
Acta Cybernetica 14 (1999) 285-302.

Object-Oriented Model for Partially Separable
Functions in Parameter Estimation*

Jaakko Järvi^

Abstract
In parameter estimation, a model function depending on adjustable pa-

rameters is fitted to a set of observed data. The parameter estimation task
is an optimisation problem, which needs a computational kernel for evalu-
ating the model function values and derivatives. This article presents an
object-oriented framework for representing model functions, which are par-
tially separable, or structural. Such functions are commonly encountered,
e.g., in spectroscopy.

The model is general, being able to cover a range of varying model func-
tions. It offers flexibility at runtime allowing the construction of the model
functions from predefined component functions. The mathematical expres-
sions are encapsulated and a close mapping between mathematics and pro-
gram code is preserved. Also, all interfacing code can be written indepen-
dently of the particular mathematical formula. These properties together
make it easy to adapt the model to different problem domains: only tightly
controlled changes to the program code are required.

The paper shows how derivatives of the model function can be computed
using automatic differentiation relieving the programmer from writing explicit
analytical derivative codes.

The persistence of the objects involved is discussed and finally the com-
putational efficiency of the function and derivative evaluation is addressed.
It is shown that the benefits of the object-oriented model, namely the higher
abstraction level and increased.flexibility, are achieved with a very moderate
loss of performance. This is demonstrated by comparing the performance
with low-level tailored C-code.

1 Introduction
Even though object-orientation (0 0) has become the dominating programming
paradigm, it is quite slowly adopted to numerical applications, mainly because of
the poor efficiency of 0 0 programs in numerical codes. The progress in program-
ming techniques and compilers is changing this situation and makes it possible to

"This work was supported by the Academy of Finland, grant 37178.
tTurku Centre for Computer Science, Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland,

email: jaakko.jarvi@cs.utu.fi

285

mailto:jaakko.jarvi@cs.utu.fi

286 .Jaakko -Jarvi

take advantage of 0 0 in numerical codes without a significant performance penalty
[16]. This is demonstrated in this paper describing an 0 0 model for parameter es-
timation of structural, partially separable functions.

The task of modelling data is commonly encountered in numerous application
fields. The goal is to fit a model that depends on adjustable parameters to a set of
observed data. A cost function, such as the sum of squared differences, is chosen to
measure the agreement between the model and data. This function is minimised by
adjusting the parameters of the model according to some optimisation algorithm.

The model can be based on some underlying theory about the data or be just a
sum of convenient functions, such as polynomials. This article focuses on partially
separable model functions, where the function is a sum of component functions.
e.g., a spectrum consisting of a sum of spectral lines. The 0 0 model presented
in this article was developed while working on nuclear magnetic resonance (NMR)
spectra estimation. Hence, the article includes a case study of NMR spectral fitting
to make the ideas presented more concrete.

Numerous algorithms have been described for model fitting tasks in the liter-
ature [2, 14]. They are usually presented from the numerical analysis viewpoint,
treating the model as a plain vector of parameters and a function for evaluating
values, and derivatives. However, this flat representation of the model function is
not necessarily natural. The model may be structural consisting of several compo-
nent functions, which possibly correspond to some real life entities. The function
representation should be flexible. It should be possible to specify the composition
of the component functions at runtime, rather than fix them in the program code.
Furthermore, the function representation should be able to handle dependencies
between parameters of different component functions. The flat model representa-
tion is therefore inconvenient for the user and it is the application developer's task
to provide a conversion to and from the structural representation.

This article presents an 0 0 model to serve as an intermediate link between the
two representations described above. The model provides simultaneously an effi-
cient computational kernel for the optimisation algorithms and the structured view
for the user. It is a collection of classes comprising a core to represent structured
model functions. These core classes implement the basic structural and flat views
to the model function, as well as the mechanisms for function value and derivative
calculations.

The extension of the core model for a specific application is done by provid-
ing a simple class for each type of component function. Essentially only member
functions specifying the mathematical formulae of the component functions are re-
quired in these classes. Consequently, the particular mathematical expressions are
encapsulated and the mathematical structures of the problem domain are preserved
in the program code. This means that the necessary changes to program code are
minor and well controlled if the model is applied to a different application area.

The model utilises the concept of automatic differentiation [15] for derivative
computations. This relieves the programmer from writing analytical derivative
codes. Automatic differentiation is made transparent to the programmer with
operator overloading.

Object-Oriented Model for Partially Separable Functions 287

The core classes implement all the functionality needed for constructing compo-
nent functions and their parameters. The user interface for this task can therefore
be built solely based on the core classes. The addition of new classes to the model
hierarchy does not cause any need for changes in the interfacing code. In section
3.5 we give an example of a user interface built in this manner.

This paper also discusses the computational efficiency and shows that the over-
head arising from the higher abstraction level and greater runtime flexibility of
the 0 0 model is very moderate compared with a low-level C-code implementation.
Persistence, i.e., the ability to store and retrieve the objects of the model is also
considered.

The crucial parts of the model are presented using C + + language, but the
model can be implemented in any language supporting inheritance, dynamic bind-
ing and operator overloading. However, the test runs were performed using a C + +
implementation.

There are few descriptions of using object orientation together with parameter
estimation in the literature. Related work can be found from [11, 17] containing
general descriptions of computer systems sharing some similarities with our model.
For description of an NMR analysis software built using a variant of the object
oriented model presented here, see [10].

2 Parameter estimation problem
The task of fitting a parametric model function to a set of observed data points
can be seen as minimisation of a cost function describing the distance between the
model and the data. A common choice for the cost function is the sum of squares
function. This least-squares model fitting problem can be stated as follows:

Let y(xi),i = 1 , . . . ,m be a set of observed data points, p = (pi , . . . ,pu) be
a vector of model parameters and y(x,p) a parameter-dependent model function.
The maximum likelihood estimate of the parameters is obtained by minimising the
chi-square function

x3(p) = ¿(g(g<)" f ff (ai 'p))a, (1)

where cr¿ is the standard deviation of the measurement error of the ith data point.
This formulation leads to a possibly non-linear optimisation problem which can
be solved with iterative methods, most commonly with Levenberg-Marquardt or
Gauss-Newton algorithms [2, 14]. The idea is to improve iteratively the trial solu-
tion

Pnew = Pcurrent + Ap (2)
until an acceptable solution is found. The change Ap is determined using the
gradient and usually an approximation of the Hessian of the cost function. These
in turn require calculation of the partial derivatives ^(^.p) ^ g _ ^ 0f

288 .Jaakko -Jarvi

PCr

- i
a P

A . T

frequency

Figure 1: Example of a 31P NMR spectrum (lower curve) and a model function
(upper curve) fitted to the spectrum, a, ¡3 and 7 peak groups originate from ATP
molecules. The measured spectrum is shifted rightwards for clarity.

model function. Even though each iteration typically involves additional costs,
such as solving a linear system of equations, the calculation of the model function
and derivative values often dominate the overall cost.

The above clarifies the numerical view to the parametric estimation problem.
The algorithms developed for the estimation must be supplied with the parametric
model function, functions for the partial derivatives and the vector of modifiable
parameters. Furthermore, y(x, p) is typically calculated at several points with
constant p. In cases we are interested in, y(x, p) is partially separable, that is, y
can be represented as a sum of component functions y j , j = 1 , . . . ,n, each being
dependent on only rj parameters, where rj < < k.

2.1 N M R spectroscopy case

In NMR spectroscopy, a signal of damping oscillations (FID) emitted by certain
atomic nuclei (e.g. 31P) is observed. An NMR spectrum is a Fourier transform
of this signal. The spectrum contains peaks or resonance lines corresponding to
nuclei in various compounds. The amplitude of a single peak is proportional to the
number of equivalent nuclei resonating at that frequency. [6]

A typical 31P NMR spectrum is shown in Fig. 1. Signals of inorganic phosphate
(Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) can be identified
from the spectrum. The aim is to find the amplitudes and frequencies of the
identified compounds. This is done by quantifying the spectrum or the FID, which
is represented as a superposition of parametric functions, each corresponding to
a single resonance line. This parametric model function is fitted to the measured
signal and the results, peak intensities and frequencies, are calculated from the
model parameters. Fig. 1 also shows a fitted model.

Basically we have a structural model function consisting of a sum of compo-
nent functions, the resonance lines. Several lineshapes are encountered, the most
common being the Lorenz function described by amplitude A, frequency / , phase
(j> and damping factor d. A model of n reconance lines in a somewhat simplified
form in time domain is then

Object-Oriented Model for Partially Separable Functions 289

3 1 P N M R spectrum

Pi PCr ATP baseline /
7 A T P a A T P ß /3 A T P / \

left right left right left mid right

Figure 2: Example of a model function instance.

n
y(t, p) = AI COS(2TTfjt + HY-W (3)

3 = 1

where p = (Ai, fi, di, 4>i,..., /n> dn, <f>n). As can be seen, the sum function
is partially separable. Note that, contrary to this simplified expression, the NMR
signal can contain different lineshapes and there may be additional terms in the
sum. [5]

Dependencies between parameters of different component functions are typical
for NMR models. Consider the ATP molecule. It is known a priori that 7 peaks
altogether originate from the ATP molecules. The peaks come in three groups: a,
P and 7. These groups have equal amplitudes. The groups a and 7 consist of two
peaks each having again equal amplitudes. The /3-group consists of three peaks with
relative amplitudes 1 : 2 : 1 . The frequency differences between the peaks-inside
the groups are known and it is reasonable to assume that the damping factors of
all the peaks are equal. Taking these into consideration, the amplitudes, damping
factors and frequencies of 7 peaks are actually defined by only one amplitude, one
damping factor and three frequency parameters. The hierarchical structure of ATP
and other peaks in the NMR example spectrum is depicted in Fig. 2.

To sum up the problem setting, the estimation of the parameters of the function
y is the task to be performed. This is done by minimising the chi-square error with
respect to the measured signal, where the partial derivatives of y must be calculated
repeatedly. Function y has a hierarchical structure corresponding to the peaks in
the spectrum.

3 Object-oriented model
Significant savings in development time can be achieved with careful design of the
model function representation. In the case of structural model functions, the utmost
goal is flexibility. The number and type of the component functions may vary and
there may be common or related parameters between the component functions.

290 .Jaakko -Jarvi

The model function representation ought to be able to handle these situations with
ease and yet be able to compute the function value and derivatives efficiently.

An important issue is the user interface for managing the model functions. The
user constructs the model functions and observes or edits the model parameters.
The programmer's task to provide this interface for varying models is considerably
alleviated if the interface can be implemented without the need to know the actual
types or number of the component functions. The term user refers to a human
operator of a computer program whereas by client we denote the programmer or
code calling the functions or using other services of the object-oriented model.

The object-oriented approach provides a convenient means to build a function
representation to meet the requirements detailed above. The model consists of two
separate class hierarchies, the function hierarchy and the parameter hierarchy. An
essential component is also a library for automatic differentiation. The hierarchies
are first discussed accentuating the client view to the classes and then the process
of function value and derivative evaluation is clarified. While reading, the reader
may consult the object diagram in Fig. 6 representing the NMR example as objects
from function and parameter hierarchy.

3.1 Function hierarchy
The classes of the function hierarchy (Fig. 3) represent the component functions
of the structural model function (the nodes of the tree in Fig. 2). The base of
the hierachy is the abstract base class base-model, which defines the interface for
the function classes; each function can compute the value and derivatives at a
given point. The base.class maintains a vector of parameters and defines member
functions for accessing them. Different component functions are derived from the
base.model class. These can be either elementary or composite functions.

Composite functions maintain a list of other component functions. They simply
group other components. A composite function computes its values and derivatives
by calling the evaluation functions of its child functions. Each composite model
owns the models in its child list. The top_model class represents the whole model
function to be fitted and implements the interface to the client code. It also main-
tains the vector of the adjustable parameters used by the optimisation algorithm.

The.generic elementary-model class encapsulates the common features of the
component functions to make the derived classes as simple as possible. The tem-
plate parameter of the generic class specifies the number of parameters in the func-
tion. We will return to the details of this template in section 4. Now it suffices to
say that the elementary model holds the parameters of the mathematical function
to be calculated as automatically differentiable numbers in the proxy data member.

Fig. 4 shows a complete class definition of an example class derived from elemen-
tary .model. These derived classes contain the actual mathematical formulae of the
model function (the eval function). In addition, only two simple utility functions
(create and get_class_name) are needed. These are the only requirements for each
elementary function class and it is thus very easy to extend the function hierarchy
to cover new function types.

Object-Oriented Model for Partially Separable Functions 291

Figure 3: Model function class hierarchy.

Gamma et al. [8] have proposed some general methods for representing hierar-
chical structures in an object-oriented language. This model function hierarchy can
be seen as a version of the Composite design pattern. Regarding the implementa-
tion issues of this pattern discussed by Gamma et al. we have chosen to maintain
explicit parent references implemented as a pointer in the base_model class. We
also chose to maximise the interface of the base_model. This means that, e.g., oper-
ations for manipulating the list of children of the composite models (add, remove)
are declared and defined in base_model. This gives transparency for the client but
on the other hand the operations do not have a meaning for elementary models.
Therefore, by default, the operations add and remove fail (e.g. by raising an excep-
tion) and the functions are overridden in the composite.model class to give them
meaningful definitions.

Not all functions are shown in the class diagram of Fig. 3. The base_model class
also defines functions for adding and removing parameters as well as functions for
naming the models. The virtual constructor [8, 1] mechanism is utilised in the
object construction, requiring the two virtual functions, create and get_class-name,
to be overridden in each derived class.

292 .Jaakko -Jarvi

class lorenz : public elementary_model<4> {
public:

lorenz* create() { r e t u r n n e w lorenz(), }
string get-dass_name() { r e t u r n "lorenz"; }
enum {amp, freq, damp, ph };
double eval(double x, vector<double>& ders) {

return store_derivatives(ders,
par(amp)*cos(2*pi*par(freq)*x + par(ph)) * exp(-x*par(damp))); }

};
Figure 4: Definition of an example function derived from the elementary .model
class.

3.2 The parameter hierarchy

The parameter of a model function is basically just a value of some floating point
type. However, the same parameter value may be shared by several component
functions or there may be other dependencies between parameters. Hence, not
all parameters of the component functions store a value. As a consequence, just
representing a parameter as a floating point number is not sufficient to allow the
component models to use the parameters in a uniform way. Therefore parameters
are represented as classes from the parameter hierarchy (Fig. 5).

The base_par class is the topmost class of the hierachy and provides the com-
mon interface, the functions get-value and get_derivative for retrieving the value and
initial derivative of the parameter. The stored_par class represents actually stored,
adjustable parameters. The dependent-par class is the base class for dependent, pa-
rameters and linear.par is for expressing linear relations between parameters. Other
dependencies may be implemented by deriving new classes from the dependent-par
class.

Each dependent parameter holds a pointer to another parameter, a parent pa-
rameter. The value is resolved by asking the value of the parent recursively until
finally an instance of a stored.par class will end the recursion. The same mechanism
applies for derivatives. The get-derivative function evaluates the derivative with re-
spect to the underlying stored parameter. For stored_par this is 1 (the derivative
of a variable with respect to itself is 1), while for linear parameters we get it by
multiplying the derivative of the parent with the linear factor (see the code outlined
in Fig. 5).

All parameters also maintain a child list and a pointer to the model function
owning the parameter. The dependent parameters contain a vector of parame-
ter modifiers such as the coefficients of the linear relation. The number of these
modifiers is fixed for each derived class and given in the constructor.

Object-Oriented Model for Partially Separable Functions 293

Figure 5: Parameter hierarchy.

3.3 Enforcing the consistency
The data structure for representing structural functions consists of several objects
from the function and parameter hierarchies (Fig. 6). It is a combination of two
object trees, both maintaining child node lists and parent pointers. In addition,
the nodes of the model tree may own nodes of the parameter tree. This relation
is represented as a list in the model tree node and a corresponding owner pointer
in the parameter tree node. Furthermore, a vector of references to the adjustable
parameters in the parameter hierarchy is maintained in the topmost model function.

To be able to guarantee the consistency of such a complex structure the con-
struction and manipulation of the objects involved in the data structure must be
controlled tightly. Though not shown in the class definitions, the creation and de-
struction of models is not part of the public interface of the classes, instead the
creation of the objects is delegated to a special creator object and the destruction
is performed from within the member functions of the classes of the hierarchy.

The final data structure maintains several invariances. The child list of a com-
posite model is kept consistent with the parent references of the children. The
same applies to child/parent relation in the parameter hierarchy as well as the
parameter/owner relation between model functions and parameters.

The relation between parameters and models is further restricted. A parameter
and its descendant can not be owned by different function hierarchies. Furthermore,
the owner function of a dependent parameter must be a descendant of the owner
of the parent parameter. Some of the invariances are guaranteed automatically by

294 .Jaakko -Jarvi

Figure 6: Instantiated objects and their relations illustrated in the NMR, case
(part of the ATP molecule). Solid lines represent ownership relation, while dashed
lines are non-owning pointers. Dotted lines are parent links. The class of each
object is given in parenthesis (C=composite, L=lorenz, LP=linea-r parameter,
DP=dependent parameter, SP=stored parameter). Along the parent links of the
parameters are the formulas for computing the values of linear parameters.

Object-Oriented Model for Partially Separable Functions 295

the restricted object construction. Others are enforced by raising an exception if a
user tries to perform an operation which conflicts with an invariance condition.

3.4 Constructing model functions

The starting point of a model function is an instance of the top.model class. After
it has been created, component models can be added to its child list.

The construction of objects is delegated to a special creator object implementing
the virtual construction mechanism. The purpose of this is to make the client code,
which initiates the creation of objects, independent of the changes in the elementary
function classes.

The class of the object to be created is specified as a class name string at
runtime. This is a convenient way of initiating object construction. Since the
object creation task is most likely initiated by a user command, it is quite natural
to specify the class as a class name string. The user may, e.g., have selected the
class from a selection list.

The creation mechanism requires each class to register itself (one line of code)
and define the virtual functions get_class_name and create. Otherwise the creation
mechanism is totally independent of the derived classes: e.g., adding new elemen-
tary functions to the model hierarchy does not have any effect on the client code.
For details of the virtual construction mechanism, see [8] describing several cre-
ational design patterns.

3.5 Model editor

As an example of a user interface for specifying structural model functions, Fig.
7 shows a snapshot of the model editor we have written. The structural function
tree is visible on the left and the parameters of the currently selected model on the
right. The names of the functions as well as the parameter names and values can
be edited freely on the spot. There are buttons and menu commands for adding
and removing functions and parameters, defining relations between parameters and
storing and retrieving models. As pointed out above, the code of the model editor
is totally independent of the particular elementary function classes derived from
the model function hierarchy.

3.6 Persistence of model objects

In addition to methods for creating and modifying the structural model functions,
means for their storage and retrieval are needed. In object-oriented systems, the
ability of objects to live beyond the lifetime of the program is called persistence.
It can be achieved using object serialisation, the common approach used in com-
mercial class libraries such as MFC [12] and OWL [13]. This approach relies on
virtual construction mechanism and requires the programmer to specify reading
and writing methods for each persistent class.

296 •Jaakko Järvi

a Fie £d» £«*cb Took Help
—

— — ;
31P NMR

Pi

PCr

E ATP
B ATPGamma

left
right

S ATP-alfa
left
right

S ATP-beta
;- left

middle

¡ATP-beta

Amp ¡24 502 ¡(near jATP-beta: Amp |0 25 |0

Freq ¡725.31 ¡(near |ATP-beta: Freq |0 |-14 7

Damp ¡0.0671 ¡dependent |ATP: Damp j

mm

wimmmw-^
!

Figure 7: Snapshot of our model editor.

Virtual construction is already included in the model and parameter hierarchies.
Furthermore, when the model hierarchy is extended, no new data members need to
be introduced in the derived elementary function classes. Therefore the read and
write functions can be inherited and need not be specified. Consequently, the im-
plementation of persistence can be encapsulated entirely into the core classes of the
model and no changes are required when new classes are added to the hierarchies.

4 Evaluation of function values and derivatives
In this section, the function value and derivative computation in our model is
explained. The concept of automatic differentiation is described and it is shown
how to calculate the derivatives of structural functions easily and yet effectively
with this technique.

4.1 Automatic differentiation
The derivatives are traditionally calculated either symbolically or by using divided
differences. The former may be quite difficult and error-prone while the latter
introduces truncation errors and may be inaccurate and inefficient. Automatic
differentiation provides an appealing alternative.

In automatic differentiation, the derivatives are computed by the well-known
chain rule, but instead of propagating symbolic functions, numerical values are
propagated along the computation. The evaluation of the function and its deriva-
tives are calculated simultaneously using the same expressions. There are several
descriptions about automatic differentiation [15, 1, 3] and also software packages

Object-Oriented Model for Partially Separable Functions 297

available [9, 4]. Some packages preprocess the source code to add the necessary
statements for computing the derivatives. Other packages, using programming lan-
guages that support operator overloading, implement the differentiation as a class
library without the need for a separate précompilation.

There are interesting computational issues concerning the implementation of
automatic differentiation. The chain rule can be used either in forward or backward
mode or in something between. The implementation involves a tradeoff between
time and space complexity. In this article the forward mode automatic differenti-
ation is used. It is simple and fits very well in this particular application as will
become clear below.

In forward mode automatic differentiation, instead of computing with scalar
values, we compute with automatically differentiable numbers (ADN) (f, V f) . An
ADN consists of a value and a vector of partial derivatives of a function at a
given point. When building expressions with these objects, at the leaf level of
the expression tree f is either a variable or a constant. When differentiating with
respect to N variables, the derivative of the ith variable is represented as the ith
canonical unit vector of length N and the derivative of a constant with a zero
vector. For example, when differentiating with respect to three variables x,y,z
the constant 3.14 is expressed as (3.14, (0,0, 0)) and the variable y as (y, (0,1, 0)).
Computation with these objects utilises the chain rule of derivatives.

s/(9<1))L = (¿ / W

As an example, consider the two-derivative case for function z/+sin(x2). Starting
with (y, (0,1)) -f sin(ï, (1,0))2) by squaring x, we get {y, (0,1)) + sin((a;2, (2x, 0))).
Taking the sine gives (y, (0,1)) + (sin(x2), (2x cos(x2), 0)) and finally the addition
with y gives (y -I- sin(a;2), (2a: cos.t2), 1)). For numerical work, the computation is
not done symbolically, rather the actual values of the function and its derivatives
are calculated and propagated through the expression. Given x = 2, y = 4 the same
example becomes

<4,(0,l)) + sin«2,(l ,0))2) = (4, (0,1)) + sin((4, (4,0))) =
(4 , (0 ,1))+ (0.06976,(1.9951,0)) = (4.06976,(1.9951,1)).

The method can be applied to any machine-computable function. All that
is needed is to code the differentiation rules for simple functions and operations.
Then any function composed of those elementary functions can be differentiated
automatically. In C + + this means overloading common functions and operators
for objects described above.

The forward mode automatic differentiation for calculating gradients can be
computationally unattractive if applied blindly. If the gradient has n elements, the
computation may require up to order of n as much time as computating the value
of the same expression. However, in the case of partially separable functions the

s=a(tn1
(4)

t.=tn .

298 .Jaakko -Jarvi

forward mode can be applied efficiently. If we consider the model function as a
whole, it may have quite a number of parameters, but the number of parameters of
the individual elementary functions is typically rather low and known beforehand.
Furthermore, different elementary functions are only related via a summation ex-
pression, which means that also the derivatives are just summed together. Conse-
quently, we use automatic differentiation in computing the local gradients of the
elementary functions and update the calculated values via pointers to the common
derivative vector.

The computing time of the local gradients can be further reduced. By using
C + + templates, moderate size derivative vectors of ADNs can be replaced with
special sparse vectors to yield very efficient code [10]. This method was utilised in
the test runs described in section 4.4.

4.2 The function evaluation process
The model function is evaluated by calling the eval function of the topmost class,
which will traverse all the contained models and calculate their cumulative values
at a given point. The derivatives are computed simultaneously using automatic
differentiation. The derivative vector is passed as a parameter to the eval function.
First the resulting derivative vector or gradient is initialised to zero. Each elemen-
tary function reads the values and initial derivatives of the parameters (with the
get_value and get-derivative functions) and constructs ADNs from them. If the ele-
mentary function has n parameters, ADNs having n-dimensional derivative vectors
are used. The mathematical expression is then evaluated using ADNs and each
elementary function updates the resulting derivative values to the actual gradient
vector. This is accomplished with a call to store-derivatives function defined in the
elementary .model template (see Fig. 4), which adds the derivative values to the
right positions of the gradient.

After the whole function tree has been traversed, the function value is returned
and the gradient is available as the derivative vector passed to the eval function.

4.3 Computational efficiency
With regard to the computational efficiency the evaluation strategy includes a few
pitfalls. Firstly, dynamic binding is applied in the eval function invocations. There
is an inherent additional cost in a call to a dynamically bound virtual function com-
pared with a statically bound function [7]. Furthermore dynamic binding precludes
the use of inlined functions. Inline expansion can speed up function calls and is
beneficial for small functions. However, in this case the computational cost of the
function call is probably minor compared to the cost arising from the evaluation
of the actual mathematical formulae of the elementary functions, recalling that the
derivatives are also calculated in the same function. Considering this, the relative
cost of the slightly slower function call is most likely insignificant in this case.

Secondly, dynamic binding is also applied between parameters in the get-value
and get_derivative functions. In this case the extra cost may be notable. The

Object-Oriented Model for Partially Separable Functions 299

evaluation of an elementary function having n parameters would yield at least n
virtual function calls to fetch the parameter values. The number of calls is larger
if dependent parameters are involved. However, in model fitting''tasks, the .model
function is evaluated repeatedly at sev.eral points, without changing the parameter
values. Taken the example from NMR spectroscopy, the region of interest may
contain thousands of points. Therefore the parameter values can be cached and
only when the parameter values are changed, each elementary function reads the
values and derivatives with the virtual get.value and get-derivative functions and
stores the values to local proxy variables (ADNs). With this approach the relative
cost of retrieving the parameter values via virtual functions is of little consequence.
The caching is made transparent to the client code by maintaining a flag in the
topmost class indicating whether the values in the proxy variables are valid or not.

Also, the updating of the local gradients to the global derivative vector must
be efficient. This is implemented in the elementary .model template by maintaining
a mapping from each local parameter index to an index in the global derivative
vector. These mappings can be constructed prior to the first model evaluation. In
this task the function tree must be traversed once, but this causes no efficiency
problems, since the indices only change if the model function changes, i.e., new
component functions are added or removed. At evaluation time the only additional
cost is an extra indirection for each parameter.

Some cost may also arise if the composite models in the function tree contain
many levels (e.g. in the ATP compound). From the computational point of view, it
is not necessary to traverse all composite functions during the evaluation, rather it
is sufficient to call the evaluation functions of the elementary models directly and
save the cost of a few virtual call's. This is easy to implement by maintaining a
separate list of the leaf nodes in the top.model class, which we did in the test runs.

4.4 Test runs
To assess the efficiency of the model some test runs were performed. As a test
case, we used formulae from the NMR case consisting of 10 component functions
having 24 adjustable parameters altogether. Five different alternatives to perform
the function and derivative computations were programmed:

1. A tailored low-level C-code with analytical derivatives.

2. The presented 0 0 model with analytical derivatives.

3. The 0 0 model with automatic differentiation.

4. A straightforward 0 0 implementation, without any caching.

5. A low-level implementation of the function with finite difference value ap-
proximations of the derivatives.

In the tailored low-level implementation, the model function was totally fixed at
design time, so any change in the function requires changes in the code. The code

300 .Jaakko -Jarvi

Implementation Relative time
1. Tailored low level C-code
2. 0 0 model with analytical derivatives
3. 0 0 model with automatic differentiation
4. Straightforward 0 0 implementation
5. Divided difference approximations

1.00
1.07
1.29
2.48
16.52

Table 1: Relative evaluation times of the different methods for computing the value
and derivatives of the NMR model.

was hand-optimised to a reasonable level (not making any processor specific tricks).
All subexpressions were calculated only once and all relations between parameters
were directly written into the code as effectively as possible. It is fair to say that
the code used was as fast as possible.

In the second case, the 0 0 model presented was used, but the derivatives of the
elementary functions were calculated analytically. This case should roughly repre-
sent the extra cost originating from the dynamic binding of the model functions, as
well as the cost arising from not coding the dependencies between the parameters
directly.

In the third case, the 0 0 model was used with derivatives computed using
automatic differentiation. Table 1 shows the results and confirms the extra cost
being quite acceptable compared with the flexibility the model offers.

In the fourth case, no proxies for parameters were used, rather the initial values
and derivatives were retrieved during each evaluation using the virtual function
invocations. This demonstrates that the performance may drop significantly if the
programmer is not aware of the principles affecting efficiency in 0 0 programs.

In the fifth case, derivatives were approximated with divided difference values.
The benefit of this alternative is that only the code for evaluating the value of
the model function is needed. The performance is, however, very poor requiring
n evaluations of the model function, where n is the number of elements in the
gradient. Also, the accuracy is harder to assess.

The test runs were performed under Linux on Intel Pentium processor. The
C + + compiler used was KAI C + + 3.2.d with optimisation flags +K2 -03 .

5 Conclusions
An object-oriented model for parameter estimation of partially separable function
was described. The model achieves two goals. Firstly it gives an easily extendible
0 0 framework for representing partially separable functions in a structured way,
resembling the physical real-life interpretation and mathematical structure of the
functions. Secondly, it offers an interface to an optimisation algorithm, namely a
vector of adjustable parameters and a function capable of computing the value and
derivatives of the model function efficiently.

Object-Oriented Model for Partially Separable Functions 301

To achieve the first goal, the model separates the commonalities of partially
separable functions from the specific mathematical formulae. The formulae are
encapsulated to a few very simple classes. It is therefore easy to apply the model
to different problem domains, since changing these classes or adding new ones to
the model does not affect the client code using the model. Furthermore, relations
between parameters are handled by the model and they do not complicate the
mathematical expressions of the component functions.

The derivatives needed in the parameter estimation are obtained using auto-
matic differentiation. Hence, there is no need to hand-code analytical derivatives
or use divided difference values.

Considering the second goal, the calculation of function values and derivatives
is efficient. In our example case from NMR spectroscopy, the evaluation of the 0 0
model required only 29% more time than a low-level tailored implementation of
the same function. As a compensation, in the 0 0 model the final function as well
as relations between parameters can be specified at run-time, the model is easily
extendible to cover new component functions and no hand-coded derivatives are
required.

To sum up, the paper gives practical guidelines for implementing an efficient
0 0 computational kernel for partially separable functions. With an example, we
showed that 0 0 programming offers substantial benefits, such as higher abstraction
level, code reuse, flexibility and handling of complexity for numerical programming
as well. Furthermore, the advantages can be achieved with a moderate loss of
performance.

References
[1] Barton J. J., Nackman L. R.: Scientific and Engineering C + + , Addison-

Wesley, Reading Massachusetts 1994.

[2] BazaraaM.S., Sherali H.D., Shetty C. M.: Nonlinear Programming: Theory
and Algorithms, 2nd Edition, Wiley 1993.

[3] Editors: Berz M., Bischof C. H., Corliss G. F., and Griewank A.: Computa-
tional Differentiation - Techniques, Applications, and Tools,.SIAM, Philadel-
phia Pennsylvania 1996.

[4] Bischof C. II., Carle A., Corliss G. F., Griewank A., Hovland P.: ADIFOR:
Generating derivative codes from Fortran programs, Scientific Programming,
1 (1992) 1-29.

[5] Bovee W. M. M. J.: Quantification in in vivo NMR, Spectral editing, in:
Magnetic Resonance Spectroscopy in Biology and Medicine, eds. de Cer-
taines J. D., Bovee W. M. M. J., Podo F., 181-207, Pergamon, Oxford 1992.

[6] Derome A. E.: Modern NMR Techniques for Chemistry Research, 63-90,
Pergamon, Oxford 1991.

302 .Jaakko -Jarvi

[7] Driesen K., Holzle U.: The Direct Cost of Virtual Function Calls in C + + .
ACM Sigplan Notices, OOPSLA'96 Proceedings, 31 (1996) 306-323.

[8] Gamma E., Helm R., Johnson R., Vlissides J: Design Patterns, Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, Reading
Massachusetts 1995.

[9] Griewank A., Juedes D., Utke J.: ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C / C + + , ACM Transactions on
Mathematical Software, 22 (1996) no.2, 31-167.

[10] Jarvi J.: A PC program for automatic analysis of NMR spectrum series,
Computer Methods and Programs in Biomedicine 52 (1997) 213-222.

[11] Majoras R. E., Richardson W. M., Seymour R. S.: An object-oriented ap-
proach to evaluating multiple spectral models, Journal of Radioanalytical
and Nuclear Chemistry 193 (1995) 207-210.

[12] Microsoft, Microsoft Foundation Class Library, Microsoft Corporation.

[13] Borland, Borland C + + 5 Programmer's guide, Borland International, 1996.

[14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical
Recipes in C: the Art of Scientific Computing, 2nd Edition, Cambridge
University Press, New York 1992.

[15] Rail L.B.: Automatic differentiation: Techniques and Applications, Lecture
Notes in Computer Science 120, Springer-Verlag, Berlin 1981.

[16] Robinson A.D.: C + + Gets Faster for Scientific Computing, Computers in
Physics 10 (1996) 458-462.

[17] van Tongeren B. P. 0., Boxman R. D. C., Deumens J. W., van Leeuwen J.
P., Mehlkopf A. F., van Ormondt D., de Beer R.: QUANSIS, An object-
oriented data-analysis system for in vivo NMR signals, Journal of Magnetic
Resonance Analysis, 2 (1996) 75-84.

