
Acta Cybernetica 12 (1996) 381-395.

Parallel Communicating Grammar Systems:
Recent Results, Open Problems*

Gheorghe PAUN*

Abstract

First, we recall several recent results concerning the generative power of
parallel communicating (PC) grammar systems, including characterizations
of recursively enumerable (RE) languages starting from PC grammar systems
and their languages. Then, we prove that the simple matrix languages can be
generated by PC grammar systems and finally we introduce a new class of PC
grammar systems: when a component has to communicate, it may transmit
any non-empty prefix of its current sentential form. Each RE language is
the morphic image of the intersection with a regular language of a language
generated by such a system. A series of open problems are pointed out in this
context.

1 Introduction

This paper deals with only one class of grammar systems, the parallel communicat-
ing (PC) grammar systems, introduced in [24]. We do not discuss here cooperating
distributed (CD) grammar systems, introduced in [4]. Of course, also in the case
of PC grammar systems we do not cover all the recent results; for instance, we are
not concerned here at all with a series of variants introduced in the last time.

Informally speaking, a PC grammar system consists of several usual grammars,
each of them having its own sentential form. In each time unit (a common clock
divides the time in units, in a uniform way for all components) each component
uses a rule, rewriting the associated sentential form. Special (query) symbols .are
provided, pointing to components of the system. When a component i introduces
the query symbol Qj, then the current sentential form of the component j will
be sent to the component i, replacing the occurrence(s) of Qj. One component is
distinguished as the master, and the language generated by it, alone or involving
communications, is the language generated by the system. Several variants can be

'Research supported by the Academy of Finland, Project 11281, and by Hungarian Scientific
Research Fund OTKA T 017105

^Institute of Mathematics of the Romanian Academy, PO Box 1-764, 70700 Bucure§ti, Roma-
nia. E-mail: gpaun@imar.ro

381

mailto:gpaun@imar.ro

382 Gheorghe Páun

considered, depending on the shape of the communication graph, on the action a
component has to perform after communicating, and so on.

The work of PC grammar systems is quite intricate, systems with a small num-
ber of components can generate one-letter non-regular languages, [5], characteri-
zations of recursively enumerable languages are obtained by (non-centralized) sys-
tems with context-sensitive components, [12], [25], each matrix language (generated
without appearance checking) can be generated by a PC grammar system, too,
[17], etc. Moreover, many basic questions proved to be very resistent and (with
the exception of some particular cases) are still open. For instance, does the num-
ber of components induce an infinite hierarchy of families of languages generated
by PC grammar systems with context-free components ? Which is the relation
between families of languages generated by non-centralized PC grammar systems
with context-free (arbitrary or A-free) rules and the family of context-sensitive lan-
guages ? Both grammatical techniques and complexity techniques were used, but
without settling this latter question.

Recently, several results were obtained which shed more light on the power of
PC grammar systems. We recall some of them in the next section. Without solving
the above mentioned questions, they provide a new indication about the difficulty of
these questions: characterizations of recursively enumerable (RE) languages were
obtained by adding to PC grammar systems certain features usual in language
theory (for instance, lefmost derivation). We shall recall some results of this type
in Section 3 below.

These results are not the first of this type. For instance, characterizations of
RE appear also in [19], using query words instead of query symbols, and in [6]
and [14], using a variant of PC grammar systems where the communication is done
by command, not on request (the component which sends the string to another
component starts the communication and the communicated string is accepted
only if it passes a given filter associated with the receiving component).

Because PC grammar systems with leftmost derivation characterize RE, they
trivially generate each simple matrix language; this has been proved in [17] without
noticing the equality with RE. However, the leftmost restriction is not necessary
in order to cover the power of simple matrix languages; we prove this in Section 4.

Then, we introduce a new class of PC grammar systems, where prefixes of the
current sentential forms may be communicated. Such systems are both very natural
from the point of view of the returning-non-returning feature (when the whole
string is communicated, then the component resumes working from its axiom; if
a part of the sentential form remains, then one continue from it) and because a
nice characterization of RE languages is again obtained: as the morphic image of
the intersection of a regular language with a language generated by a system as
above. (This is similar to the well-known Chomsky-Schützenberger characterization
of context-free languages.) The proof makes use of a powerful result in formal
language theory: a characterization of recursively enumerable languages starting
from a rather restricted class of languages, the so-called twin-shuffle languages, and
the operations of intersection with regular languages and erasing morphisms. This
result appears in [11]; a proof can be also found in [28]. A twin-shuffle language

PC Grammar Systems: Recent Results, Open Problems 383

over a given alphabet V is the set of all strings obtained by arbitrarily shuffling
each string over V with a "twin" of the string, obtained by marking each symbol
with a bar. Modulo an intersection with a regular language, such a language can be
generated in a relatively easy way by a PC grammar system with (A-free) context-
free rules allowed to communicate prefixes.

Several open problems are formulated, both for usual PC grammar systems and
for the new variant of PC grammar systems.

2 Parallel communicating grammar systems

As usual, for an alphabet V we denote by V* the free monoid generated by V under
the operation of concatenation; the empty string is denoted by A and V* — {A}
is denoted by V+. For x £ V*,U C V, |x| is the length of x and |x|c/ is the
number of occurrences in x of symbols in U. A Chomsky grammar is denoted by
G = (N, T, S, P), where N is the nonterminal alphabet, T is the terminal alphabet,
S is the axiom and P is the set of rewriting rules. The language generated by G
is denoted by L(G) and REG, LIN, CF, CS, RE are the families of regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively.
We also denote by MAT, MATX the families of languages generated by matrix
grammars (without appearance checking) with A-free context-free rules, and with
arbitrary context-free rules, respectively. Two languages L\, L-> are considered
equal if they differ only in the empty string, that is if L\ — {A} = Lo — {A}.

For basic elements of formal language theory we refer to [7], [26], [27].
A parallel communicating (PC, for short) grammar system of degree n,n > 1

([24], [5]), is a construct

T = (N,T,K,(P1,S1),...,(Pn,S„)),

where N,T,K are pairwise disjoint alphabets, with I\ = { Q i , . . . , Qn}, Si £ N,
and Pi are finite sets of rewriting rules over N U T U A", 1 < i < n; the elements of
N are nonterminal symbols, those of T are terminals-, the elements of K are called
query symbols, the pairs (Pi, Si) are the components of the system (often, the sets
Pi are called components). Note that the query symbols are associated in a one-to-
one manner with the components. When discussing the type of the components in
Chomsky hierarchy, the query symbols are interpreted as nonterminals. In general,
the axiom of component i is denoted by Si and its associated query symbol by
Qi] when this is the case, we do not explicitly specify these elements; if this is not
the case, then the axioms and the query symbols are explicitly defined for each
component of a PC grammar system.

For (x i , . . . , xn),(yi,..., yn), with Xi, yi £ (TVUTU A')*, \ < i < n (we call such
an n-tuple a configuration), and x\ £T*, we write (x i , . . . , x„) = > r (yi, • • •, yn) if
one of the following two cases holds:

(i) \xi\k = 0 for all 1 < i < n\ then x,- =>pt yi or Xj = yi £ T*, 1 < i < n;

384 Gheorghe Páun

(ii) there is i, 1 < i < n, such that \xi\n > 0; we write such a string x,- as

x,- = ziQilz2Qi3 • • • ztQi,zt+i,

for t > 1,2,- G (N U T) ' , 1 < i < t + 1; if |x { j\K = 0 for all 1 < j < t, then

Vi = z1xilz2Xi2 .. ,ZtXitZt+1,

[and i/ij = Si^ 1 < j < <]; otherwise y,- = x,-. For all unspecified i we have
Vi = Si-

Point (i) defines a rewriting step (componentwise, synchronously, using one rule
in all components whose current strings are not terminal), (ii) defines a commu-
nication step: the query symbols QXj. introduced in some x,- are replaced by the
associated strings i,- ., providing that these strings do not contain further query
symbols. The communication has priority over rewriting (a rewriting step is al-
lowed only when no query symbol appears in the current configuration). The work
of the system is blocked when circular queries appear, as well as when no query
symbol is present but point (i) is not fulfilled because a component cannot rewrite
its sentential form, although it is a nonterminal string.

The above considered relation = > r is said to be performed in the returning
mode: after communicating, a component resumes working from its axiom. If the
brackets, [and y,- . = 5 t j , 1 < i < t], are removed, then we obtain the non-returning
mode of derivation: after communicating, a component continues the processing of
the current string. We denote by the obtained relation.

The language generated by T is the language generated by its first component
(Gi above), when starting from (S i , . . . , 5„) , that is

LF(T) = {WET* | (5 i 1 . . . , 5 „) = > ; (u>, a 2) . . . ,<*„),
for ai G (N U T U / {) * , 2 < i < n} , / G { r ,n r } .

(No attention is paid to strings in the components 2 , . . . , n in the last configuration
of a derivation; moreover, it is supposed that the work of F stops when a terminal
string is obtained by the first component.)

Let us consider two examples. For the system

Ti = ({ 5 i , 5 2 , 53 } , { a ,6 , c } ,A ' , (P 1 , 5 i) , (P 2 , 52) , (/ J 3 ,5 3)) ,
Pi = {Si —> abc, Si —• a2b2c2,Si —• aSi, Si —• a3Q2, S2 —*• b2Q3, S3 —• c},
P2 = {S2 - 6 S 2 } ,

P3 = { S 3 - c S 3 } ,

we obtain
Lr(r) = Lnr(T) = {anbncn | n > 1}.

Here is a derivation in IV

(S 1 . S 2 . S 3) = > / (a S i , 6 S 2 , c S 3) = > / - . . = > / (a n S i , 6 n S 2 , c n S 3) ,

(a " + 3 Q 2 , 6 " + 1 S 2 , c " + 1 S 3) = » / (a n + 3 6 n + 1 S 2 , y 2 , c " + 1 S 3)

(an+3bn+3Q3,y'2,cn+2S3) =>} (a" + 3 6 n + 3 c n + 2 S 3 , y'2, y3)
= > , (a n + 3 6 n + 3 c n + 3 , y2, ¡/3), n > 0,

PC Grammar Systems: Recent Results, Open Problems 385

for / 6 { r ,nr } ; in the returning case we have y2 = S2,I/2 = bS2,]/2 —
b2S2,y3 = S3,?/i, = cS3, in the non-returning case y2 = 6n+1S2,t/2 = bn+2S2,x/2 =
bn + 3S2 ,y3 = cn + 2S3,y^ = cn + 3S3- Because the second and the third components
communicate only once to the first component, there is no difference between the
language generated in the returning mode and the language generated in the non-
returning mode. This is not the case for the following system.

T2 = ({ S i , S 2 } , { « } , K, (Pi, S1),(P2, S2)),
Pi = {Si aQ2, S2 —• aQ2, S2 —> a} ,
P2 = {S2 - aS2} .

The reader might check that we obtain

L r (r 2) = { a 2 " + 1 | n > 1},
(m + l) (m + 2)

Lnr(r2) = {aL <J 1 \m> 1}.

Two basic classes of PC grammar systems can be distinguished: centralized.
(only G i, the master of the system, is allowed to introduce query symbols), and non-
centralized (no restriction is imposed on the introduction of query symbols). There-
fore, we get four basic families of languages: denote by PCn(X), n > 1, the family of
languages generated in the returning mode by non-centralized PC grammar systems
with at most n components and with rules of type .Y; when centralized systems are
used, we add the symbol C, when the non-returning mode of derivation is used, we
add the symbol N, thus obtaining the families CPCn(X), NPCn(X), NCPCn(X).
When no restriction on the number of components is imposed, then we remove the
subscript n, obtaining PC(X), CPC(X), NPC(X), NCPC(X). In what concerns
the type X of rules, they can be A-free right-linear (denoted by RL), A-free context-
free (C F) , arbitrary right-linear (denoted by RLX), arbitrary context-free (C F X) ,
and so on. Note that because we consider as equal the languages differing at most
by A, we need no A-rule for introducing the empty string in our languages.

The diagram in Figure 1 indicates the relations between the eight basic families
of languages defined above, for the A-free case, as well as their relationships with
families in the Chomsky hierarchy. The arrows indicate inclusions, not necessarily
proper; the families not connected by a path are not necessarily incomparable.

Among the newest relations contained in this diagram, we mention:

1. NPC(RL) C PC(RL) and NPC(CF) C PC(CF). (The first result of this
type has been given in [18], NCPC(CF) C PC(CF), hence starting from
centralized systems, then a proof for the inclusion NPC(LIN) C PC(LIN)
has been done in [29]; the question was settled in [9].)

2. MAT C PC(CF) ([17]).

3. CPC(RL) C MAT ([20]).

4. LIN C PC(RL) ([10]).

386 Gheorghe Páun

5. The families CPC(RL), NCPC(RL) are incomparable and also incomparable
with LIN ([5] and [10]).

From the last item above we get the strictness of the inclusions of families
CPC(RL), NCPC(RL) in the families above them in this diagram. Not contained
in the diagram is the inclusion PC(RL) Ç CS proved in [3] (where, in fact, the
stronger result is proved that PC(LIN) Ç CS; the inclusion PC(RL) Ç CS is
already proved in [2]).

RE

Figure 1

Several problems concerning the generative power of PC grammar systems are
still open. We list here some of them.

1. Which of the hierarchies Yn(X),n> 1, Y 6 {PC,CPC, N PC, NCPC},X e
{RL,CF}, are infinite ? The answer is known only for CPCn(RL) and
NCPCn(RL), which, as expected, are infinite hierarchies; see [15].

2. Which of the inclusions not mentioned above as being proper are proper ?

3. Which is the relation between families CPC(CF) and NCPC(CF) ?

PC Grammar Systems: Recent Results, Open Problems 387

4. Which of the inclusions Y(X) C Y(Xx), for all possible X, Y, are proper ?

5. Which is the relation between PC(CF), NPC(CF) and CS ? The same when
A-rules are allowed. Several authors have announced proofs of the inclusion
PC(CF) C CS, but none of them is confirmed yet.

6. Which are the relations between LIN and NPC(RL) ? The same for the
families MAT and each of PC(RL), NPC(RL), NPC(CF).

3 Characterizing RE
First, we recall a result in [23], concerning PC grammar systems with leftmost
derivation. It is known from regulated rewriting area, [7], that such a restriction
increases the power of grammars with controlled derivation. This is the case also
for PC grammar systems. Moreover, the rather surprising result is obtained that
RE can be characterized by such systems with A-free rules. (The explanation lies
in the fact that we can use the components of the system other than the master
as working space where no erasing is necessary, because we ignore the contents of
these components at the end of a derivation.)

We say that a context-free rule A —» v is applied in the leftmost mode to a
string x, and we denote by x =>, y the derivation, if x = x\Ax2,y = X]_vx2

and |xi| dom(Pi) = 0, where dom(Pi) = {B£N\B-^z£ P,}. We denote
by Lg i(T),g G {r, nr}, the language generated by a PC grammar system T in
the mode g when using leftmost derivations. By PC,(X) we denote the family of
languages L r , (r) , for T a PC grammar system of type X\ in the non-returning case
we write NPCi(X).

The inclusions PC,(CP) C PC,(CPA), NPC,(CF) C NPC,(CFX) are obvi-
ous. We do not know how large the families NPCi(CF), NPCi(CFx) are, but,
surprisingly, we have

T h e o r e m 1. P C , (C P) = P C , (C P A) = RE.

The idea of the proof is the following.
Take a language L C T*, L G RE. It is known (see [27]) that there are two new

symbols ci,c2 and a language L' G CS such that L' C LlC\C2 and for each w G L
there is i > 0 such that wc\cl2 G L'.

Take a (A-free) grammar G = (NQ,TU { c i , C 2 } , So, Po) for the language L',
in Kuroda normal form, with the non-context-free rules labelled in a one-to-one
manner, r : AB —• CD. Assume that for all A, B G No there also is a rule AB —• AB
in P 0 .

One constructs the PC grammar system T working as follows.
Certain components of it generate strings of the form w'c'^'E, for №CjC2 G L'

(w' is obtained from w by priming its symbols). Then, other components take the
string W'C'YC^E generated by the previous group and adjoin to it a string y"Z, where
y G T+ and y" contains double primes. At the same time, one of the components
(specifically, P4 in the construction) produces a terminal string equal to y. The

388 Gheorghe Páun

string w'c'1c'2'Ey"Z is took by another group of components which check whether
or not w = y. When this is true, the master component can ask for the string of
P4. In this way, Pi receives a terminal string equal to w, hence a string in L.

In the characterization above, the use of context-free rules is esential. Because
LIN is incomparable with CPC(RLX) and NCPC(RLX) and it is conjectured
that the same result holds true for NPC(RLX), the known characterizations of RE
languages starting from linear languages, [1], [16], cannot be directly extended to
these classes of PC grammar systems. Still, such results are true for the family
NPC(RLX) at least. Moreover, the proof shows a very close similarity of linear
languages and copy languages. Note that every linear language L can be written
in the form L = {h(x mi(x)) \ x £ Lo}, for a regular language Lo and a morphism
h. Removing the mirror image, we get the copy languages, which characterize RE
in the same way as linear languages.

For a language L, denote copy(L) = { 11 | x £ L}. Proofs of the following
lemmas can be found in [23].

Lemma 1. For each language L £ RE there are two regular languages L\,L2

and three morphisms hi,h2,h3 such that L = h3(hi(copy(L\)) f) h2(copy(L2))).

Lemma 2. For each language L £ RE there are two regular languages L\,L2

and two morphisms h\,h2 such that L — hi(copy(Li))\h2(copy(L2)).
(\ denotes the left quotient: L\L' = {x \ zx E L', z £ L}.)

Lemma 3. For each regular language L and morphism h we have h(copy(L)) £
NPC(RLX).

Synthesizing Lemmas 1, 2, 3 above, we get

Theorem 2. For each language L £ RE we can find L\, L2, ¿3, £4 £
NPC(RLX) and a morphism h such that L = h(L 1 fl L2) = L3\L4.

In the proofs of Theorems 1, 2 above no bound on the number of components
of PC grammar systems characterizing the family RE is imposed. This is not the
case in [25] and [12], where two context-sensitive components in the non-returning
case and three in the returning case are enough (and necessary) for characterizing
RE using PC grammar systems. It is an open problem whether or not a bounded
number of components is enough also in the above theorems. It is also open the
case of non-returning PC grammar systems with context-free rules and leftmost
derivation; we conjecture that such systems cannot characterize RE.

4 Simple matrix grammars versus PC grammar
systems

In [17] it is proved that PC grammar systems with leftmost derivation can generate
each simple matrix language of [13]. The previous Theorem 1 trivially implies this
result. Still, one can prove that the simple matrix languages can be generated by

PC Grammar Systems: Recent Results, Open Problems 389

PC grammar systems with arbitrary context-free components in the usual mode of
derivation.

A simple matrix grammar (of degree n, n > 1) is an (n + 3)-tuple G =
(Ni,..., Nn,T, S, M), where

1. N\,..., Nn,T are disjoint alphabets (N{, 1 < i < n, are nonterminal alpha-
bets and T is the terminal one); we denote N = (J"=1 TV,-;

2. S £ NUT (the axiom);

3. M is a finite set of matrix rules of the forms:

a) (5 — ®), x&T*-

b) AXA2 ...An), Ai eNi,l<i< n,;

c) (Ai ->• ^n * xn), Ai £ Ni,Xi £ (Ni UT)*,\<i<n,

and = |xj |jVj for all 1 < i,j < n.

For w,z £ (N U T)* we write w ==> z if one of the following two cases holds:

(i) w = S and (5 — z) £ M ;

(ii) w = UIAIVIU2A2V2 .. .unAnvn, z = 111x^111-2x^2 . • .unxnv„, where Ui £ T*, Vi £ (Ni U T)*, 1 < i < n, and (^1 xu . .., A n *) £ M.

Therefore, the derivation is done in the leftmost manner on each of the n sub-
strings in (Ni U T)* of the derived string. Then,

L(G) = {X£T* I S =>* x}.

We denote by SM the family of languages generated by simple matrix grammars
(of arbitrary degree) with A-free context-free rules; when A-rules are allowed, we
write SMX for the corresponding family.

The following results are known (see proofs and references in [7]):

1. CF C SM C SMX C CS;

2. Each language in SMX is semilinear.

We shall essentially use below the following characterization of languages in the
family SMX.

Let V be an alphabet and n be a natural number. Denote

[V,n] = {(a,i) | a £ V, 1 < i < n),

and define the mapping rn : [V, n]* — • (K*)n by

1. r„(A) = (A , . . . ,A) ,
2. rn((a,i)x) = (xi,... ,xi-i,axi,xi+i,.. .,xn),

for a £ V, 1 < i < n, x £ [V, n]*,rn(x) = (x i , . . . , xn).

390 Gheoighe Paun

Consider also the mapping / : (V*)N —• V* defined by

f(xi,x2,• • • ,xn) = X1X2...x„.

Extend these mappings in the natural way to languages.
From Lemma 1.5.2 in [7] we get

Lemma 4. A language L C T* is in the family SMX if and only if there is an
integer n > 1 and a language L' £ CF, L C [T, n]*, such that L = f(rn(L')).

Using this characterization, we can obtain the following result.

Theorem 3. SMX C PC(CFX).

Proof. Because PC(CFX) contains non-semilinear languages (see [5]), it is
enough to prove the inclusion.

Consider a simple matrix language L C T*. If £ is finite, then trivially L £
PC(CFX). Assume that L is infinite. According to Lemma 4, consider V £
CF, L' C [T, n]*, such that L = / (r n (!'))• Let G = (N0, [T, n], S0, P0) be a context-
free grammar for the language L'. We construct the PC grammar system

r = (N, T, I<, (Su Pi), (S2, P2), (S3, P3), (S4, P4), (S4+1, P4+1), • • •, (5 4 + „ , P4+n)),

with

N = {Si,S< | 1 < i < 4 + n} U {(a, i) | a 6 T, 1 < i < n) U A 0̂ U {Z},

Pi = {•?! —»• Si, Si —• QsQG .. .Qa+U},
P2 = —• S2, S2 —> Q3, S'3 —> 53},
P3 = — Z , S 3 —• S3,53 —»• 53},
P4 = {5 4 - 5 0 } U P0,

P4+> = {^-(-i —» 54+i, 54+i —> 54+i, S'4+i —i> Q3, Z —• Q4}
U {(a, j) — A | a £ T, 1 < j < n, j ± »} U {(a, i) — a | a £ T } ,

for 1 = 1 ,2 , . . . ,n.

The idea behind this construction is the following. The component P4 gener-
ates a string in the language L' (over the alphabet [T, n]). When the work of P4
is finished, all the components PA+i,i = l , 2 , . . . , n , ask for the produced string.
The synchronization of these queries (and the fact that each component Pi+,- can
introduce only once the query symbol Q3) is ensured by the "trigger technique"
made possible by the synchronization feature of PC grammar systems and accom-
plished here by the components P 2 ,p3 (see details below). Each component Pj+i
erases from the received string all symbols (a,j) with j / i, and replaces (a, i) by
a, a £ T. In this way, together with Pi, they simulate at the same time the action
of Tn and of / : when communicated to the master, which introduces the string
QzQq • • • QA+n, the strings of P 5 , . . . , P4+n must contain only terminals and they
are now arranged in the order imposed by rn and / .

PC Grammar Systems: Recent Results, Open Problems 391

Here are some details of the work of I\
If P2 starts by introducing the symbol Q3, then it will receive either the symbol

Z and the derivation is blocked, or the symbol S3 and no terminal string will be
obtained, because Pj+j, 1 < i < n, cannot ask for Z at the first step. Thus, we have
to start with S2 —* S2 in the second component and S3 —• S'3 in the third one (if we
introduce Z in the third component, then the derivation is blocked, Z cannot be
rewritten here or communicated). This means that P3 will work an arbitrarily large
number of steps just using S'3 —• S'3. It can return to S3 only when P2 introduces
Q3. After receiving S3, the component P> will continue for ever with the rule
S3 —• S3. Therefore, at the next step P3 has to use S3 —• Z, otherwise Z will be
never introduced. If not all components P4+1, 1 introduce Q3 at the same
time, they must introduce it at the next step, otherwise they cannot receive the
symbol Z. But, after receiving Z, any component P4+i has to use Z —• Q4. At the
same step, P3 will either introduce S3 and no terminal string will be obtained (S3

is communicated to components P4+i which have not introduced Q3 before), or P3

will introduce Z. After satisfying the query symbols, P3 returns to its axiom, and
P4 does the same; the components which have received the symbol Z will introduce
Q4 and they will receive So from the fourth component. The derivation is blocked.

The only case when the derivation will continue leading to a terminal string is
that when all components P4+i, 1 < i < n, ask for the string of P4 at the same
time.

At any moment, the component P\ can ask for the strings of P4+i, 1 < i < n.
If it receives strings containing symbols in No or in [T, n], then the derivation is
blocked. Thus, the only terminal strings produced by T are those in / (r „ (L(G0))) ,
which completes the proof. •

5 Prefix communication in PC grammar systems

Let us consider a slight modification in the definition of a communication step in a
PC grammar system: when a component i introduces the query symbol Qj, then
component j communicates to component i a non-empty prefix of its current senten-
tial form. If the whole string is communicated, then component j resumes working
from its axiom; if a non-empty string remains in component j, then component j
continues processing this string. We denote by Lp (T) the language generated by a
system T in this way. We denote by PPCn{X) the family of languages generated
by prefix communicating PC grammar systems with at most n, n > 1, components
of type X; when n is not specified, we remove it. When centralized systems are
used, then we add the letter C, as usual.

One can consider several variants: to communicate only a terminal prefix, or,
deterministically, the maximal terminal prefix, or to allow also the communication
of the empty word. Their study, as well as the systematic study of the non-restricted
class considered above, is left to the reader. Here we give only one result, again a
characterization of RE languages.

392 Gheorghe Páun

Let x, y be strings over some alphabet V. Their shuffle is the set

x 111 y = {xiyix2y-2 • -.xnyn | x = x x x 2 ...xn,y = yxy2 •••yn,
Xi,Vi € V*,l < i < n,n > 1}.

Consider an alphabet V, take a new symbol a for each a £ V, denote V = {a |
a £ V} , and define the coding h : V* —• V by h(a) = a, a £ V. The string h(x)
is also denoted by x.

The twin-shuffle language over V, denoted twin(V), is defined by

twin(V) = y (x 111 x).
rev-

In [11] (see also [28], Theorem 6.10) one proves the following characterization
of recursively enumerable languages:

Lemma 5. For every recursively enumerable language L there is a twin-
shuffle language twin(V), a regular language R and a weak coding h such that
L = h(twin(V) n R).

Based on this result, we can obtain

Theorem 4. For every recursively enumerable language L there is a PC gram-
mar system r, a regular language R, and a weak coding h such that

L = h(Lp(T)nR).

Proof. For a language L £ RE, consider the morphism h and the regular
language R as in the previous lemma. Construct the PC grammar system

r = (N, 1/ U ? U {c, c}, I<, (Pi, Si), (P2, s2), (P3, S3), (P4, S4)) ,

with

N = { S i , S 2 , S 3 , S 4 , X } u { X a \a£V},

P i = { S i ^ S i , S i - ^ Q 2 S u S i Q 3 S 1 , S i - > Q2Q3, S i - Q3Q2},

P2 = {S2 Qa, X - T c } U {Xa aS2 | a £ V),
P3 = {S 3 - Qa, X c} U {Xa - aS3 | a £ V } ,
P4 = {S4 - Xa, Xa X a | a £ V} U {S4 X}.

No communication from the first component to another component is ever per-
formed. Component P4 introduces symbols Xa for a £ V, at each step components
P 2 ,P 3 ask for these symbols, hence component P4 has to send it to P 2 ,p3 and
resume working from its axiom. Components P 2 ,p3 produce in this way strings
x ,x , for the same x £ V*. When P4 introduces the symbol X, then it becomes
c in P2 and c in P3. Asking for prefixes of the strings produced by P2 and P3 ,
in all possible orders, component P\ builds a shuffle of the two strings, x and x.
Therefore, twin(V) C Lp(T).

PC Grammar Systems: Recent Results, Open Problems 393

The opposite inclusion is not true, because of the possibility of sending any prefix
to Pi (not necessarily covering the whole strings of P2, P3). However, L p (r) n ((V U
V)*{cc}) = twin(V){cc\: we have to communicate to Pi a string of the form xc
from P2 and a string yc from P3 (and nothing else); as we have seen above, we
must have x = y.

Consequently, L = h(Lp(T) fl R'), where

R' = J R n ((i / u F) * { c c }) .

This completes the proof. •

Corollary 1. For each family FL of language such thai FL C RE and FL is
closed under intersection with regular languages and arbitrary morphisms we have
PPC4(CF) -FL±%.

Proof. In view of Lemma 5 and the properties of family FL, the inclusion
PPCA(CF) C FL would imply RE C FL, a contradiction. •

Important families having the properties of FL above are MATX and ETOL (the
family of languages generated by tabled extended L systems without interaction,
known to be a full AFL strictly included in CS, [26]). Therefore, PPCn(CF), con-
tains languages outside these families for all n > 4. On the other hand, we believe
that MAT and ETOL contain languages which are not in PPC(CFX). If confirmed,
this conjecture will imply the incomparability of PPC(CF), PPC(CFX) with these
families, as well as the fact that PPC(CFX) is not closed under intersection with
regular languages (it is obviously closed under arbitrary morphisms).

References
[1] B. Baker, R. Book, Reversal-bounded multipushdown machines, J. Computer

System Sei., 8 (1974), 315 - 332.

[2] L. Cai, The computational complexity of PCGS with right-linear components,
Proc. Conf. DLT, Magdeburg, 1995, World Sei. Publ., Singapore, 1996, 209 -
219.

[3] L. Cai, The computational complexity of linear PCGS, Computers and AI, 15,
2-3 (1996), 199 - 210.

[4] E. Csuhaj-Varjü, J. Dassow, On cooperating distributed grammar systems, J.
Inf. Process. Cybern., EIK, 26, 1-2 (1990), 49 - 63.

[5] E. Csuhaj-Varjü, J. Dassow, J. Kelemen, Gh. Päun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London,1994.

[6] E. Csuhaj-Varjü, J. Kelemen, Gh. Päun, Grammar systems with WAVE-like
communication, Computers and AI, 15, 5 (1996), 419-436.

394 Gheorghe Páun

[7] J. Dassow, Gh. Päun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[8] J. Dassow, Gh. Päun, G. Rozenberg, Grammar systems, in Handbook of For-
mal Languages (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Heidelberg,
1996.

[9] S. Dumitrescu, Non-returning PC grammar systems can be simulated by re-
turning systems, Theor. Computer Sei., 165 (1996), 463-474.

10] S. Dumitrescu, Gh. Päun, On the power of PC grammar systems with right-
linear rules, submitted, 1996.

11] J. Engelfriet, G. Rozenberg, Fixed point languages and representations of re-
cursively enumerable languages, Journal of the ACM, 27, 3 (1980), 499 - 518.

12] R. Freund, Gh. Päun, C. M. Procopiuc, O. Procopiuc, Parallel communicating
grammar systems with context-sensitive components, in Artificial Life. Gram-
matical Models (Gh. Päun, ed.), Black Sea Univ. Press, Bucharest, 1995, 166
- 174.

13] O. Ibarra, Simple matrix languages, Inform. Control, 17 (1970), 359 - 394.

14] L. Ilie, A. Salomaa, 2-testability and relabeling produce everything, submitted,
1995.

15] J. Kari, L. Säntean, The impact of the number of cooperating grammars on
the generative power, Theor. Computer Sei., 98 (1992), 249 - 263.

16] M. Latteux, B. Leguy, B. Ratoandromanana, The family of one-counter lan-
guages is closed under quotient, Acta Informatica, 22 (1985), 579 - 588.

17] V. Mihalache, Matrix grammars versus parallel communicating grammar sys-
tems, in Mathematical Aspects of Natural and Formal Languages (Gh. Päun,
ed.), World Sei. Publ., Singapore, 1994, 293 - 318.

18] V. Mihalache, On parallel communicating grammar systems with context-free
rules, in vol. Mathematical Linguistics and Related Topics (Gh. Päun, ed.),
Ed. Academiei, Bucure§ti, 1995, 147 - 160.

19] V. Mihalache, Parallel communicating grammar systems with query words,
Ann. Univ. Buc., Matem.-Inform. Series, 45, 1 (1996), 81 - 93.

20] V. Mihalache, On the generative capacity of PCGS with regular components,
Computers and AI, 15, 2-3 (1996), 27 - 36.

21] Gh. Päun, Grammar systems: a grammatical approach to distribution and
cooperation, ICALP '95, LNCS 944 (Z. Fülöp, F. Gecseg, eds.), Springer-
Verlag, 1995, 429 - 443.

PC Grammar Systems: Recent Results, Open Problems 395

[22] Gh. Paun, Parallel communicating grammar systems. A survey, Proc. XI
Congress on Natural and Formal Languages, Tortosa, 1995 (C. Martin-Vide,
ed.), 257 - 283.

[23] Gh. Paun, Characterizations of recursively enumerable languages by means of
grammar systems, submitted, 1996.

[24] Gh. Paun, L. Santean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Buc., Series Matem.-Inform., 38 (1989), 55 - 63.

[25] 0 . Procopiuc, C. M. Ionescu, F. L. Tiplea, Parallel communicating grammar
systems: the context-sensitive case, Intern. J. Computer Math., 49 (1993), 145
- 156.

[26] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, New York, 1980.

[27] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[28] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press,
Rockville, Maryland, 1981.

[29] Gy. Vaszil, Linear non-returning PCGS can be simulated by returning PCGS,
manuscript, 1996.

