
Acta Cybernetica 13 (1997) 55-61.

On lexicographic enumeration of regular and
context-free languages*

Erkki Makinent

Abstract
We show that it is possible to efficiently enumerate the words of a regular

language in lexicographic order. The time needed for generating the next
word is O(n) when enumerating words of length n. We also define a class of
context-free languages for which efficient enumeration is possible.

1 Introduction
In [4] we considered the ranking and unranking algorithms for left Szilard languages
of context-free grammars. These algorithms imply similar algorithms for context-
free languages generated by arbitrary unambiguous context-free grammars. The
present paper concerns a somewhat similar but more difficult problem of enumer-
ating regular and context-free languages in lexicographic order. The widely studied
problem of coding binary trees [3, 7] can be considered as a subproblem of our
present problem. For example, in Zaks' coding method [7] we label the nodes and
the leaves of a binary tree by 1 and 0, respectively. By traversing the tree in pre-
order we obtain a code word consisting of n (the number of nodes) l's and n -f 1
0's. The same set of words is obtained by considering the context-free language
generated by productions S —» 1SS and S —t 0. However, in the general case
there are several nonterminals in the grammar in question. This means that the
nodes in the corresponding derivation trees have different labels, and the problem
of enumerating the "feasible codewords", i.e. the words in the language generated,
is much more difficult.

2 Preliminaries
If not otherwise stated we follow the notations and definitions of [1]. Context-free
grammars are denoted by G = (V, E, P, S), where E is the set of terminals and V
is the union of E and the set N of nonterminals.

* This work was supported by the Academy of Finland
^Department of Computer Science, University of Tampere, P.O. Box 607, FIN-33101 Tampere,

Finland

55

56 Erkki Makinen

If A is a nonterminal in a context-free grammar G = (V, E, P, S), then L(G, A)
stands for the language derivable from A according to the productions of G. The
length of a string ¡3 is denoted by len(fi).

For the sake of notational simplicity, we assume that context-free grammars are
in Chomsky normal form (CNF), so that all productions are of the form A -t BC or
A —» a, where A, B, and C are nonterminals, and a is a terminal. The productions
having A in their left hand side are called A-productions. We say that a production
of the form A —> a is terminating-, the other productions are continuing. In a regular
grammar [1] continuing productions have the form A -» aB.

When considering a lexicographic order in L(G) generated by a context-free
grammar G = (V, £, P, S), we suppose that there is a total order -<G defined in £
which imposes the lexicographic order of the words in L(G).

Throughout the paper, we use the unit-cost model for time and space. Hence,
we suppose that normal arithmetic operations for arbitrary integers are possible in
constant time and an arbitrary integer can be stored in one memory cell. All time
and space bounds are given as functions of the length of words. The numbers of
productions and nonterminals are always considered as constants.

3 Finding minimal words of given length
We first consider the problem of finding the lexicographically minimal words of
different length in a given language. This problem is somewhat related to a very
recently solved problem concerning the closure of context-free languages under min-
operation. Namely, given a context-free language L, the language Lrnirl is obtained
by taking from all words of L of the same length only the first in lexicographic
order [5]. Raz [6] has recently shown that L r n i n is context-free for an arbitrary
context-free langauge L. Given a context-free grammar G = (V,Y>,P,S), a total
order -<G in S, and a natural number n, our task in this section is to determine W
such that len(w) = n and w € Lmin.

In order to efficiently perform this task, we store in Amin[i], for each nonterminal
A and for each length i = 1 , . . . , n — 1, the lexicographically minimal terminal string
of length n obtainable from A according to the productions of G. Hence, each table
entry Amin[i] belongs to L(G,A)min.

The following algorithm tabulates the A m i n values for each nonterminal of the
grammar in question. To simplify the notations, we suppose that fi is not in X
and we define a -<c ^ f° r all a in E. fI will be used as a null value for undefined
table entries. Moreover, we use the notation conc(u,v) to stand for the normal
concatenation of strings u and v. i.e. conc(u,v) = uv.

Algorithm 3.1 (Min)
Input: A context-free grammar G = (V,E,P,S), a total order -<q in E, and a
positive integer n.
Output: Table Amin[l..n], for each nonterminal A 6 V \ min = Srnin[n] is the
minimal word of length n. '

On lexicographic enumeration of regular and context-free languages 57

Method:
for each nonterminal A do

if there is no terminating A-productions
then Amin[l] <- ft
else Amin[1] a where a -<o h holds for all other terminals b appearing
in the right hand sides of terminating A-production;

for i 2 . . . n do
for each nonterminal A do
min fi;
for each continuing A-production A -> BC do

for j <r- 1 . . . i — 1 do
if Bmin[j] ± fi and Cmin[i - il
then

if conc(Bmin [j]j Cmin [i - j]) -<G min
then min conc(Bmin\j], Cmin[i - jj)

od
od
Amin[i] -f- min;

od

End of Algorithm

As already mentioned, we consider the size of a grammar (including the numbers
of terminals, nonterminals and productions) as a constant. Noticing this assump-
tion it is clear that algorithm Min runs in time 0(n2).

We also consider the total order -i^,1 defined by letting a b if and only if
b -<G A• The minimal word in lexicographic order in L(G) according to is the
maximal one according to <g - This word is denoted by max (cf. min in Algorithm
3.1).

Theorem 3.1 Let G be a context-free grammar. The words min and max of length
n can be found in time 0(n2) and in space 0(n).

Theorem 3.1 can be sharpened if the input grammar is regular. Also the form of
the algorithm changes a bit. Next, we rewrite the whole algorithm for the regular
case.

58 Erkki Makinen

Algorithm 3.2 (Reg-Min)

Input: A regular grammar G = (V,T,,P,S), a total order -<Q in E, and a positive
integer n.
Output: Table Amin[l..n], for each nonterminal A 6 V \ £/ rnin — Smin[n] is the
minimal word of length n.
Method:

for each nonterminal A do
if there is no terminating A-productions

then Amin [1] <- fi
else Arnin[l] a where a -<q b holds for all other terminals b appearing
in the right hand sides of terminating A-production;

for i i— 2 . . . 7i do
for each nonterminal A do
min fi;
for each continuing A-production A —> aB do

if Bmin[i - 1] ^ fi
then

if conc(a, Bmin[i — 1]) -<G min
then min <— conc(a, Bmin[i — 1])
od

od
Amin[i] min;

od

End of Algorithm

In Algorithm RegJVIin only a constant number of operations is needed for de-
termining each table entry. Hence, we have the following theorem.

Theorem 3.2 Let G be a regular grammar. The words min and max of length n
can be found in 0(n) time and space.

4 Enumeration of regular languages
So far, we have been able to find the minimal and maximal words in L(G) of given
length in lexicographic order. The algorithm enumerating the words in L(G) of
given length can now' be given as follows using the words min and max:

Algorithm 4.1 (Enumerate)

Input: A context-free grammar G = (V, £,P,S), a total order <g in £, and a
positive integer n.
Output: The words on length n in L(G) in lexicographic order.
Method:

On lexicographic enumeration of regular and context-free languages 59

presentjword min;
while present-word / max do

find the next word in lexicographic order od
End of Algorithm

Obviously, our problem is to specify the step "find the next word in lexicographic
order". We first consider the problem in the case of regular languages.

Suppose G is a regular grammar and a\a2 . . . a„ is a word in L{G). We know
that there is a deterministic finite automaton accepting L(G) [1]. In terms of
grammars this means that there is a regular grammar H such that L(H) = L(G)
and, for each nonterminal A, the terminals appearing in the right hand sides of A-
productions are all different. Hence, without loss of generality, we can suppose that
G has this property. It follows that we can conclude the sequence of nonterminals
S = Ai, A2,..., An needed in deriving the word a\a2 ... an from the start symbol
5, and further, we can conclude the sequence of productions applied.

We start from the end of aia2 .. .an and look for a position in which we can
replace the symbol a, with a symbol b such that a; -<G b.

The last symbol an is the only one in aia2.. .an produced by a terminating
production. We first check whether or not there is a symbol b such that An —> 6 is
another terminating production and a -<a b. Provided that b is the first (accord-
ing to -<G) such symbol we have found out that aiA2 . . . AN-\B is the successor of
a\a2.. ,an. Otherwise (such b does not exist), we have to proceed further to the
left.

Suppose now that a¿, 1 < z < n — 1, is the first symbol that can be replaced.
This means that we have a continuing production A{ bB such that at <a b (and
b is before other such terminals according to -<q)• If now Bmin[n — i] is defined,
we can write the successor of ai a2 ... an as

conc(aia2 ... ai-ib,Bmin[n - ¿]).

Hence, when a symbol is changed then all positions in its right get the lowest
possible value. If the Bmin value is undefined for all possible B's appearing in the
right hand sides of ^¿-productions, we again have to proceed to the left.

If aia2 ... an ^ max then at least one of the symbols in aia2 ... an must be
changeable. Since the number of productions is considered to be a constant, linear
time is sufficient for finding the successor of a given word a\a2.. ,an . Hence, we
Jrave the following theorem.

Theorem 4.1 Given a regular grammar G, there is an algorithm for enumerating
the words in L(G) in lexicographic order such that the time needed for generating
the next word is 0(n).

Notice that the time bound of Theorem 4.1 holds also for the first word of the
enumeration, i.e. for the minimal word in lexicographic order. This follows from
Theorem 3.2.

60 Erkki Makinen

5 Enumeration of context-free languages
In the previous section we were able to show that regular languages have an efficient
enumeration algorithm. Unfortunately, it seems that the same does not hold for
context-free langauges.

For the sake of simplicity, we suppose that context-free languages considered in
the rest of the paper are generated by unambiguous context-free grammars. Sup-
pose now that we apply the same approach as we used for regular languages. Hence,
a word a\a-2 • • • an in L(G) is given, and we first find out the sequence of produc-
tions used in the leftmost derivation producing the word. A unique derivation is
always found because we suppose that G is unambiguous.

Let A,I be the symbol to be replaced with a symbol b having the property a; -<G b.
We have a leftmost derivation

5 =S> . . . => ai . . . ai-ia => Oi... ai-idiP

where /3 is a string of nonterminals such that 1 < len(fl) <n — i. We should now be
able to efficiently find the lexicographically minimal word of length n — i derivable
from ¡3. As in Algorithm 3.1 we have to check all possible combinations of the Amin

table entries, for each nonterminal instance A appearing in /?. In the general case,
there seems to be no efficient solution for this problem.

On the other hand, an inefficient method can be implemented even without the
preprocessing phase described in section 3: simply enumerate all the words in £*
and delete those not in L(G).

We end this section by defining a subclass of context-free grammars which allow
efficient enumeration of words in lexicographic order.

We say that a context-free grammar is strongly prefix-free if L(G, A) is prefix-
free for each nonterminal A. More formally, G is stronly prefix-free if derivations
A u and A =>+ v, where u and v are terminal strings, always imply that both
u = vw and v = uw are impossible for all non-empty strings w. The class grammars
generating left Szilard languages of context-free grammars [2] is an example of
strongly prefix-free grammars.

Moreover, we say that a context-free grammar G is length complete if the fol-
lowing condition is fulfilled for each nonterminal A:

• if w 6 L(G, A), len(w) = n, then, for each i, i = 1 . . . n — 1, L(G, A) contains
a word of length i.

If G is stronly prefix-free then it is sufficient to maintain the Am in table values
in lexicographic order and to consider only the minimal values from each table.
This follows from the fact that in strongly prefix-free grammars the set of Am in

values is always prefix-free. Amin values can be easily maintained in lexicographic
order by using radix sort. Moreover, if G is length complete, then there is no need
for backtracking because of lacking words of certain length.

The preprocessing phase (filling in the Am in tables) is now (asymptotically) as
simple as with regular languages. Similarly, the next word can always be found

On lexicographic enumeration of regular and context-free languages 61

(asymptotically) as efficient as in the case of regular languages. Hence, we have the
following theorem.

Theorem 5.1 Given a stronly prefix-free, length complete context-free grammar
G, there is an algorithm for enumerating the words in L(G) in lexicographic order
such that the time needed for generating the next word is 0(n).

References
[1] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley,

1978).

[2] E. Makinen, On context-free derivations. Acta Universitatis Tamperensis 197
(1985).

[3] E. Makinen, A survey on binary tree codings. Comput. J. 34 (1991) 438-443.

[4] E. Makinen, Ranking and unranking left Szilard languages. Dept. of Computer
Science, University of Tampere. Report A-1997-2, January 1997.

[5] G. Paun and A. Salomaa, Closure properties of slender languages. Theoret.
Comput. Sci. 120 (1993), 293-301. '

[6] D. Raz, Context-free languages are closed under min operation. Manuscript,
submitted for publication.

[7] S. Zaks, Lexicographic generation of ordered trees. Theor. Comput. Sci. 10
(1980) 63-82.

Received March, 1997

