
Acta Cybernetica 14 (1999) 13-25.

Two simple algorithms for bin covering

J. Csirik * J. B. G. Frenk t M. Labbé * S. Zhang §

Dedicated to Professor Ferenc Gécseg on the occasion of his 60th
birthday

Abstract

We define two simple algorithms for the bin covering problem and give
their asymptotic performance.

1 Introduction
In this chapter we consider the following version of bin packing sometimes called
dual bin packing or bin covering : given a list

L = (a i , o 2 , . . . , a„)

of items with size s(a,i) for each item aJ; and a bin capacity C,

C > max s(a,i),
1 <i<n

pack the elements of L into a maximum number of bins so that the sum of sizes
in any bin is at least C. This means, that we have to fill as many bins as pos-
sible. It is clear, that we can normalize the problem so that C is equal to 1 and
s(ai) < 1 for every 1 < i < n. The above problem was investigated for the first
time by Assmann (cf.[1]) and Assmann et a/.(cf.[2]). In particular, they showed
that the problem is yVP-hard. Furthermore, they provided the first approximation
algorithms and proved their worst-case performance. Some average-case analysis
was also performed.

We denote by OPT(L) the optimal, i.e. the maximal number of filled bins for
a list

L = (ai,a2,... ,an)

'Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
^Erasmus University of Rotterdam, Faculty of Economics, Postbus 1738, 3000 DR Rotterdam,

Netherlands
^Université Libre de Bruxelles, Mathématiques du Triomphe, 1050 Bruxelles, Belgium
^Erasmus University of Rotterdam, Faculty of Economics, Postbus 1738, 3000 DR Rotterdam,

Netherlands

13

14 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

and we define for every k > 1

RA(k) := m i n { ^ | OPT(L) = A J , (1)

where A(L) denotes the number of bins filled by algorithm A applied to the list L.
The performance ratio or asymptotic worst case ratio of A, denoted by RA, is now
given by

RA ••= liminf-R^fc). (2)
k—>oo

Clearly, RAW < 1 for every k > 1, and hence RA < 1.

For an equivalent definition of RA we observe that RA > Ki if there exist two
constants K\ and K-2 such that

A(L) > Kx • OPT(L) + K2 (3)

for every list L. Clearly the largest possible K\ satisfying this inequality equals RA-
By this definition it is obvious that a heuristic Ai is at least as good as heuristic
A2 (from a worst case point of view) if RA, > RA2-

2 Preliminary results
It is very natural to adapt classical bin packing heuristics to the dual problem. So
the first heuristic is Dual Next Fit (D N F) .

1. Put the first element into the first bin.

2. While there is an unpacked item, do the following: Let aj be the first unpacked
element, and let Bj be the bin that is not yet filled (if all bins are filled, we
take a new empty bin as Bj). Place ai in bin Bj.

This algorithm has the nice property that it uses only one bin at a time and that
it works on-line. The algorithm runs in 0(n) time. However, the asymptotic worst
case bound of DNF is not very good (cf.[2]).

L e m m a 1 RDNF = 1 /2 .

From the 'bad' lists for this algorithm it follows, that - contrary to classical
bin packing - sorting the items in nonincreasing order does not improve the per-
formance of the heuristic. This implies, that the heuristic Next Fit Decreasing
(NFD) of classical bin packing adapted to the dual bin packing problem also has
a performance ratio of 1/2.

The next idea is to use First Fit type heuristics instead of Next Fit, i.e. to use
all opened bins instead of the last one. However, it has no meaning in this case,
because after filling a bin, it is useless to place further items into it. That means
that neither First Fit nor First Fit Decreasing adapted to the dual bin packing
problem have a larger performance ratio than Next Fit.

Two simple algorithms for bin covering 15

An improvement of the performance ratio of 1/2 was achieved by Assmann et
ai.(cf.[2]) by defining an artificial upper bound on the sum of sizes of elements placed
into the same bin. This upper bound can be regarded as the capacity of a bin and
leads to some similarity with classical bin packing. However, after packing the
items by a good heuristic for the classical bin packing problem, it might happen
that in some of the bins the sum of item sizes is less than 1. Hence we can use
a second step to fill these bins. The algorithm based on the above observation,
proposed by Assman et al., is called First Fit Decreasing with parameter r
(FFDr) and proceeds as follows:

Let 1 < r < 2.

Phase I. ("Classical FFD")

1. Presort the items in L so that

s(ai) > s(a2) > •••> s(an).

2. While there is still an unpacked element, do the following: Let o, be the first
unpacked item and let B j be the first (leftmost) unfilled bin with a current
total content smaller than or equal to r — s(aj). If such a bin exists, place a*
in Bj, otherwise open a new empty bin and pack Oj into this bin.

Phase II. (Repacking unfilled bins)

1. While there is more than one open nonfilled bin, remove an item from the
rightmost such bin and add it to the leftmost one.

The time complexity of FFDr can be seen to be 0(n log n). For this algorithm the
following result holds (cf. [2]).

Lemma 2 RFFD, = 2/3 for 4/3 < r < 3/2.

Assmann et al. also suggested a further improvement by defining a really sophis-
ticated algorithm, called Iterated Lowest Fit Decreasing (I L F D) . To define
this heuristic we consider first the following problem: Given the list L and a fixed
number N of bins, what is the maximum possible value for the minimum bin level
in a packing of L into N bins? From a good heuristic A for this problem we can
derive a good approximation algorithm for the bin covering problem by iteratively
applying this algorithm A. We denote by A(L, N) the minimum bin level in the
packing of L generated by the heuristic A if the number of bins is fixed by N. Now
the algorithm iteratively applying A proceeds as follows:
ITERATED "A"

1. Let UB = s(ai), LB = 1. (Clearly LB < OPT(L) < UB.)

2. While UB - LB > 1 take N = [(LB + UB)/2J and apply heuristic A. If
A(L, N) > 1 take LB = N, otherwise UB = N.

16 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

The resulting algorithm gives a feasible solution of the dual bin packing problem
with LB bins.

Clearly, the performance of this method depends on the choice of A. While the
problem to be solved by A is closely related to multiprocessor scheduling problems,
it seems natural to use for the heuristic A the Lowest Fit Decreasing (L F D)
algorithm, as studied by Graham (cf.[4]) and Deyermeyer et a/.(cf.[3]). This algo-
rithm proceeds as follows:

1. Order L so that s(oi) > s(a2) > . . . > s(a„) and start with N empty bins.

2. While there is an unpacked item in L do the following: let a, be the first
unpacked item and let Bj be the bin with minimum level (in case of ties,
choose the rightmost). Put at into Bj.

It is not difficult to verify that the time complexity of I LFD is 0(n log2 n).
Furthermore, one can prove the following result (cf.[2]).

L e m m a 3 RILFD = 3 /4 .

3 Two new simple algorithms
Now we will show that the same performance bounds can also be achieved by
simpler algorithms too. First we discuss the heuristic Simple (SI). This algorithm
proceeds as follows:

1. Sort the items of list L into nonincreasing order, i.e. from now on we assume
that

s(ai) > s(a2) > . . . > s(an).

2. Let ki denote the index satisfying

ki fci + l
J > (a 2) < 1 and ^ ^ s(a,i) > 1.
¿=1 i= 1

Pack the elements a i , a 2 , . . . ,akl into the first bin. Fill the remaining space
in the bin with items from the end of the list, i.e. with an, a n _ i , . . . untill the
sum of sizes of items in the bin is at least equal to one and remove the packed
items from the list.

3. Renumber the indices of the remaining items and repeat step 2 untill the list
is empty.

Lemma 4 For all lists L,

SI(L)>2--OPT(L)-2-.

Two simple algorithms for bin covering 17

Proof. Let us assume that the last item in the last filled bin is a|ast, and distinguish
the cases s(aiast) < 1/2 and s(aiast) > 1/2.

If s(aiast) < 1 / 2 then the total sum of item sizes in the last filled bin is bounded
above by 1 + s(aiast) < 3/2. Moreover, since all the last items in the remaining
filled bins are by the definition of S I always smaller than or equal to ,s(aiast) we
obtain that the total sum of item sizes of all the filled bins is bounded above by
3/2. As we have at most one non-filled bin, this implies

3 /2 • SI(L) + 1 > s(L).

Since s(L) > OPT(L) we obtain

SI(L) > \{OPT{L) - 1)

for all lists L and so the lemma holds in this case.

If s(aiast) > 1/2, we only consider the case where all the opened bins are filled. If
this does not hold (i.e. we have one non-filled bin) the proof can be easily adapted.
Now it is clear that the 51-packing has the following structure:

fljli &712 ari3 ' ' ' Ink

an Oni-l a 1fc - l - l ank-l 0"nk-2 ank-SJ(L)+k
ai a.2 0.3 o-k 0-k+l dk+2 aSI(L)
S i B2 B3 • •• Bk Bk+i Bk+2 Bsi(L)

where anh-Si(L)+k = « l a s t , nk - SI(L) + k = SI(L) +1, s(anh_Si(L)+k) > 1 /2 and
Tl > Til > Tl2 > • • • > Uk •

Call the elements a „ , a „ _ i , . . . , a „ 1 + i , a n i _ i , . . . ,an2+i> • • • , a n k - i - i , • • • ,Onfc+i
type-A items and the remaining (i.e. the first and the last element in each bin)
type-B items, and consider the optimal packing. Define

HA := # bins in the optimal packing with only type-A items,
KAB '•= # bins in the optimal packing with exactly one type-1? item,
kBB := # bins in the optimal packing with more than one type-B items.

Clearly

OPT(L) = kA + kAB + kBB. (4)

Moreover, by the definition of SI we observe that

k
s(a,i) + s(°i) < k

i^type — A i=1

18 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

and this implies, since a i ,a2 , . . . , a^ are the biggest B-items, that kAB < k. Ap-
plying the above inequality again and using s(aj) > 1/2, for every i < k, we get:

kAB
kA + kAB < s ^ + <

i&type — A i= 1

k + kAB < SI(L) + kAB
(5)

2 - 2

Finally, in order to obtain an upper bound for kBB we note that the total number
of type-S items in bins with more than one type-5 item is given by 2 • SI(L) — kAB
and hence

2 • SI(L) - kAB
kBB < z

By (4) and the upper bounds in (5) and (6) we obtain

OPT(L) < S«L\+ + 2 " 31W ' * * * = 3/2 • SI(L).

and hence the desired result is proved.

(6)

•

In the above lemma we proved that Rsi > 2/3. Furthermore, this lower bound
can be achieved, as will be shown by the next result.

Theorem 5 RS[= 2/3.

Proof. Let us define the lists Ln,n > 1 by the sizes of the elements and consider

/
L n —

\
3 1 1 1
4 ' 2 £ ' ö ~ £ ' - " ' ö - e , 2 e , 2 e , - - - , 2 e

6n+l times 3n times

if

then

and

Hence we obtain

£ <
1

24n

OPT(Ln) = 3n + 1

SI(Ln) = 2n + l.

SI(Ln) = 2 + 1
OPT(Ln) 3 9n + 3

Two simple algorithms for bin covering 19

and this implies lim.
result.

SI(Ln) _ 2 |. Applying Lemma 4 finally yields the desired Ln->oo OPT(Ln) — 3"

•

It is easy to see that similarly we can characterize the performance of the heuristic
SI if s(a,i) < 1/k for all (¿¿, where k is some positive integer. For this case the next
result holds.

Theorem 6 If s(a,i) < 1/k for all items in L = (ai, a2, • • •, an), where k is a
positive integer, then the worst case performance of the heuristic SI is at least .

Proof. The proof directly follows that of Lemma 4 .

Finally, we consider an improved version of the S/-heuristic. Before introducing
this so called Improved simple heuristic (/57) we divide the list L into the
following three parts.

Clearly p + r + m = n. Now the I SI- heuristic is defined as follows.

Phase 1. If s(xi) > s(j/i) + 5(2/2), then pack x% into an empty bin, otherwise pack
yi and 2/2 into an empty bin. Fill the just opened bin with elements from the
end of the Z-sublist, i.e. with zm,zm-1,... untill the bin is filled. Remove
the packed elements from the corresponding sublists and repeat packing untill
either X U Y or Z is empty.

Phase 2. If after phase 1, X U Y is empty, pack the remaining elements in the
Z-sublist according to the Next-Fit heuristic. Otherwise, if Z is empty, pack
the remaining x-elements by two in a bin and the remaining y-elements by
three.

For the above heuristic the next result holds.

Lemma 7 The worst case performance ratio of the heuristic ISI is at least equal
to 3/4-

Proof. To verify the above result it is sufficient to prove that ISI(L) >
3 /4 (OPT(L) - 4) for all lists L. This is easy if X U Y is empty after phase 1.
Observe that in this case the last elements of all filled bins (after the execution of
the heuristic) are elements from the Z-sublist and hence the sum of sizes in each
filled bin is bounded from above by 4/3. By an argument similar to that used in
the first part of Lemma 4 the desired inequality follows.

i) s (z i) > s{x2) > s(zp) > 1/2
ii) 1/2 > s(yi) > s(y2) >...> s(yr) > 1/3
iii) 1/3 > s(zi) > s(z2) >...> s(zm)

(X-sublist)
(Y-sublist)
(Z-sublist)

20 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

Xi,X2,...,Xl ,Zf+l, . . . ,Xp, 1/12/2,2/32/4, ••• ,î/2Jfc-l2/2Jfc ,2/24+1; • • • ,2/r,

, «2, • • • , Zm

Figure 1: The packing by Improved Simple.

Subsequently we consider the case where the Z-sublist is empty after phase 1
and assume that x i , x 2 , . . . ,£/ from the A'-sublist and 2/12/2,2/32/4, • • • ,2/2fc-i2/2fc from
the y-sublist are used in the first phase (cf.Figure 1).

By the definition of the heuristic we obtain

/ s i (i) > , + t + r _ i J + [L ^ J _ 1 ^ + | + | + r _ , ,7,

We now have to derive an upper bound on OPT(L). In order to do so call
the elements of the Z-sublist, which were packed last in a filled bin by the ISI-
heuristic, B-items, and the remaining z-elements A-items and consider the optimal
packing. We now rename A-items ¿4*-items if these ^4-items in the optimal packing
are packed either with only A-items or with one or two 2/-elements or with exactly
one x-element and define

kA* := # bins in the optimal packing with only A* items,

kA*x '•= # bins in the optimal packing with only A* items and exactly one element
from the X-sublist,

k,A'Y '•= # bins in the optimal packing with only A* items and exactly one element
from the F-sublist,

kA'YY •= # bins in the optimal packing with only A* items and exactly two
elements from the V-sublist.

kothers '•=• it1 of other bins in the optimal packing.

Clearly,
OPT(L) = kA. + kA.x + kA.Y + kA*yy + k0therS• (8)

To obtain an upper bound on the first four terms in (8) we note by the con-
struction of the I SI- packing that

l 2k

YI + yi)<l + k (9)
iBtype — A* i—1 ¿=1

Furthermore, if kA> + kA>x + kA-Y +kA.yY > / + fc, it is possible by the feasibility
of the optimal packing and the definition of A* items to pack more than I + k bins
in the first phase of the I SI heuristic and since this does not hold we get

kA- + kA*x + kA'Y + kA.YY < I + k. (10)

Two simple algorithms for bin covering 21

To simplify notations, we now define I1 := kA»x and 2k' := kA'Y + 2kA*YY- Then,
by (10), it follows immediately that

I' + k' < kA- + kA,x + kA-Y + kA.Yy <l + k. (1 1)

It turns out that the inequality derived in (10) can be improved as follows. Clearly,

I' 2k'

kA' + kA,x + kA'Y + kA'YY < s(ai)+ + (12)

i£type — A* i=1 i = l

By (9), it follows that the upper bound in (12) can be bounded from above by

I' l 2k' 2k
u := I + k + J2 s(xi) - J2 s(xi) + - (13)

i= 1 i= 1 i—1 i—1
In order to bound U we distinguish the following four cases:

i) 1 > V and 2k > 2k',
ii) I < V and 2k > 2k',
iii) I > I' and 2k < 2k',
iv) I < V and 2k < 2k'.

By (11) case (iv) will never occur and hence we only have to consider i), ii) and
iii).

Clearly, if i) holds,

l 2k
U = i + k - Y, Y1 (14)

i=l' +1 i=2k' + l

By the definition of ISI (cf.Figure 1), we now observe that

2

s(Xi) > s(xi) > s{y2k+1) + s(y2k+2) > g,

for every i < I, if r > 2k + 2.
Moreover, if r < 2k + 1, then s(xi) might be smaller than 2/3 and hence the
remaining elements in the X-sublist after phase 1 are always smaller than 2/3.
This observation implies that in phase 2 the sum of the sizes in a filled bin is
bounded above by 4/3 and together with the argument that in phase 1 the sum of
sizes in a filled bin are also bounded above by 4/3 the desired inequality follows.
By this observation we may therefore assume that s(xi) > 2/3 for every % < I and
this yields, by (14), U <l + k-l(l-l')-\(2k-2k') = \(l + k) + l(l' + k') (15)

O J J o

22 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

If ii) holds we obtain by (13) that

l' 2k
C/ = Z + A+ £ sfc)- Y, s(yi)- (16)

i=l+1 t=2A' + l

Observe by the definition of the first phase of the /S7-heuristic (cf.Figure 1) that
the sum of sizes of any two yi elements, i = 2k' + 1 , . . . , 2k is always bigger than
the size of any Xi-element, i = I + 1 , . . . , I'. This implies

l' 2k'+2l'-2l

i=l+1 i=2k' + l

and since by (11) 2k' + 21' - 2 1 < 2k, we obtain

2k 1

U < I + k — Y, s(yi) < I + k - ~(2k - (2k'+ 21'- 21))
i=2k' +21' -21+1

which is the same as inequality (15).

In order to bound U by the same upper bound as in (17), when iii) holds, we
use a similar argument, i.e. we replace the remaining 7/-iterns by an x-item and
using the lower bound for X{ yields the desired result.

Hence we have proved that in all cases the improved upper bound

U<l-~ + \(l' + k') (18)

holds.

By (8), we also need an upper bound on kothers• These remaining kothers bins
contain p — I' rc-items, r — 2k' i/-items, I + k B-items and some A-items. By the
definition of k A ' these A-items are always contained in a bin with some of the above
elements and hence do not count

in the computation of an upper bound for k0u i e rs .
For this upper bound computation we consider four subcases.

A) I + k >p - I' + r-2k'
2 '

If this holds, the best we can hope for is to pack one X-element with one B-item,
two F-elernents with one B-item and the remaining B-items by four. Hence

„ r-2k' l + k-(p-V+
kothers <P~l + + — (19)

Two simple algorithms for bin covering 23

and by (18) and (8) this implies

OPT(L) < ¿ (Z + k) + \p + |r - l (i ' + k').

Since by A) I' + k! > p + r/2 — I — k we conclude by the above inequality that

. OPT{L)<2-{l + k + p) + ^r. (20)

By (7),(20) and the inequality r>2k (cf.Figure 1) we finally obtain

pSI(L) > l(l+p) + ^(k + r)-4>OPT(L)-4. (21)

B)p-V <l + k<p-l' +

If this holds, the best we can hope for is to pack one X-element with one B-item,
the first part of the ^-elements by two with an additional B-item and the remaining
F-elements by three. Hence

kothers <p-V + ((l + k) - (p - l')) + i ((r - 2k') - 2 ((/ + k) - (p - I')))

= l + k+ i((r - 2k') - 2{(l + k)-(p - I')))

and by (18) and (8) this yields

OPT(L)<^(l + k + P) + r-.

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.

C) p - V - (r - 2k') <l + k<p-l'.

If this holds, it follows that r - 2k' - (p - I' - (I + k)) > 0 and so the best we can
hope for is to pack I + k X-items with one additional B-item, the remaining part
of the X-items, i.e. p- I' - (1 + k), with one additional Y-item and the rest of the
F-items, i.e. r — 2k' — (p — I' — (I + k)), by three. Hence

^ , , ,/ /, i \ r — 2k' — (p - I' - (I + k))
kothers <l + k + p-l'-(l + k) + i U.

O
_ „ , r - 2 k ' - (p - l ' - (l + k))
- P i + 3

and by (18) and (8) this implies

OPT(L)<l(p + l + k) + r-.

24 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.

D) l + k<p-l' -{r-2k').

If this holds, the best we can hope for is to pack I + k X-items with one additional
B-item, r — 2k' X-items with one additional F-item and the remaining part of the
AMtems, i.e. p - I' - (I + k) - (r - 2k'), by two. Hence

P-I'~(l + k)-(r-2k')
Killers < l + k + r - 2 k ' + ^ ^ * >-

and by (18) and (8) this implies

OPT(L)< 5-(l + k) + r- + ^ + ±(l' -2k'). (22)

By D) it follows that I' — 2k' < p — r — I - k and substituting this in (22) yields

OPT(L) <^(l + k + p) + r-.

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.
This last subcase concludes the proof of our result.

•
In the above lemma we proved that RJSI > 3/4. Furthermore, this lower bound

can be achieved, as will be shown by the next result.

T h e o r e m 8. RISI = 3 /4 .

Proof. Consider the lists Ln with

L n —

^ 1 1 1 1 1 ^
t: £«, TT £n> o — TT . . . ,— — 2sn, Q£n, 6 £ n , . . . , 6en 3 3 3 3 3 •> v '

L 4n times I \ 12n+l times /

It is easy to verify that
OPT(Ln) = 4n + 1.

If s n is chosen in such a way that the first two items together with the last 4n items
do not fill the first bin then

ISI(Ln) =3n+l.

Hence limn^oo ¿PT{L\ = 4 anc^ ky Lemma 2 the desired result follows.
•

As a last remark we note that for the above lists the IS /-packing is essentially
the same as the simple packing.

Two simple algorithms for bin covering 25

4 Open question
It would be interesting to find a heuristic with a performance ratio greater than
3/4.

References
[1] Assmann, S.F.: Problems in Discrete Applied Mathematics, Ph.D. Thesis,

Mathematics Department, MIT, Cambridge, MA, 1983.

[2] Assmann S. F., Johnson D. S., Kleitman D. J., Leung J. Y.-T.: On a dual
version of the one-dimensional bin packing problem, J. of Algorithms 5(1984),
502-525.

[3] Deyermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize
the minimum processor finish time in a multiprocessor system, SIAM J. Alg.
Disc. Meth. 3(1982), 190-196.

[4] Graham, R.L.: Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17(1969), 263-269.

