
Acta Cybernetica 14 (1999) 217-227.

On the Partitioning Algorithm

Béla Csaba *

Abstract
We consider the deterministic and the randomized paging problem. We

show the close connection between the partitioning algorithm of McGeoch
and Sleator and the OPT graph of the problem via a natural framework.
This allows us to prove some important properties of the "deterministic"
partitioning algorithm. As a consequence of these we prove, that it is a k-
competitive deterministic on-line algorithm. Besides, we show an application
of the OPT graph for a special case of the fc-server problem.

1 Introduction
The paging problem is defined as follows. We have a two-level memory system with
k pages of fast memory, and n — k pages of slow memory. Repeatedly a request to a
page appears. This request should be satisfied by moving the page to fast memory,
if it is in slow memory, i.e., a page fault occurs. In this case a page has to be evicted
from fast memory to make room for the new, recently requested one. The paging
problem is to decide which page is to be evicted. The cost of a request sequence is
the number of page faults. Of course, this number depends on the strategy used
when deciding which page to evict.

There is a simple optimum paging algorithm, Belady's MIN algorithm (see
[B]), if one knows the whole request sequence in advance, in the off-line case. It is
more practical to consider the on-line paging problem, when the algorithm has to
decide immediately after a page request, without knowing what the future requests
will be.

Paging is a special case of the so called /c-server problem. In this problem we
are given a finite metric space: a set V on n points, and a distance function d(x, y)
on V2 satisfying the usual requirements of distances (non-negativity, simmetry,
triangle-inequality). There are k (1 < k < n) mobile servers, initially residing on
some points of V, no two on the same point. A number of requests, each is an
element of V, appears. A request has to be satisfied immediately by moving a
server to the requested point, if there is no server on it. By moving a server from
the point y to the requested point x a cost, d(x,y) incurs. The total cost of a

'Department of Computer Science; Rutgers, The State University of NJ; 110 Frelinghuysen
Road; Piscataway, NJ 08854-8019 USA. Email: bcsaba@paul.rutgers.edu

217

mailto:bcsaba@paul.rutgers.edu

218 Béla Csaba

request sequence is the sum of the costs of the composing requests. One can see,
that by choosing d = 1 (uniform metric space), we arrive to paging. The number
of faults done by some algorithm on a request sequence a is the same as the total
distance taken by the servers during the satisfaction of a. For the case of simplicity
we use the terminology of the uniform k-server problem throughout the paper. An
important remark is that it is enough to consider lazy algorithms, i.e., algorithms,
which move a server only to a requested point (see [MMS]).

For comparing two paging algorithms the competitive ratio is used. This measure
of performance of an on-line algorithm was introduced by Sleator and Tarjan (see
[ST]). Fix any starting configuration of the pages, and denote by opt(cr) the optimal
cost of the satisfaction of the request sequence a. The competitive ratio of the on-
line algorithm A is c, if there is a constant M such that on every request sequence
a the cost incurred by .4, A(a) is at most c • opt(a) + M. It was shown (see [ST])
that no on-line algorithm can have a competitive ratio less than k for the paging
problem. LRU, FIFO and a large number of other on-line algorithms are known
to be /c-competitive. On the other hand, the best competitive ratio achieved by
some on-line algorithm for the k-server problem is 2k — 1 (see [KP]), while the lower
bound for any metric space is k (see [MMS]), like in paging.

As it happens frequently, one may expect a better performance in the random-
ized case. A randomized on-line algorithm 1Z is c-competitive, if there is a constant
M such that on every request sequence a, E[JZ(cr)] is at most c • opt(a) + M,
where E\TZ{<i]\ denotes the expected cost incurred by 1Z on a. It was proved (see
[FKLMSY]) that Hk = 3D1 + | H h £ is a lower bound for the randomized com-
petitiveness of an on-line paging algorithm. There is a simple, elegant algorithm,
which has randomized competitive ratio 2Hk (see [FKLMSY]). On the other hand,
the only known optimal randomized algorithm, the partitioning algorithm has a
much more complicated description. Our goal is to show that despite it's complex-
ity, the "deterministic" version of this algorithm is based on rather plausible ideas.
This is done by the help of OPT graphs.

OPT graphs for on-line problems were first considered in [CL1], [CL2] when
investigating the deterministic fc-server problem, and in [LR] were used to analyze
the randomized case. Roughly speaking, the OPT graph for the ^-server problem
is a finite directed graph, with which one can easily compute the optimal cost of
any request sequence, and find the corresponding satisfaction.

The outline of the paper is as follows. In the second section we give the definition
of the partitioning algorithm, and our framework, which is based on the OPT graph
of the problem. The third section deals with the deterministic paging problem, and
the connection between the OPT graph and the partitioning algorithm, and we
show that the partitioning algorithm is fc-competitive in the deterministic case.
In the fourth section we give an application of our results for a special k-server
problem, achieving 2k — 2 competitive ratio.

On the Partitioning Algorithm •219

2 Definitions
First we give the definition of the partitioning algorithm following [MS]. The algo-
rithm dynamically maintains a partition of the points: V = (J Sa+ .1 U • • • U Sp.
Each set Si (i < (3) is labeled with an integer k{. Initially a = 1 and (3 = 2,S-2
contains the k points that are covered by the servers, S\ contains the unoccupied
points, and ki = 0. In response to a request at a point r G V the labeled partition
is updated. Let r € Si, then there are three cases.

Rule 1: i = (3

Do nothing.

Rule 2: a < i < 0

First do the following assignements:
• Si Si - r

• S/3 <- S/3 + r

• kj <- kj - 1, i < j < ¡3.

If some label changed from 1 to 0, find the largest number j such that kj = 0. Then
let

• Sj <- Sa |J Sa+1 (J . . . IJ Sj

• a J-

Rule 3: i = a

Do the following assignements:

® S a ^ v

• Sp+1 <- r

• kf3 fc — 1

• P+-P + 1.

By induction one can easily show that the following labeling invariant conditions
always hold:

• ka= 0

• ki > 0 (a < i < (3)

• ki = ki-1 + |5j| - 1 (a < i < (3)

• hp-1 = k -

220 Béla Csaba

Now we are ready to give the partitioning algorithm itself. Denote
SQ|JStt+i U - -U5i by S*. For each set S*, where a < i < /3, there are ki i-
marks occupying different points of S*. An ¿-mark is only allowed 011 the points of
Si or on points with an (i — l)-mark - on the i-eligible points. The algorithm keeps
a server on each element of Sp and on each point with a (/3 — l)-mark. By the
labeling invariant conditions this means exactly k points covered by some server.
Before the first request a = 1 and /3 = 2, and there are no marks of any kind. Now,
let the new request be r.

(1) If r £ S/3, then do nothing.
(2) If r E Si (a < i < /3), move the marks around so as to achieve that there is

a j-mark on r for all j (i < j < /3) in the following way. If r has a j-mark, then
do nothing. Otherwise randomly choose some point w that has a j-mark. Transfer
each /-mark (/ > j) from w to r. Repeat this step, if r does not have all marks
up to /3 — 1. Then apply Rule 2, and erase all the marks on r. If a changes, all
i-marks (t < a) are erased. If a (/3 — l)-mark moves to r from another point, the
corresponding server moves to r.

(3) If r £ Sa, then apply Rule 3. Then create k — 1 new (/? — l)-marks, and
distribute them randomly amongst the k (/3 — Ineligible points. We move the server
to r from the point which is left without a (/9 — l)-mark.

Recall, that this randomized algorithm is -if^-competitive. Note, that with any
deterministic rule for distributing the marks this algorithm switches to a determin-
istic one. Now we turn our attention to the OPT graph of the paging problem. We
repeat the definition of [LR].

Definition 2.1 An OPT graph of an on-line k-server problem is a finite directed
graph with one distinguished vertex I, such that (1) each edge is labeled with a
request from V and a cost, (2) for each vertex and each request r there is a unique
edge out of that vertex vihose request label is r, .and (3) for every request sequence
g, opt(g) equals the sum of the cost labels on the path given by g starting from I.

Every legal configuration of the servers can be viewed as a k element subset
of the points. If S C V is the set of points occupied by the servers, and r is
the new request, the k-sets reachable by some algorithm from S by r are the
elements of the following set system: 7i = {H : H = S — s + r, s £ Sj. If r 6 S,
then S = H, otherwise % has k elements. Denote Ho the initial configuration of
the servers, and let g = BiQi • • • Qm be a request sequence of lenth m. If %i =
{H : H = H' h! + Qi, ti £ H' £ Hi-1}, where 1 < i < m, then every g-
satisfying algorithm's movements from configuration to configuration is embedded
in the following sequence: Ho > Hi = 20 . . . —> Hm. An important observation,
that it is possible that in a set system Hi there is a fc-set H for which the cost of
any satisfying algorithm starting from Ho and getting to H is " too big" comparing
to that of some other H' £ Hi. One may think that this kind of sets can be ignored
without eliminating any actions of a "good algorithm". In what follows these simple
ideas will be made precise.

First, we give three rules for building a finite directed graph G. The vertices of

On the Partitioning Algorithm •221

this graph are associated with set systems of fc-sets, one distinguished vertex is I,
the initial configuration. Now let H be a vertex of the graph, r 6 V.

Rule A: If r £ D/few nothing.
Rule B: If r £ f\ H e H H, but r € {JHen H-< t h e n l e t = iH' '• H' e 7i, re

i f ' } . If %' is not present in G, then put it in as a new vertex. Draw the directed
edge (H.,%') in G with label r. We call this kind of edge a decreasing edge.

Rule C: If r 0 [}Heu H, then let %' = {H' : H' = H - h + r, he He U).
If T~L' is not present in G, then put it in as a new vertex. Draw the directed edge
{%, H') in G with label r. We call this kind of edge an increasing edge.

Note, that Rule B stands for discarding the "expensive fc-sets", and we apply
Rule C, when we are forced to move a server. Starting from I after a finite number
of applications of the rules we arrive to a graph G to which we can't put new vertices
or edges. As one can see, there cainnot be more than n • 2('=-1) vertices of G.

3 Properties of OPT graphs and an on-line algo-
rithm

Call a vertex of the graph G defined in the previous section a single vertex, if it
contains only one configuration, otherwise call it a multiple vertex. The following
two lemmas prove, that G is the OPT graph of the problem.

Lemma 3.1 Let g be a request sequence, and assume that starting from I we arrive
to the vertex % following g in G, and H £% is a configuration. Theri there exists
a satisfaction of g with endconfiguration H and its cost is the number of increasing
edges in the above walk.

Proof. Let's go backwards from H on the walk determined by g. From the
definition of decreasing edges it follows that until we reach an increasing edge, we
don't have to change configuration. When an increasing edge is coming, it is enough
to move a server, and we can get to the configuration, from which this increasing
edge is going out. Hence, for the decreasing edges on the walk there is no incurring
cost, and in the case of increasing edges the cost is 1. •

Lemma 3.2 Let g be a request sequence, and assume that starting from I we arrive
to the vertex T~L in G. Then the set system H contains exactly the optimally reachable
configurations, and the optimal cost is the number of increasing edges traversed
when getting to %.

Proof. We proceed by induction on the length of the request sequence. If
< 1, then the lemma trivially holds. Let's suppose that it is true for every

request sequence with length at most t, and \g\ = t.
First we prove, that for every new request r, if the edge (H, H') is labeled r, then

for H' e H' the optimal cost of arriving to H' is the number of increasing edges.

222 Béla Csaba

Let's assume that there is a satisfaction of gr which arrives to H' with cost less than
the number of increasing edges. Denote the jth configuration of this satisfaction by
Qj. If Qi £ H, then by the induction hypothesis we know that the cost of getting
to Qt by g is bigger than the number of increasing edges, because every optimally
reachable configuration is the element of H. Hence, after a new request the cost
of getting to Qt+i = H' is at least as big as the number of increasing edges. If
Qt G H, then the statement trivially holds, either the edge {%,%') is an increasing
or a decreasing edge.

So far we have proved that the optimal cost for H' is the number of increasing
edges. Let's assume that there is a satisfaction S of gr such that St+i, the last
configuration of it is not in TL', but it has optimal cost. If the cost of S were smaller,
than the number of increasing edges, then because up to St the cost can't be smaller
than the cost of H (by the induction hypothesis), St G H- One can easily see, that
r has to be an increasing request, but then the cost of S cannot be smaller than the
cost of . Hence, the only case is when S i + 1 £ H', and has the same cost. Denote
the directed walk from I by U 0 (= /) - > Hj H t {= U) ->• W. t+i{= W) .
There is a last configuration of S which is the element of the corresponding vertex
of the graph. Denote it by Sm, and let r1 ; r-i, • •. ri be the last I = t + 1 — rn
requests. Thus, Snl € but for j > 1 Sm+j $ T-im+j- By our assumption
the cost incurred on S before the last request is greater than that incurred on the
0-path in G. Hence, the last edge, ('Ht, T~Lt+ i) is an increasing edge, and St = St+i-
Denote Ri the closest set in Hi to Si, i.e., = max{\Hf)Si\ '• H G Hi}.
Observe, that r\ £ Sm, and the ('Hm,'Hm+1) edge is a decreasing edge, otherwise
Si £ T-Lm+i- From this follows, that |ii4p|Si| = k — 1. There are five cases to
consider when satisfying the last I requests. In the following 1 < i < I — 1.

(1) ri+1 6 Si ("J Ri = > |5j Pi = |5i+i Pi and the difference of the costs
doesn't change (lazy satisfactions).

(2) (Hi,Hi+1) is an increasing edge, and r i + 1 e Si = > the difference of the
costs is decreased by 1, and +. 1 — l^+i HRi+i\- This equality easily
follows from the definition of G (Rule C).

(3) (Tii,'Hi+1) is an increasing edge, and ri+1 £ Si the difference of the
costs doesn't change, and |SiP|i?j| < |5j+i H-Rj+il-

(4) Ti-|_i ^ Si, and T-j+i G Ri the difference of the costs is increased by 1,
and\Sif]Ri\<\Si+iC\Ri+1\.

(5)?-i+i ^ Si, (Hi, 'Hj+i) is a decreasing edge, but Ri $ ==>• the difference
of the costs is increased by 1, and |Sj |"| Ri\ < P| | + 1.

Let us suppose first, that at the jth stage (1 < j < I) the difference of the
costs is > k. Then by moving at most k — 1 servers from R3 we can reach Sj
(the intersection Si (~) Ri always contains the most recently requested point), and
this has cost at most k — 1. Hence, there is a ^-satisfying configuration sequence
to St+i with smaller cost, and this contradicts with the optimality of S. Let us
consider now the quantity Di = k — |5j D-^il- W e claim, that Di is a lower bound
for the difference of the costs in the ith stage. For i = 1 this is obviously true.
Assume, that Di is a lower bound up to the zth step, and a new request, ri+\ is

On the Partitioning Algorithm •223

coming. We check the possible five cases. In case (1) Di(= Di+1) certainly remains
a lower bound. In case (2) the drawback of S is decreased, but the intersection size
increases by one. In case (3) the drawback doesn't change, and the intersection
size may increase. In cases (4)-(5) the drawback increases, but the size of the
intersection doesn't decrease by more than one. Thus, in all cases Di+{ is a lower
bound. By our assumptions, _D/_i < 1, and the last request should be a request
considered in case (2). By the definition of G, St+1 £ %t+1- We get, that, Ut+i
consists of exactly the optimally reachable configurations. •

Definition 3.3 Consider the partition Sa U ^Wr U • • • U Sp given by the partition-
ing algorithm. Let V = {P :-|P| — k — IS^I, P does not contain more than ki points
from S8*}. The set system given by the partition is S = {S : S = Sp\J P, £ V}.

Lemma 3.4 Let S be the set system determined by the partitioning algorithm.
Then Sp = f)SetSS. .

Proof. Sp C Pises S trivially holds. Let's suppose that for some v £ V v £
f]ses ancl v G Si, a < i < 0. By the labeling invariant conditions ki = ki-i +
|Si| — 1, i.e., |5j| = ki — ki-1 + 1 . If v £ Pises S, then every point of Si is in the
intersection, because they have the same role. Thus, from we could choose
only ki-i — 1 points. On the other hand we are allowed to choose ki-1 points —
we arrived at a contradiction. ' •

Lemma 3.5 Assume, that starting from I we follow the edges of G determined'by
the request sequence g, and we arrive to the vertex H. Let the set system given by
the actual partition (after g.) is S. Then H — S.

Proof. We prove the statement by comparing the maintaining rules for' the
partitioning algorithm and the build-up rules for G, by induction on the length of
g. If = 0, the lemma trivially holds. Let's suppose now that the lemma is true
for q, a new request r is coming, the edge (T~L, T) is labeled r in G, and the new set
system given by the partition is Q. We distinct three cases depending on the rule
we use to maintain the partition.

If r £ Sp: There is nothing to prove, T = H and Q = S (Rule 1 Rule A) .
If r £ Si (a < i < ¡3): By Rule 2, Qp = Sp + r, and Qi = Si — r and kj -<— kj — 1

for j : i < j < ¡3. If for some j, kj has become 0, this means, that previously kj
was 1, and hence, from Sj we could choose only one point to some S £ S. By
Qa = i o U ^ j o) where jo is the biggest such j , we discard all the sets S £ S which
doesn't contain r. Thus, the set system Q contains exactly those sets S £ S, for
which r £ 5. Using the induction hypothesis and the definition of Rule B, we get,
that Q = T.

The only possibility left is that r £ Sa. By Rule 3, Qp = r, thus, r £ Q for
every Q £ Q, and this is the only element of the intersection of the sets of Q.- Also,
kp kp — 1 and /3 /3 + 1, hence Q contains exactly the sets which has r and
other k — 1 points from some S £ S. But this is the set system T we get from %
by applying Rule C. •

224 Béla Csaba

Definition 3.6 Let H and F be two configurations. We say, that F is achievable
from H (and vice versa), if \H f]F\ = k — 1, i.e., moving one server is enough to
reach one from the other.

Lemma 3.7 Let % be a vertex in G, r £ V, and H £ H. If (H,T) is the outgoing
edge from 1~L labeled r, then there is an achievable F £ T from H.

Proof. If Ti = T (Rule A) , then there is nothing to prove
If (Ti, T) is an increasing edge, then there are k sets in T which are achievable from
H: all the sets of the form F = H - h + r, h£ H.

Let's suppose now, that (7i,J-) is a decreasing edge. If r £ H, then H £ T,
so, let r £ H. By Lemma 3.5 (and using the notation of it), r £ Si for some
i : a < i < ¡3.

There are two possibilities.
(1) When composing H, we did not pick any points from S*. But then there is

a largest t (t > 0), such that we did not choose any point from S*+t, because we had
the necessary number of points. Hence, we picked a point v £ S*+t+1. Substituting
this v by r (r £ S*+t+1) we arrive to a set H', for which \Hf]H'\ = k — 1, and
r £ H'. Thus, H' £ T, and it is achievable from H.

(2) Wre picked another point w from S*. Substituting w by r, we again get a
set of T, which is achievable from H. •

Lemma 3.8 There cannot be more than k — 1 consecutive decreasing edges in any
walk on G,

Proof. Notice, that for any vertex H in G, r £ H if r is the label of
an ingoing edge. After each application of Rule B this intersection size increases.
Thus, after k — 1 decreasing edges we arrive to a vertex which is represented by a
single &-set. From such vertices every outgoing edge is an increasing edge: no k
consecutive decreasing edges are possible. •

Now we are ready to discuss our on-line algorithm. Roughly speaking, we do
a walk on the OPT graph step by step according to the incoming requests. We
introduce some notation: r is the new request, 5 is the configuration of the servers,
and HjH' are vertices of the OPT graph.

• (1) Initially S = n = I.

• (2) If r £ S, then no server moves. If r is a loop edge label of 1-L (the actual
vertex of the graph), then we stay there. If {%,%') is a decreasing edge
labeled r, then H' will be the new actual vertex.

• (3) If r $ S, then (H,H ') is either a decreasing edge or an increasing edge
labeled r. Choose any configuration H' e H ' , which is reachable from S. We
know, that there is always at least one such configuration (Lemma 3.7). Move
the server on S — H to r.

On the Partitioning Algorithm •225

Note, that in (3) there is no deterministic rule how to choose the server to move,
when there is a multiple choice. We will see, that one can use any kind of rule in
these cases.

Theorem 3.9 The algorithm described above is a k-competitive on-line algorithm.

Proof. From the description it is obvious, that the algorithm is well defined,
and in an on-line fashion we never have to move more than one server for a request.
We decomp ose the walk defined by the request sequence g in the OPT graph
into s everal phases. The first phase starts from I, consists of the first consecutive
increasing edges, and the conse cutive decreasing edges coming right after them.
This phase ends, when a new increasing edge is to be traversed. =20 Then'a
new phase starts, with the same structure: consecutive increasing edges, and then
consecutive decreasing edges. Observe, that from Lemma 3.1 and 3.2 it follows, that
the optimal cost of g is the number of increasing edges traversed while satisfying g.
In a phase by definition, there is at least one increasing edge, and not more, than
k— 1 decreasing edges. This is the consequence of Lemma 3.8. As mentioned above,:
the algorithm never moves more than one server for a request. Hence, in every phase
the cost of the optimal satisfaction is the number of increasing edges, and the cost
of our on-line algorithm is at most the sum of the umber of the increasing and
decreasing edges (at most, because the algorithm not necessarily moves a server for
a decreasing request). It is easy to see, that the fraction of these two quantities is
always at most k. From this the theorem follows. •

Remark: Say, that there are i increasing edges in a phase. Then the compe titive
ratio for that phase is at most < 4 + 1. When n is large enough comparing
to fc, then we expect more than one increasing edge and less than k — 1 decreasing
edges in an "average phase". Hence, this algorithm works well in these cases. Un-
fortunately, either storing the OPT graph in memory or dynamically computing
the next vertex needs a lot of resources. Thus, this algorithm is undesirable in prac-
tice, but possibly of theoretical interest. It suggests, that for "random sequences"
the competitive ratio of an on-line algorithm can be much smaller, than k.

4 Application for a £;-server problem
In this section we use the OPT graph of the paging problem to define an on-line
algorithm for a special case of the fc-server problem. Let us call a finite metric
space multipartite, if the points can be distributed into several classes, where the
distance between two points is 1, when they correspond to different classes, and
any number in the [1,2] interval otherwise. One can easily show, that these are
valid metric spaces, that is, non-negativity and symmetry of the distances, and the
triangle inequality are satisfied.

226 Béla Csaba

Theorem 4.1 If in a multipartite metric space no class has more than k — 1 el-
ements, then there is an on-line algorithm for the k-server problem of this metric
space with competitive ratio 2k — 2.

Proof. Our algorithm is almost the same, which was considered in the paging
problem, but now we have-less freedom in the multiple choices. If the algorithm
is forced to move, then we try to move distance 1 if it is possible. Otherwise, we
move any server consistently with the actual OPT graph vertex. Observe, that if
the new request is an increasing request, then we can choose a server which move s
distance 1. There are at most k — 1 points in one class, hence, at least two servers
are not in the class of the new request. Another important case, when a phase
starts from a single vertex H, and that phase has only one increasing edge. That
edge goes to a vertex H', which contains exactly the union of the k — 1 element
subsets of H and r, the new request. Whichever server we have moved to r, there
is always another server from another class in another configuration of H'. Hence,
for the first decreasing edge we either don't move a server at all, or there is a server,
which has to move only 1. Again, this is a simple consequence of the class sizes.
Thus, in such phases the optimal cost is at least 1, while our on-line cost is at most
1 + 1 + 2(k — 2), from which we have the 2k — 2 bound for the competitive ratio of
these phases.

If there are more than one increasing edge in a phase, then the competitive
ratio of such a phase is at most < 1 + k — 1 = k, where i is the number of
increasing edges. When there are less than k — 1 decreasing edges, the competitive
ratio of the phase is at most < 2k — 3.

There is one case left: phases with one increasing edge and k — 1 decreasing
edges, starting from a multiple vertex. If a phase starts from a multiple vertex, then
the previous phase has at most k — 2 decreasing edges. We compute the competitive
ratio of these two consecutive phases. It is at most 1+2(fc~2)+1+2(A'"1) — 2k — 2. •

This result was an illustration, the careful reader may notice that by decreasing
the class sizes, a more thorough analysis gives smaller competitive ratios. On the
other hand, we cannot expect a fc-competitive algorithm for non-uniform metric
spaces by just using the OPT graph of the paging problem. OPT graphs for
non-uniform spaces may prove to be useful, but up to this time these graphs were
investigated only for very special cases. Notice, that for non-uniform problems we
may lose the symmetry of the graph, that can make the analysis hard.

Let us discuss a little bit more on the connection of paging and the general
fc-server problem. In a finite metric space divide every distance with the length of
the smallest distance in it. This way every distance will be in the [1,-D] interval for
some D. Let g be a request sequence, and denote optp{g) the optimal cost of g in
the uniform metric space, while opt(g) denotes the optimal cost of satisfaction in
the original one. Then optp(g) < opt{g) and opt(g) < D • opt.(g), obviously. If A is
any fc-cornpetitive paging algorithm, then A{g) < k-optp(g) + M for some constant,
M, and thus A{g) < D • k • opt(g) + M. Thus, reaching the 2 • A;-competitivity for
multipartite metric spaces is easy, any ¿-competitive paging algorithm achieves it.

On the Partitioning Algorithm •227

5 Summary
In this paper we investigated the paging problem, and a special fc-server problem.
We used OPT graphs to have a better insight to paging. Our results suggests,
that the partitioning algorithm in practice may perform well, considering only the
competitivity as a measure. Then we proved a new nontrivial upper bound for
the multipartite k-server problem. We did it by the help of the OPT graph of the
paging problem. While our opinion is that one cannot expect much more with our
technique, we think, that a better understanding of the structure of OPT graphs
for non-uniform spaces may result in better upper bounds.

Acknowledgement The author is grateful Péter Hajnal and Endre Szemerédi
for listening to earlier versions of this paper, and to Tibor Széles for his valuable
help in the proofreading.

References
[B] Belady, L., A study of page replacement algorithms for virtual storage comput-

ers, IBM Systems Journal, 5:78-101, 1966

[CL1] Chrobak, M., Larmore, L., The Server Problem and On- -line Games, Pro-
ceedings of the DIMACS Workshop on On-line Algorithms, American Mathe-
matical Society, February 1991

[CL2] Chrobak, M., Larmore, L., Generosity helps, or an 1 1-competitive algorithm
for three servers, Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1992

[FKLMSY] Fiat, A., Karp, R., Luby, M., McGeoch, L., Sleator, D., Young, N.,
Competitive Paging Algorithms, Journal of Algorithms 12 (1991), pp. 685-699.

[KP] Koutsoupias, E. and Papadimitrou, C., On the k-Server Conjecture, STOC
94, pp. 507-511.

[LR] Lund, C., Reingold, N., Linear Programs for Randomized On-line Algorithms,
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 382-391, 1994

[MMS] Manasse, M. S., McGeoch L. A. and Sleator, D. D., Competitive Algorithms
for Server Problems, Journal of Algorithms 11 (1990), pp. 208-230.

[MS] McGeoch L. A. and Sleator, D. D., A Strongly Competitive Randomized Pag-
ing Algorithm, Algorithmica (1991), pp. 816-825.

[ST] Sleator, D. D., Tarjan, R. E., Amortized Efficiency of List Update and Paging
Rules, Comm. of the ACM, February 1985, pp. 202-208.

