. In this case the smallest k such that () holds and the k sets are
pairwise disjoint is referred to as the DUSL-index of L. The notions of a disjoint
union of paired loops (DUPL) and DUPL-index are defined analogously considering
(#%). We shall use the following well-known results.

Theorem 2.1 [9] The next conditions, (i)-(iii), are equivalent for a language L.
(2) L is regular and slender.
(i4) L is USL.
(i13) L is DUSL.
O
Theorem 2.2779] Every UPL language is DUPL, slender, linear and unambiguous.

a
Theorem 2.3 [6, 10] Every slender context-free language is UPL. O

We will use the following extension of Theorem 2.3.

Theorem 2.4 [7] A given slender context-free language can be effectively written
as a disjoint union of (finitely many) paired loops.]

Unusual Algorithms for Lexicographical Enumeration 463

The next statement is a direct consequence of the constructive proof of Theorem
2.1 in [9].

Theorem 2.5 A given slender regular language can be effectively written as o dis-
joint union of (finite many) single loops. O

3 Finding minimal words of given length and enu-
meration of regular languages

Given a total order < on X, a lezicographical order on ¥.* is defined as an extension of
< to ©* such that for any pair u,v € £*, u < v if and only if either v = wu/, v’ € &%
oru = wzu', v=wyv, x <y for some w,u’,v' € L* and z,y € . We will denote
by first(X) the first element of ¥ under < . Moreover, for every u € £* we put
next(v) = min{v | v € ¥*,u < v}. In addition, we put Pref(L) = {v | Ju €
L, v' € ¥*,u =vv'}. Thus Pref(L) denotes the set of all prefixes of words in L.

Given a language L, the language L., is defined by taking from all words of
L of the same length only the first one in lexicographic order. Of course, L;, is a
thin language. We shall use the following results.

Theorem 3.1 [1, 4] For every regular language L, the language Ly is regular,
and a regular grammar for it can be effectively constructed. O

Theorem 3.2 [2] For every context-free language L, the language Lpyin is context-
free. Moreover, given a context-free grammar generating L, a context-free grammar
for Lyin can be effectively constructed. O

Using Theorem 3.1 and Theorem 3.2, together with Theorem 2.5 and Theorem
2.4, the following algorithms can be constructed.

Algorithm regmin
Input: A regular grammar G = (V, £, P, S) and a total order < on X.
Output: A finite language Lg = {u1,v1, w1, . -, Un(q), Vn(C), Wn(c)} having

n(G)
Loin = U {uiw; | n > 0}.

i=1
End of algorithm regmin

Algorithm cfmin
Input: A context-free grammar G = (V, %, P,.S) and a total order < on Z.

464 P&l Démési

Output: A finite language Lg = {u1,v1, W1, 21,1, - - Un(G), Un(G) Wn(G)s Tn(G)
Yn(G)} having
n(G)
Lmin = U {wivfwizly; | n > 0}.
i=1

End of algorithm cfmin

On the basis of the above observations, we now show how to construct the
following algorithms.

Algorithm REGMIN B
Input: A regular grammar G = (V,%, P,S), a total order < on ¥ and a positive
integer n.
Output: A finite language Lo = {w1,v1,w1,...,Un(@)> Un(G), Wn(c)} (having
Linin = U {usvw; | n > 0}) and

e a pair k, £ of positive integers such that 1 < k < n{G) if the word of length n
of Ly exists and it has the form ugviwg;

e an error message if L,,;, has no word of length n.

Method: Apply the algorithm regmin; &k, ¢ « 0;

fori+ 1...n(G) do
if the equation |u;w;| + |v;la = n has a positive integer solution for a
then k « ;£ « «;

od

Output:

o k0 if k>0;
e an error message if k = 0;

End of algorithm REGMIN

Algorithm CFMIN
Input: A context-free grammar G = (V,%, P, S), a total order < on ¥ and a
positive integer n.
Output: A finite language Lg = {u1,v1, w1, Z1,¥1,- .- s Un(G)» Un(G)> Wn(G)» Tn(G)>

n(G)
=1

Yn(cy} (having Ly = U] {uwwizly; | n > 0}) and

e a pair k, ¢ of positive integers such that 1 < k < n(G) if the word of length n
of Lyin exists and it has the form ugviwgztyy;

e an error message if L,,;, has no word of length n.
Method:

Apply the algorithm cfmin; k,¢ « O;
for i+ 1...n(G) do

Unusual Algorithms for Lexicographical Enumeration 465

if the equation |u;w;y;| + |vizi|a = n has a positive integer solution for «
then k + ;¢ « o

od

Output:

e k, 0, if k>0
e an error message if k = 0;

End of algorithm CFMIN

It is well-known that for every pair of regular grammars G, G'3, a regular gram-
mar G having L(G) = L(G1) \ L(G2) can be effectively constructed. Therefore, by
Theorem 3.1 and Theorem 2.5, we can consider the following idea for enumerating
the words of length n in L(G) in lexicographical order having a regular gram-
mar G. Assume that, using REGMIN, we just get either the word of length n
of (L(G))min or an error message that there exists no such a word in (L{(G))min-
Having the error message, we are ready. Otherwise, construct a regular grammar
G' with L(G") = (L(G) \ (L(G))min, consider G’ instead of G and use the above
procedure again. :

In more details, we consider the following algorithm.

Algorithm reg-enumerate
Input: A regular grammar G = (V, X, P, S), a total order < on ¥ and a positive
integer n.
Output:

* Lo, = {wn,05,0,wi0 - Win(6,), Vin(G,) Wim(Gp b Kislis J = 1,...,m
(having m = card{p € L(G) | |p| = n}, L; = Un(cj)

* y—
im1 Wi J=1,...,m

with Lo = L(G), Ll = Lmin, Lk = Lk_g \Lk—l, k= 2,...,m, such that

1 < k; <

e _ - ¢ ¢
n(Gj), Twjk; 00 wik; | =1y § = 1,00, U g VT Wik, < U2,k Uy, Wa ks
<. um,kmvfn'"kmwm,km) if L{G) has a word of length n;

e an error message otherwise.

Method:
P =" no;
while REGMIN has no error message do
P =" yes';
Apply the algorithm REGMIN,;
Construct a regular grammar G’ having L(G') = (L(G) \ {L(G))min; G + G;
od
if P =' no’ then Qutput: an error message;
End of algorithm reg-enumerate

466 Pail Démdsi

4 Enumeration of context-free languages

In [8] it is conjectured that there exists no efficient enumeration algorithm for
the lexicographic enumeration of context-free languages. We can provide an algo-
rithm for enumeration of context-free languages, running in polynomial time and
space. First we consider the following modified version of CYK algorithm to decide
whether a word is a prefix of a word of given length of the language.

Algorithm MCYK
Input: A context-free grammar G = (V, X, P, S) given in Chomsky normal form,
awordu =by...bym € 7 (b1,...,b,n € X), and a positive integer n.
Output: a variable P having the value

e P =’yes’, if u is a prefix of an n-length word in L(G);
e P =’no’, otherwise.

Method:
if m > n then P =’no’ else do
fori+1...ndo
ifi<m)
then V;; + {A]| A — b; is a production }
else V;; « {A]3a € T such that A — a is a production }
od
forj+2...ndo
fori+1...n—j3+1do
Vij < 0
fork+«1...5—~1do
Vij < VijU{A| A — BC is a production, B is in Vi and C is in Viyg j—x}
od
od
od
if S € Vi, then P =’yes’
else P ='no’;
od
Output: P;
End of algorithm MCYK

Now we construct an algorithm to enumerate the words of length n in context-
free languages. We consider the following idea for such an algorithm. Assume we
just output u = a a2 ---a, and are looking for the next word in lexicographical
order of length n in L(G). This word, when it exists, has the form

vV =a10s - aibip1bipa - by,
for some 0 <1 <n—1,a;31 < biyy. Clearly, when v exists, we have

i=max{j| 0<j<n—1,a1a---a; is the prefix of a word w € L(G) such that
|w| = n and the (j+1)st letter of w is bigger than aj41},

Unusual Algorithms for Lexicographical Enumeration 467

bip1 = min{b € T | a1 < band ajaz---a;b € Pref(L(G)NE™)},

and, forany 2 <7 <n -1,
bi+j = mln{b ey [a1as - aibi+1bi+2 cee bi+j_1b S PTCf(L(G) n En)}

Now, the algorithm should be clear; find first ¢ and b; 1 and then, in order, b;,.2,
biy3, .- -, by. Notice that v exists iff ¢ exists and, when both do, we look for each
b; knowing that there must be one.

Algorithm cf-enumerate
Input: A context-free grammar G = (V,X, P,S), a total order < on ¥ and a
positive integer n.
Output:

e The words of length n in L(G) in lexicographical order if L(G) has a word of
length n;

e an error message otherwise.

Method:

Determine the minimal word pp,in(g.n) Of length n in L(G), if such a word
exists (apply either methods in [8] having O(n?) time complexity or the algorithm
CFMIN);
if there exists no word of length n in L(G) then P ="no’;
Output: an error message;
else do a; ...an ¢ Prin(a,n); F =yes’ od
while P =’yes’ do

Output: a; ...an;

P ="no’;m ¢ n+1;

while P ='no’ and m > 1 do
mé—m—1; b anp;
while P =’no’ and next(b) € £ do
b next(b); by « b;
if m > 1 then apply MCYK for the inputs a; . ..am—1bm and n;
else apply MCYK for the inputs b; and n;
od
od
if P =’yes’ then do
if m > 1 then b1 ...bm__1 —aj...qm-1;
while m < n do

m+—m—+1

b« first(X); by, + b;

Apply MCYX for the inputs b; ... b, and n;

while P ='no’ and nezt(b) € £ do
b « next(b); b, « b;
Apply MCYK for the inputs b; ... b, and n;

468 Pail Démési

od
od
“ay...qn (—bl...bn;
od
od
End of algorithm cf-enumerate

Acknowledgement. The author expresses his gratitude to Professor Arto Salo-
maa for his kind invitation and hospitality.

The author thanks the anonymous referee for pointing out the errors in a pre-
liminary version which have improved the clarity and the quality of the paper.

References

{1] M. Andrasiu, G. Pdun, J. Dassow, A. Salomaa, Language-theoretic problems
arising from Richelieu cryptosystems, Theoret. Comput. Sci., 116 (1993)
339-357.

(2] J. Berstel, L. Boasson, The set of minimal words of a context-free language
is context-free, J. Comput. Syst. Sci., 55 (1997) 477-488.

(3] J. Dassow, G. P3un, A. Salomaa, On thinness and slenderness of L lan-
guages, Bull. EATCS 49 (1993), 152-158.

[4] S. Eilenberg, Automata, languages and machines, Vol A, Academic Press,
New York, 1974.

[5] K. Hermann, G. Walter, A simple proof of Valiant’s lemma, R.A.LR.O.
Inform. Theor. Appl. 20 (1986) 183-190.

[6] L. Ilie, On a conjecture about slender context-free languages, Theoret. Com-
put. Sci., 132 (1994) 427-434.

[7] L. Ilie, On lengths of words in context-free languages, Theoret. Comput. Sci.,
to appear.

[8] E. Mikinen, On lexicographic enumeration of regular and context-free lan-
guages, Acta Cybernet., 13 (1997) 55-61.

[9] G. Paun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61
(1995) 257-270.

(10} D. Raz, Length considerations in context-free languages, Theoret. Comput.
Sci. 183 (1997) 21-32. '

(11] L. Valiant, General context-free recognition in less than cubic time, J. Com-
put. Syst. Sci. 10 (1975) 308-315.

Received June, 1998

