
Acta Cybernetica 14 (1999) 135-149.

Duplication Grammars *

Carlos MARTIN-VIDE f Gheorghe PAUN *

Abstract
Motivated by the abundance of duplication operations appearing in nat-

ural languages and in the genetic area, we introduce a generative mechanism
based on duplication operations: one starts from a given finite set of strings
and one produces new strings by copying certain substrings, according to a
set of given rules (which specify contexts where duplicated substrings can be
inserted). We mainly investigate the power of such devices, comparing the
obtained families of languages to each other and with families in the Chomsky
hierarchy. In this context, we also solve a problem left open in a paper by
Dassow and Mitrana, [1], even giving a stronger results: the iterated dupli-
cation with rules of only one type (see formal definitions in the sequel) can
generate non-context-free languages (even non-matrix languages).

1 Introduction
The duplication of strings or of parts of strings is a common operation both in
natural languages and in the genetic languages. We refer to [12], [15] for discus-
sions about this topic from the linguistical point of view; it is interesting to note
that it seems that reduplication, which is a non-context-free type of operation, is
more abundant in natural languages than mirror-image constructions, which can
be handled by linear Chomsky grammars. This is an argument supporting the
thesis that Chomsky grammars and their classification is not an adequate model of
the syntax of natural languages. Details about operations appearing in the genetic
area, duplication included, can be found, for instance, in [2], [10], [11], [18], or in
the first chapter of [14].

We start here from the approach in [1] to duplication in the DNA area. In
that paper, one considers duplication rules of the form (ui,v,u2), where u\,v,u2
are strings (over the DNA alphabet, but the operation can be defined in general,
over any finite alphabet); the idea is that the string v can be inserted in between
the strings U\,U2, providing that it already appears in the processed string. This

* Research supported by the Direccio General de Recerca, Generalitat de Catalunya (PIV)
t Research Group in Mathematical Linguistics and Language Engineering Rovira i Virgili Uni-

versity PI. Imperial Tarraco 1, 43005 Tarragona, Spain e-mail: cmv@astor.urv.es
^Institute of Mathematics of the Romanian Academy PO Box 1 - 764, 70700 Bucure§ti, Ro-

mania, e-mail: gpaun@imar.ro.

151

mailto:cmv@astor.urv.es
mailto:gpaun@imar.ro

152 Carlos MARTiN-VIDE, Gheorghe PAUN

amounts to a duplication of v. Both the one-step operation of this type and the
iterated operation are considered in [1], where one proves that the non-iterated
operation preserves the regular and the context-free languages. It is stated as an
open problem in [1] the question whether or not the iterated duplication preserves
the context-freeness.

We distinguish here three types of duplications: taking v from the left of the
place where a copy of it will be produced, from the right of that place, or duplicating
v near an already existing copy of it; in all cases, the context («,], u2) controls
the operation. We prove that in each of these cases, the iterated duplication can
lead finite languages to languages which cannot be generated by matrix languages
(without appearance checking). This solves the problem in [1], in a stronger form.
The result is not surprising, because of the context-sensitivity of the operations we
use (the presence of the context (u\,u2) associated with each string v which can be
duplicated); this also corresponds to the situation met for the so-called insertion
grammars of [5], where the string to be inserted is not necessarily a substring of
the current string (see the corresponding chapter in [13]). Somewhat unexpected is
the fact that non-context-free languages can be also produced when starting from
finite languages and using duplication operations in the restricted case when the
copy of the duplicated string is produced adjacent to the string itself.

2 Formal Language Theory Prerequisites

We introduce a few notions and notations necessary in the sequel; for details, the
reader is referred to [16].

For an alphabet V, we denote by V* the set of all strings over V, including the
empty one, denoted by A; the set of non-empty strings over V is denoted by V+.
The length of x £ V* is denoted by \x\ and the number of occurrences of a symbol
a £ K i n a string x £ V* is denoted by |a;|a. The left derivative of a language
LCV* with respect to a string x £ V* is dlx(L) = {w £ V* \ xw £ L} and the
right derivative is dx{L) = {w £ V* \ wx £ L}.

A context-free grammar is a construct G = (N, T, S, P), where N is the non-
terminal alphabet, T is the terminal alphabet, S £ N is the axiom, and P is the
set of production rules, pairs of the form (A , x) with A £ N,x £ (N U T)* (writ-
ten in the form A —¥ x). For x,y £ (TV U T)*, we write x => y if and only if
x = x\Ax-2,y = x\zx2, for some xi,x2 £ (N LIT)* and A —> z £ P. By =i>*
we denote the reflexive and transitive closure of the relation =>>. The language
generated by G is defined by L(G) = { 1 G T* | S x}.

By FIN, REG, LIN, CF, CS, RE we denote the families of finite, regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively.
This is the Chomsky hierarchy, the standard test bed for any new type of language
generating devices.

Duplication Grammars 153

3 Duplication Grammars
We now introduce the main object of our study, in several variants.

A duplication grammar is a construct

A = (y,Di,Dr,D0,A),

where V is an alphabet, Di,Dr, D0 are finite subsets of V* x V+ x V*, and A is a
finite language over V.

The elements of the sets Di,Dr,D0 are called duplication rules, those of A are
called axioms. Note that the duplication rules have the second element non-empty.

With respect to such a grammar, for x,y G V* we define:

X = XiUiU2X2VX3,y = X1U1VU2X2VX2,
for some xi,x2,x3 G V*, (ui,w,u2) G Dh

X = XiVX2UiU2X3,y = XiVX2UiVU2X3,
for some xi,x2,x3 G V*, (ui ,v ,u 2) G Dr,
X = XiUiVU2X2,y = X1U1VVU2X2,
for some X\,X2 G V*, (ui,v,u2) G D0.

We write for denoting any of these relations the reflexive and transitive
closure of ==> is denoted by = > * . Then, the language generated by the grammar
A is defined by

L(A) = {w G V* | z w, for some z G A}.

In words, one starts from strings in A and one iteratively duplicates subtrings as
allowed by the triples in the sets Di,Dr,D0. In all cases, a copy of a substring of
the current string is produced, to the left of its former occurrence, to the right, or
adjacent to that occurrence, respectively.

Because one or two of the three sets Di,Dr, Do can be empty, we obtain in this
way seven classes of grammars and, correspondingly, seven families of languages.
We denote by DUPL(a) the family of languages generated by duplication gram-
mars containing rules of the type a, where a can be one of l,r, 0, Ir, 10, rO, lr0\ the
absence of one of the symbols I, r, 0 means that the corresponding sets of duplication
rules is empty.

Several duplication grammars and languages generated by them will be consid-
ered in the following sections, hence we do not give here examples.

4 Generative Capacity
We compare the families DUPL(a) to each other and to families of languages in
the Chomsky hierarchy.

x =>£>, y iff

x =>Dr y iff

x =>r>o V iff

154 Carlos MARTiN-VIDE, Gheorghe PAUN

Note that each duplication language has the bounded growth property: for
each infinite language L there is a constant k such that if x e L, then there is
yEL,y^x, with ||z| - \y\\ < k.

Directly from the definitions, we obtain the relations in the diagram in Figure
1 (an arrow from a lower family to an upper family indicates an inclusion which is
not necessarily proper). This diagram will be useful below when investigating the
relationships between these families.

CS

DUPL(lrO) CF

DUPL(lr) DUPL(10) DUPL(rO) LIN

~DUPL(l) DUPL(r) DUPL(0) REG

FIN

Figure 1

Lemma 1. Let V be an alphabet containing at least three symbols. The language
V+ is in DUPL(l) n DUPL(r), but not in DUPL(0).

Proof. For the duplication grammars A = (V, Di,Dr, 0, A), where one of Di,Dr

is empty and the other is equal to { (A,a , A) | a € V}, and

A = {x eV+ \ |z|a < 1 for each a € V } ,

we obviously have L(A) = V+.
The language V+ cannot be generated by a duplication grammar which uses

only rules in Do, because at each step of the form x = > o 0 V w e produce a string y

Duplication Grammars 155

of the form y = y\vvy2 for some v G V+. However, for V containing at least three
symbols, there are arbitrarily long square-free strings in V+, [19], [17]. •

Remark 1. (Suggested to us, without a proof, by V. Mitrana) The language
V+ for V = {a, 6} is in DUPL(0), that is, the previous result cannot be improved
by considering V with only two symbols. Indeed, the duplication grammar

A = ({a, b}, 0, 0, Do, A) ,
A = {a, b, ab, aba, ba, bab},

Do = {(A, a, A), (A, b, A), (X,ab,X), (X,ba,X)},

generates V+. The inclusion L(A) C V+ is obvious, the converse inclusion can
be proved as follows. For a string x = ĉ 1 c?,2... c*r, r > 1 ,Cj G {a, b},ij- > 1,
for all 1 < j < r, with Cj Cj+i, 1 < j < r — 1, we denote by red(x) the
(reduced) string C1C2 . . . cr (all blocks of symbols a and b are reduced to one symbol).
Clearly, starting from strings in A and using the rules (X,ab,X), (X,ba,X), we can
generate all strings w G V+,w = red(x), for some x G V+. Then, by using rules
(A, a, A), (A, b, A), we can pass from red(x) to x, for any x G V+.

It is easy to see that { a , 6 } + G DUPL(l) n DUPL{r), too, and that a+ G
DUPL(a) for all a G {¿,r,0}.

Lemma 2. (i) {abanbn \ n > 1} G DUPL{r) - DUPL(l). (ii) {anbnab | n >
1} G DUPL{1) — DUPL(r).

Proof, (i) The duplication grammar

A = ({a, b}, 0, { (a , ab, b)},$, {abab})

obviously generates the language {abanbn | n > 1}.
This language cannot be generated by a duplication grammar which uses only

rules in Df. in order to produce strings abanbn with arbitrarily large n we need to
use triples of the form (a? ,a%bl, bk) G Df, such a triple can be used for introducing
albl in only one position of a string abambm, namely in between am and bm; there
is no occurrence of albl to the right of that position, as requested by the definition
of the relation £>,.

Assertion (ii) can be proved in the same way. •

Lemma 3. {anbn \ n > 1} £ DUPL{lrO).

Proof. No derivation step is possible starting from a string of the form anbn

because no substring of such a string can be duplicated. •

In [1] one asks whether or not the context-freeness is preserved by the iterated
duplication of types (in fact, in [1] one uses only one set D of rules,
applied both "to the left" and to "to the right", in the sense of Di,Dr, respectively).
We prove below that the answer is negative: even finite languages are led to non-
context-free languages by iteratively duplicating substrings of them. This is one of
the main results of our paper.

156 Carlos MARTiN-VIDE, Gheorghe PAUN

Lemma 4. DUPL(0) -CF ^ 0.

Proof. Let us consider the duplication grammar

A = ({a,b,c},d,d,D0,A),

where D0 contains the following rules

n = (ca, ab, baabbaabb),

T2 = (aababba,ab,b),

rz = (caa, b, abbaabab),

n = (caabb, a, bbaabab),

rs = (bbaabb, a, bbaabab),

re = {aabbaa, b, abbaabab),

ri = (aabbaa, b, abbe),

rs = (bbaabb, a, bbc),

and
A = {caabbaabbaabbc}.

Consider also the regular language

R = c(aabb)+c,

and examine the intersection L(A) n R.
Starting from a string of the form c(aabb)nc (initially, we have n = 3), the rules

7*i, 7*2 double the substrings ab, from left to right:

caabbaabbaabb... aabbc
=> D0 caababbaabbaabb ... aabbc
=>D0 caababbaababbaabb ... aabbc

=>D0 caababbaababbaababb... aababbc.

The rules r3 — rg can be applied to a string obtained in this way in order to double
all occurrences of a and b which are not double. This is also done from left to right:

caababbaababbaababb... aababbc
=>D0 caabbabbaababbaababb... aababbc
=> Do caabbaabbaababbaababb... aababbc

==>D0 caabbaabbaabbaabbaabbaabb... aabbaabbc.

In this way, each substring aabb is doubled: we pass from aabb to aababb and
then to aabbaabb. Thus, the obtained string is c(aabb)2nc. The process can be
repeated.

Duplication Grammars 157

In order to obtain a string in R, the operations of doubling the substrings ab
and then of doubling the symbols a, b which are not appearing in substrings aa, bb,
respectively, must be completed. Indeed, consider the case of a string of the form

w = caababb ... aababbaababbaabbaabb... aabbc,

that is, obtained after some steps where rules r i , r 2 were applied. Start now to use
the other rules. The rules , 7-4, 7-5, r^ can be used from the left to the right and the
symbols a, b not appearing in blocks aa, bb are doubled. Assume that we perform
this operation the maximal possible number of times, that is we double also the
underlined symbols in the string w; we obtain the string

w' = caabbaabb ... aabbaabbaababbaabbaabb... aabbc.

No further application of rules is possible, hence no further occurrence of
a,b can be doubled. We have first to continue with the rule r2, doubling new
occurrences of ab and making possible the identification of the right contexts of
rules r5 ,re in the current string.

Symmetrically, consider a string obtained after some steps where symbols a, b
were doubled:

z — caabbaabb... aabbaabbaababbaababb... aababbc.

From the left, we can start doubling substrings ab; this must be done step by step,
but cannot proceed ahead of the doubling of the symbols a, b. For instance, we can
obtain the string

z' = caababbaababb... aababbaababbaababbaababb ... aababbc,

but we cannot go further, with the underlined substring ab. Again we have to
continue with the previous operation of doubling (now, that of doubling the symbols
a and b appearing separately).

Consequently, in order to get a string in R we have to perform complete "trans-
lations" of the string, that is doublings of the number of occurrences of the blocks
aabb. This implies the equality

L(A) n R = {c(aabb)3'2"c | n > 0 } .

Clearly, this is not a context-free language, hence L(A) is non-context-free either. •

The family of languages generated by matrix (programmed, controlled, etc)
grammars with context-free rules (without using appearance checking) is closed
under intersection with regular languages and under morphisms, [3]. Moreover,
each one-letter matrix language is regular, [9]. This proves that the language L(A)
in the previous proof is not a matrix one (with the morphism h defined by h(a) =
h(b) = h(c) = a we obtain h(L(A) ni?) = {a12 '2"4"2 | n > 0}, which is not regular).
Thus, we can conclude that DUPL(0) contains non-matrix languages.

158 Carlos MARTiN-VIDE, Gheorghe PAUN

Corollary 1. DUPL(l) -CF¿<b, DUPL(r) - CF ^ 0.

Proof. Let A = ({a, b, c} , 0. 0. Do, {caabbaabbaabbc}) be the duplication gram-
mar constructed in the previous proof and consider the following grammar:

A r = ({a, 6, c} , 0, Dr, 0, {abcaabbaabbaabbc}),
Dr = { (uiv,v ,u 2) I (ui,v,u2) G Do}.

For the regular language Rr — abc(aabb)+c we obtain

L (A r) nRr = {ab}(L(A) n R).

(The rules in the set Dr of A r lead to duplications identical to those controlled by
the rules in the set Do of A; the string ab in the left end of the strings provides the
necessary strings a,b,ab for duplications.) This proves that the language L(Ar) is
not context-free.

A similar modification of A leads to a grammar A; (with only the set D¡ non-
empty) generating a non-context-free language (we take the axiom c(aabb)3cab and
Ri = c(aabb)+cab). •

Clearly, if we allow the use of each triple (u\,v,u2) in the above grammars
A;,A, r in any mode then the generated language is not modified,
hence the problem in [1] is answered: the iterated duplication does not preserve
the context-freeness.

We combine these results in a synthesis theorem:

Theorem 1. (i) The families DUPL(l),DUPL(r) are incomparable.
The families LIN,CF are incomparable with all families DUPL(a),a E
{I,r,0,lr,l0,r0,lr0}; REG is incomparable with DUPL(0).

(ii) All families DUPL(a),a G {I,r,0,lr,l0,r0,lr0}, are strictly included in
CS.

(iii) The inclusions DUPL(l) C DUPL{lr), DUPL{r) C
DUPL(lr),DUPL{0) C DUPL(10),DUPL(0) C DUPL(rO) are proper.

It remains as an open problem to clarify the relationships between the families
DUPL(0),REG and the families DUPL(a) with a 0. Is REG included in
DUPL(a) ? The next result provides a partial answer to this problem.

Theorem 2. For every regular language L there is a string w such that {w}L G
DUPL(r) and L{iu} e DUPL(l).

Proof. Let L be a regular language and let M = (K , V, q0, F, S) be the minimal
deterministic finite automaton recognizing L (K is the set of states, V is the al-
phabet, g0 is the initial state, F is the set of final states, and S : K x V —> K is
the transition mapping).

For each x E V*, we define the mapping px : K —;> K by

Px(q) = q iff 5{q,x) = q, q G K.

Duplication Grammars 159

Obviously, if xi,x2 G V* are such that pXl = pX2, then for every u,v G V*, uxxv is
in L if and only if ux2v is in L.

The set of mappings from K to K is finite. Hence the set of mappings px as
above is finite. Let no be their number. We construct the duplication grammar
A r = (V U {c, d}: 0, Dr, 0, A), where c, d are two symbols not in V,

Dr = {(zui,v, A) | pUl = pUlV, for ui,v G V*, |ui|, < n0,
and either z = dz',z' G V*, \z'ui\ < no, or z G V*, \zu\\ = no + 1},

and A is constructed as follows. Take all strings x G V* of length at most no,
concatenate each of them with c at both ends, then concatenate all the obtained
strings, in any given order; denote by w' the obtained string and consider w = w'd.
Then,

A = {iiji \ x E L,\x\ < no + 1}.

Therefore, the string w provides substrings v for duplication, as requested by
the rules in Dr. These rules cannot be applied to the substrings of w, because of
the presence of symbols c: the left context of each rule in Dr is of a length greater
than no, or it begins with d, hence this context cannot be found in w.

From the definition of mappings px and the definitions of A and Dr, it follows
immediately that L(A) C {w}L.

Assume that the converse inclusion is not true and let wu G {w}L — L(A) be
a string of minimal length with this property. Thus wu ^ A. Hence |u| > no + 2.
Let u = zz' with \z'\ = n0 and z G V*. If z' = a\a2 . •. o„0 , then it has no + 1
prefixes, namely A,ai,a\a2 , . . . ,ai ... ano. There are only no different mappings
px. Therefore there are two prefixes u\,u2 of z' such that u\ ^ u2 and pUl = pU2.
With no loss in generality we may assume that |iti| < l^l- By substituting u2 by
ui we obtain a string u' which is also in L. As \u'\ < |uj and wu was of minimal
length in {w}L — L(A), we obtain wu' G L(A). However, \u2\ — |MI| < \u2\ < no,
so if u2 = uiv, then (ziUi,v, A) G Dr, where either z\ = z and begins by d, or z\
is a suffix of z such that \zu%\ = no + 1. This implies that wu' ==>Dr wu, that is
wu G L(A), a contradiction. In conclusion, {w}L C L(A).

In the same way we can prove that L{dw'} G DUPL(l). •

Corollary 2. Each regular language L can be written as the left derivative of
a language in DUPL(r) or as the right derivative of a language in DUPL(l).

Proof. With the notations in the previous proof, we have L — dlw(L(A)) =
9^(L(A')) , where A is the duplication grammar constructed above and A' is its
version for the DUPL(l) case. •

If we also use a projection (a morphism which erases certain symbols and leaves
the other symbols unchanged), then a representation result like that in this corollary
can be obtained for linear languages, too.

Theorem 3. For each linear language L, there is a string w, a language L' G
DUPL(r), and a language L" G DUPL(l) such that L = h{dlw{L')) = h{drw{L")).

160 Carlos MARTiN-VIDE, Gheorghe PAUN

Proof. Consider a linear grammar. G = (N,T,S,P) and two new symbols.
c, d. Each rule X —> x in P is replaced by X —» cxc (in this way, all terminal
strings appearing in the right hand side of rules are non-empty and each right-
hand member of a rule is bounded by c). Denote by P' the set of rules obtained
in this way. For each rule X uYv G P' we consider the string uYYv. Let
w' be the string obtained by concatenating these strings, for all rules in P', then
concatenating also the strings appearing in the right hand side of terminal rules in
P'. Moreover, each string is considered only once, even if two rules have the same
right hand side. Then, the string w we look for is w = w'd.

We
now construct the duplication grammar A = (TV U T U {c, d}, 0, Dr, 0, {wSS}),
with

Dr = {(X,uYYv,X) | X ->• uYv G P ' , nonterminal rule}
U {(X,x,X) | X ->• x G P', terminal rule}.

From the previous construction, one can easily see that L(A) consists of strings
of the form

w'dSuiXwz... Xn_iunXnxXnvnXn_i.. ,v2XiViS,

with n > l,Xi G TV,Ui G {c}T*,Vi G T*{c}, for all i, and x G {c}T*{c}, such that
S UiX\Vi, Xi —> U{+iXi+iVi+i, for 1 < i < n — 1, and Xn —> x are rules in
P'. (For each derivation step we can find the string to be inserted as a substring
of w. Moreover, no duplication rule can be applied for inserting a string in w,
because of the presence of symbols c bounding the substrings to be duplicated and
because of the fact that such substrings appear only once in w.) Therefore, the
string u\u-2 • • • unxvn ... v2vi can be generated by using the rules in P'.

With the projection morphism h : (TV U T U {c, d})* —• T* defind by h{a) = a
for a G T, and h(b) = A for a £ T, we obtain L = h(dlw{L(A)).

The case of DUPL(l) can be treated in the same way. •

5 Decidability and Complexity
The fact that the family C P is incomparable with all families DUPL(a) makes
interesting several decidability questions. We solve here only one of them, the
others remain open. Two examples: Is the regularity or the context-freeness of
duplication languages decidable ? Given a regular language, can we decide whether
or not it is in a family DUPL(a) ?

Theorem 4. It is not decidable whether or not a context-free language is in a
family DUPL(a), for any a G {I,r,0,lr,l0,r0,lr0}.

Proof. Let G be an arbitrary context-free grammar with the terminal alphabet
{a, b} and construct the language

L = L(G){c,dy U {a, by {cndn \ n > 1}.

Duplication Grammars 161

If L(G) = .{a, b}*, then L = {a, b}*{c, d}*, therefore L G DUPL{a),a£ {l,r, 0}
(this can be easily seen for a G {I, r } - see also the proof of Lemma 1 - and can be
proved for a = 0 by following the idea used in Remark 1).

If L(G) ^ {a,b}*, then take a string w G {a,&}* — L(G) and consider all
strings of the form wcndn,n > 1. They are in {a,b}*{cldl \ i > 1}, hence in L.
Assume that, in these circumstances, L = L(A), for some duplication grammar
A = ({a,b,c,d},Di,Dr,Do,A). Consider a derivation step z\z2 => wcndn, where
z\ G {a,b}* ,z 2 G {c, d}*, and the applied rule introduces a string in z2. That is,
Zi = w and z2 => cndn. There are such derivation steps, with z2 / cndn, because
A is finite and the set of strings as above is infinite. However, no string z2 with
this property can exist: we must have z2 = cmdp with one of m,p equal to n and
the other one strictly smaller than n, and such a string wz2 is not in L (on the one
hand, w L(G), on the other hand, cmdP £ {c{dl | i > 1}).

It follows that L £ DUPL(a), for all values of a.
Consequently, L G DUPL(a),a G {l,r,0,lr, I0,r0,lr0}, if and only if L{G) =

{a, b}*, which is undecidable. •

The complexity of a duplication grammar can be estimated from several points
of view. We consider here some of them.

For a duplication grammar A = (V, Di, Dr, Do, A) we denote

ax(A) = card(A),
axm(A) = max{|a:| | x G A} ,
rul(A) = card(Di) + card{Dr) + card(Do),
ins(A) = max{|i;| | (ui, v,u2) G Di U Dr U Do},
rad(A) = max{|u| | (ui,v, u2) G D[U Dr U Do, u — ui or u = u2}.

(These parameters count the number of axioms, the maximum length of an axiom,
the number of rules, the maximum length of a string to be inserted, the maximum
length of a context string - the radius -, respectively.)

For a language L in a family DUPL(a) and a measure M G
{ax,axm,rul,ins,rad} we define

Ma(L) = min{M(A) | L = L(A), A is of type a } ,

where a G {I, r, 0, Ir, 10, rO, Ir0}.
As it is expected (as it is customary in the descriptional complexity area, see

[8]), each of these parameters defines an infinite hierarchy of languages, for each a.

Theorem 5. For each measure M G {ax,axm,rul,ins,rad}, for each n > 0,
and for each a, there is a language Ln such that Ma(Ln) = n.

Proof. For n > 0, consider the languages

Dax — DaxTn — {a, a , . . . , o,

162 Carlos MARTiN-VIDE, Gheorghe PAUN

Lmi = U ^ a X ^ a) - * - ,
i=i

Lins=an(an)+,

Lrad = {a 2 n + 1} U {a2<n+1>+2i | i > 0}.

Clearly, no rule can be applied to a string in the first language (otherwise, an
infinite language is produced), hence each string must be introduced as an axiom.
Thus, we need n axioms, the longest one being an.

In order to generate the second language, we need rules containing as strings to
be inserted strings of the form (ab lay with j > 1, for each i = 1 , 2 , . . . , n (we cannot
modify a block b1 in a string (abla)(abla)r,r > 1, hence we can only introduce new
blocks abla). That is, we need at least n duplication rules.

In the case of the third language it is also clear that the inserted strings must be
of the form ank, k > 1, that is, at least n symbols must be simultaneously inserted.

Grammars with n rules and with a string of length n to be inserted, respectively,
can generate these languages.

For the fourth language, starting from the axioms •

A = { a 2 " + 1 , a 2 < " + 1 \ a 2 (n + 1) + 2 } ,

and using the rule (an+1, a2, an+1) in any mode l,r, or 0, we can generate this
language. However, we cannot generate this language by using rules (a m , a v , a q)
with m, g < n: any such a rule must have p even, p = 2k, k > 1; applying it to the
string a2n+1 we produce the string a 2 n+1+2 f c j which is not in Lrad, a contradiction.

These remarks are valid for all variants of duplication grammars. Consequently,
for each M we have M q (LM) = n. •

A natural problem concerns the closure properties of families DUPL(a). We do
not consider it here, but we only point out that the families DUPL{1), DUPL(r)
are not closed under mirror image - a consequence of Lemma 2.

6 Final Remarks
We have considered here duplication operations suggested by similar operations
met in linguistics and in the genetic area. Some other variants can be defined, for
instance, with a transformation applied to the copy of the duplicated string (point
mutations, reversal, etc). Also variants of applying the replication rules can be of
interest: leftmost use of rules, parallel application, priority relations among rules
and so on. The area deserves further investigations, expecially for those variants of
the replication operation which are met in DNA transformation/evolution.

In general, the operations on strings inspired from biochemistry were success-
fully extended to various bi- or multi-dimensional structures, such as trees, graphs
in general, arrays. (The reader is referred to [4], [6], [7] for modern accounts on
these areas.) This happens, for instance, with the splicing operation ([10]) and it is
probably true also for the duplication operations considered here. The case of trees

Duplication Grammars 163

is particularly important, because the DNA molecules are known to often take a
branching structure.

References
[1] J. Dassow, V. Mitrana, On some operations suggested by the genome evolution,

Proc. of Pacific Symp. on Biocomputing, Hawaii 97 (R. Altmann, et al, eds.),
World Scientific, Singapore, 1997, 97 - 108.

[2] J. Dassow, V. Mitrana, A. Salomaa, Context-free evolutionary grammars and
the structural language of nucleic acids, Bio Systems, 43 (1997), 169 - 177.

[3] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[4] J. Engelfriet, Context-free graph grammars, chapter 3 in vol. 3 of [16], 125 -
213.

[5] B. S. Galiukschov, Semicontextual grammars (in Russian), Mat. lógica i mat.
ling., Talinin Univ., 1981, 38 - 50.

[6] F. Gécseg, M. Steinby, Tree languages, chapter 1 in vol. 3 of [16], 1 - 68.

[7] D. Giammarresi, A. Restivo, Two-dimensional languages, chapter 4 in vol. 3
of [16], 215 - 267.

[8] J. Gruska, Descriptional complexity of context-free languages, Proc. Math.
Found. Computer Sci. Confi, High Tatras, 1973, 71 - 83.

[9] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix gram-
mars, Acta Inform., 31 (1994), 719 - 728.

[10] T. Head, Gh. Páun, D. Pixton, Language theory and molecular genetics. Gen-
erative mechanisms suggested by DNA recombination, chapter 7 in vol. 2 of
[16], 295 - 360.

[11] L. Hunter, Molecular biology for computer scientists, in Artificial Intelligence
and Molecular Biology (L. Hunter, ed.), AAAI Press/The MIT Press, Menlo
Park, CA, 1993, 1 - 46.

[12] A. Manaster Ramer, Uses and misuses of mathematics in linguistics, X Con-
greso de Lenguajes Naturales y Lenguajes Formales, Sevilla, 1994.

[13] Gh. Páun, Marcus Contextual Grammars, Kluwer Academic Publ., Boston,
Dordrecht, 1997.

[14] Gh. Páun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Heidelberg, 1998.

164 Carlos MARTiN-VIDE, Gheorghe PAUN

[15] W. C. Rounds, A. Manaster Ramer, J. Friedman, Finding natural languages
a home in formal language theory, in Mathematics of language (A. Manaster
Ramer, ed.), John Benjamins, Amsterdam, 1987, 349 - 360.

[16] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, Heidelberg, 1997.

[17] A. Salomaa, Jewels of Formal Languages, Computer Science Press, Rockville,
1981.

[18] D. B. Searls, The linguistics of DNA, American Scientist, 80 (1992), 579 - 591.

[19] A. Thue, Uber unendliche Zeitchenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat.
Kl. Christiania, 7 (1906), 1 - 22.

