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Introduction

In this thesis we examine two very different problems in Geometric Measure Theory,
whose common point is a substantial use of the Theory of Currents as a tool for proofs.

The first part deals with the differentiability of Lipschitz functions. We want to find
an adapted version of Rademacher theorem, valid for every Radon measure µ on Rd.
Namely, given a Radon measure µ on Rd, we find a map S mapping a point x ∈ Rd

into a linear subspace S(x) of Rd with the following property: every Lipschitz function
f : Rd → R, is differentiable along the vector space S(x) at µ-almost every x ∈ Rd (i.e.
the restriction of f to the affine subspace x+S(x) is differentiable at x for µ-almost every
x). We prove also that the map S is maximal with respect to the previous property, in a
very strong sense: there exists a Lipschitz function f : Rd → R which is non-differentiable
at µ-almost every x ∈ Rd along any line that is not a vector subspace of S(x). The map S
is defined through a property of the measures that we call 1-decomposability, which means
being equal to an integral of 1-rectifiable measures. We find a strict correlation between
measures that are 1-decomposable and normal 1-currents, whose linearity properties are
essential in the proof of the differentiability result.

In the second part we look for a formulation of the Steiner tree problem as a minimiza-
tion problem in an abstract class of objects, with nice compactness properties. Steiner
tree problem consists in finding a connected set of minimal 1-dimensional measure con-
taining a given set of finitely many points. It turns out that a family of 1-dimensional
currents with coefficients in a group with certain properties provides the correct tool to
establish an equivalence between the Steiner problem and a mass minimization problem.
By this we mean that it is easy to obtain the solutions of the mass minimization problem
from the solutions of the Steiner problem and viceversa. The representation given for the
class of currents in consideration allows us to state a calibration principle and therefore
to prove the (absolute) minimality of some concrete configurations. An interesting phe-
nomenon arises when dealing with the problem of the existence of calibrations for such
mass minimizing currents.
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Part 1

Differentiability of Lipschitz functions with
respect to measures





CHAPTER 1

Differential forms and currents

Introduction to part I

The celebrated Rademacher theorem asserts that if f : Rd → Rm is a Lipschitz func-
tion, then it is differentiable almost everywhere with respect to the Lebesgue measure L d.
If we consider a measure µ on Rd which is absolutely continuous with respect to L d, of
course we can also say that every Lipschitz function f : Rd → Rm is differentiable almost
everywhere with respect to µ. Now take a C 1-curve C in R2 and consider the measure
µ = H 1 C, which is the restriction of the 1-dimensional Hausdorff measure to the curve
C. In general one cannot say that a Lipschitz function f : R2 → R is differentiable µ-a.e.,

C

x
x+ TanC(x)

l

µ = H 1 C

Figure 1.0.1

in fact for example the 1-Lipschitz function g(x) = dist(x,C) is non-differentiable at any
point of C. Nevertheless it is easy to see that every Lipschitz function f : R2 → R is
µ-almost everywhere differentiable along the tangent bundle of the curve TanC , which
means that the restriction of f to the line through x with the direction of TanC(x) is
differentiable at x for µ-a.e. x ∈ C (see Figure 1.0.1). Moreover the 1-Lipschitz function
g defined above has this property: the restriction of g to any line l through x, which is
not the tangent line, is non-differentiable at x, for every point x ∈ C. Therefore it is
clear that the best possible version of the Rademacher theorem valid for the measure µ is
the following: every Lipschitz function f : R2 → R is µ-almost everywhere differentiable
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8 1. DIFFERENTIAL FORMS AND CURRENTS

along S := TanC .

Our aim is to prove an analogous result for every Radon measure µ on Rd. Namely
we want to define a map S mapping a point x ∈ Rd into a linear subspace S(x) of Rd

with the following property: every Lipschitz function f : Rd → R is differentiable along
the vector space S(x) for µ-almost every x ∈ Rd. Then we want to find the analogous of
the function g defined above, i.e. a Lipschitz function on Rd that is non-differentiable at
µ-almost every x ∈ Rd along any line that is not a vector subspace of S(x).

In Chapter 1 we introduce the main notation and we recall some basic facts about
Geometric Measure Theory and in particular about the Theory of Currents. We give
detailed proof of two results about 1-currents: in Proposition 1.3.13, we prove that it is
possible to write every normal 1-current as an integral of integral 1-currents, without loss
of mass; in Proposition 1.3.16, we describe the structure of integral 1-currents: they are
sum of countably many closed oriented curves plus a finite number of open ones.

In Chapter 2 we collect some results on the differentiablity of Lipschitz maps. In
the first section there are results concerning the existence of Lipschitz maps which are
non-differentiable at all the points of a prescribed Lebesgue null set or, with a different
point of view, which are non-differentiable almost everywhere with respect to a prescribed
measure which is singular with respect to Lebesgue. In particular, in Theorem 2.1.2 we
revisit an old theorem by Zahorski: we prove that in the class of 1-Lipschitz functions on
the line, those which are non-differentiable at all the points of a prescribed compact null
set form a residual set. In the second section we recall an important class of Lipschitz
functions with a “large” non-differentiability set, namely distance functions of σ-porous
sets. In Proposition 2.2.4 we show that not necessarily a singular measure is supported
on a σ-porous set, therefore distance functions of σ-porous sets are not sufficient to prove,
in any dimension, the existence of a Lipschitz function which is non-differentiable almost
everywhere with respect to a prescribed singular measure.

In Chapter 3 we prove the first part of our main result, Theorem 4.2.11. In Theorem
3.1.1 we prove that given a normal 1-current on Rd (associated with a Radon measure µ
and a vectorfield τ) then every Lipschitz function f : Rd → R is µ-a.e. differentiable along
the vectorfield τ . This is essentially a consequence of Proposition 1.3.13 and the Disin-
tegration Theorem 3.1.2. In the second section, given a Radon measure µ, we construct
the map S mentioned above; we call it the decomposability bundle of µ and we prove
the result of differentiability of Lipschitz functions µ-a.e. along S. The decomposability
bundle is defined in terms of the possibility to write parts of the measure µ as an integral
of 1-rectifiable measures. In this way, the measure µ can be associated with a sequence
of normal 1-currents, to which we apply the previous result, together with a boundary
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formula (Proposition 3.2.6), essential to get the linearity of the directional derivatives.

Lastly, in Chapter 4 we prove the second part of the main result. In the first section
we give a covering result for a special class of null sets in Rd that we call sets invisible
along a cone. Such a set can be covered by a family of slabs determined by graphs of
Lipschitz functions fi : R

d−1 → R, in such a way that the sum of the thickness of the
slabs is arbitrarily small. In the second section, we use this covering result to prove the
existence of a Lipschitz function on Rd that is non-differentiable at µ-almost every x ∈ Rd

along any line that is not a vector subspace of S(x). This completes the main result of
the first part, in fact this means that in general one cannot expect any differentiability
of Lipschitz functions outside of the decomposability bundle. In the last section we give
a simplified proof of this last result, inspired by the proof of Theorem 2.1.2. Namely we
prove that the class of functions satisfying the property described above on an arbitrarly
large set of points is residual on a suitable space of Lipschitz functions.

In the next sections of this chapter we review some notions of multilinear algebra and
the Theory of Currents. Our aim is to fix the notation and to give the main theorems,
together with some additional results that will be essential in the sequel. This presentation
does not aim to be exhaustive.

1.1. Notation and preliminaries

Here we recall some basic definitions in Geometric Measure Theory and some results
that we will use (often tacitly) through this thesis. The reader is referred to [KP] for a
more detailed exposition.

We will call linear k-plane a k-dimensional linear subspace of Rd and, when V is a
linear k-plane and x is a point in Rd, the set x + V will be called an affine k-plane. We
will often use simply the word “k-plane”, when there is no ambiguity.

The letter µ will always denote a positive Borel measure on Rd. If no measure is
mentioned in expressions like “almost everywhere”, “negligible”, “null set” and so on, we
are assuming that the measure involved is the Lebesgue measure L d. Given a Borel set
E, we will denote by µ E the restriction of the measure µ to E, i.e. the measure defined
by

µ E(A) = µ(A ∩ E),
for every Borel set A. If f is a µ-integrable function, then we denote by fµ the Borel
measure defined by

fµ(A) =

∫
A

f dµ,

for every Borel set A. A Borel measure µ is called Borel regular if, for every µ-measurable
set A, there exists a Borel set B ⊃ A such that µ(B \ A) = 0. The measure µ is locally
finite if every point has a neighborhood of finite measure, or equivalently if every compact
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set has finite measure. A locally finite, Borel regular measure is called a Radon measure.
Radon measures enjoy the following regularity property.

Proposition 1.1.1. Let µ be a Radon measure on Rd. If µ(E) < ∞, then for every
ε > 0, there exist a compact set K and an open set A such that K ⊂ E ⊂ A and
µ(A \K) ≤ ε.

We will often use the fact that Borel measurable functions are nearly continuous, as
shown by the following result:

Theorem 1.1.2 (Lusin Theorem). Let µ be a finite Radon measure on Rd and let
(X, d) be a separable, locally compact, topological vector space. Let f : Rd → X be a Borel
measurable function. Then for every ε > 0 there exists a continuous function fε : R

d → X
such that

µ({x ∈ Rd : fε(x) ̸= f(x)}) < ε.

We endow the space C 0
c (R

d) of continuous compactly supported functions on Rd, with
the usual topology of uniform convergence on compact sets. A functional L on C 0

c (R
d)

is called positive if L(ϕ) ≥ 0 for every ϕ ≥ 0. If µ is a locally finite, positive measure on
Rd, then the map

ϕ→
∫
ϕ dµ

is a continuous, positive linear functional on C 0
c (R

d). Actually every continuous, positive
linear functional on C 0

c (R
d) has such a representation, in fact we have the following:

Theorem 1.1.3 (Riesz Theorem). Let L be a continuous, positive linear functional
on C 0

c (R
d). Then there exists a locally finite, positive Borel measure µ on Rd such that

L(ϕ) =

∫
ϕ dµ, for every ϕ ∈ C 0

c (R
d)

Therefore it is natural to endow the space M (Rd) of locally finite, positive Borel
measures with the weak∗ topology. In particular, we say that a sequence of locally finite
positive measures (µn)n∈N on Rd converges weakly∗ to µ, and we write µn

∗
⇀ µ , if

lim
n

∫
ϕ dµn =

∫
ϕ dµ,

for every ϕ ∈ C 0
c (R

d). As usual on a space which is a dual of a separable space, the
weak∗ topology enjoys a sequential compactness property. We say that a family {µj}j∈J
of measures is uniformly locally bounded if for every compact set K there exists a constant
CK such that µj(K) ≤ CK for every j.

Theorem 1.1.4 (Compactness for measures). Let (µn)n∈N be a sequence of uniformly
locally bounded positive measures on Rd. Then there exists a subsequence converging to a
locally finite measure µ.
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In the following proposition we collect some useful facts about weak∗ convergence of
measures.

Proposition 1.1.5. Let (µn)n∈N and µ be positive Radon measures on Rd.

(i) If A is an algebra of sets generating the topology of Rd and if µn(A) → µ(A)

for every A ∈ A , then µn
∗
⇀ µ.

(ii) If µn
∗
⇀ µ, then

µ(A) ≤ lim inf
n→∞

µn(A), for every open set A,

µ(K) ≥ lim sup
n→∞

µn(K), for every compact set K.

In particular µn(E) → µ(E) for every set E such that µ(∂E) = 0.

Given a positive measure λ on M (Rd), which is Borel (with respect to the weak∗

topology) and satisfies, for every compact set K ⊂ Rd,∫
M (Rd)

µ(K) dλ(µ) < +∞,

we denote by

(1.1.1)

∫
M (Rd)

µ dλ(µ)

the measure ν satisfying

ν(B) =

∫
M (Rd)

µ(B) dλ(µ),

for every Borel set B ⊂ Rd. In particular we have∫
Rd

ϕ dν =

∫
M (Rd)

(∫
Rd

ϕ dµ

)
dλ(µ),

for every ϕ ∈ C 0
c (R

d).

Let k be an integer with 1 ≤ k ≤ d. With the symbol H k we denote the k-dimensional
Hausdorff measure on Rd. A set E ⊂ Rd is called H k-countably k-rectifiable (or simply
k-rectifiable) if E ⊂

∪∞
i=0Ei, where

(i) H k(E0) = 0,
(ii) Ei = Fi(R

k), for i ≥ 1, where Fi : R
k → Rd is a Lipschitz function.

A set U ⊂ Rd is called k-purely unrectifiable if

H k(U ∩ E) = 0,

for every k-rectifiable set E.
A k-rectifiable measure µ on Rd is a measure written as

µ = θH k E,
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where E is a k-rectifiable set in Rd and θ is a Borel positive function defined on E,
integrable with respect to H k.

1.2. Differential forms and Stokes theorem

Consider (e1, . . . , ed) the standard basis of Rd. For every positive integer k ≤ d, denote
by I(d, k) the set of multi-indices I = (i1, . . . , ik), with 1 ≤ i1 < . . . < ik ≤ d. Associate
with every index I ∈ I(d, k) the formal expression

eI = ei1 ∧ . . . ∧ eik .

A generic linear combination

v =
∑

I∈I(d,k)

αIeI ,

with αI ∈ R, is called k-vector in Rd. The space of k-vectors in Rd is denoted by
∧

k(R
d) ,

so we have
∧

1(R
d) = Rd and for convenience we set

∧
0(R

d) = R and
∧

k(R
d) = 0 if k > d.

For every v ∈
∧

k(R
d) and w ∈

∧
h(R

d), it is possible to define an operation, called
exterior product , denoted by v ∧ w. The result is a (k + h)-vector in Rd. The exterior
product is characterized by the following properties: it is associative, linear in both argu-
ments and alternating (i.e. ei ∧ ej = −ej ∧ ei).

A k-vector v is called simple if it can be written as the exterior product of certain
1-vectors, i.e.

v = v1 ∧ . . . ∧ vk.

Remark 1.2.1. Notice that there are k-vectors which are not simple, for example the
2-vector

v = e1 ∧ e2 + e3 ∧ e4
in R4 is not simple. If it were simple, then it should be v = v1 ∧ v2, for some v1 and
v2, hence v ∧ v = (v1 ∧ v2) ∧ (v1 ∧ v2) = 0, while an easy computation shows that
v ∧ v = 2e1 ∧ e2 ∧ e3 ∧ e4 ̸= 0.

Remark 1.2.2. Simple unitary vectors are the correct tool to represent k-dimensional
oriented planes (through the origin). In fact it turns out that the simple vector v =
v1 ∧ . . . ∧ vk is null if and only if the vi’s are linearly dependent. Moreover if v′1, . . . , v

′
k

generate the same vector space generated by v1, . . . , vk, then v
′
1 ∧ . . . ∧ v′k is a multiple of

v.

Let {dx1, . . . , dxd} denote the standard orthonormal basis of Rd∗, dual to {e1, . . . , ed}.
The dual space of

∧
k(R

d) is called the space of k-covectors and it is denoted by
∧k(Rd).

The union, over I ∈ I(d, k), of the k-covectors

dxI = dxi1 ∧ . . . ∧ dxik
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is a basis for
∧k(Rd), dual to the basis {eI}. The duality pairing ⟨·; ·⟩ is as usual defined

by the relation ⟨dxI ; eJ⟩ = δI,J . The exterior product for k-covectors is defined as that
for k-vectors.

A differential k-form ω on Rd is a k-covector field, that is a map

ω : Rd →
k∧
(Rd).

We can write ω using the standard basis of
∧k(Rd), as

ω(x) =
∑

I∈I(d,k)

ωI(x)dxI ,

where the coordinates ωI are real valued functions on Rd. We say that a differential
k-form has a certain regularity, when the coordinate functions have that regularity.

As usual, the support of a differential k-form ω is defined as the set supp(ω) which is
the closure of the set {x ∈ Rd : ω(x) ̸= 0}.

The exterior derivative of a differential k-form ω of class C 1 is the differential (k+1)-
form:

dω(x) =
∑

I∈I(d,k)

dωI ∧ dxI ,

where

dωI(x) =
d∑

i=1

∂wI

∂xi
(x)dxi.

In addition to the euclidean norm | · | on
∧

k(R
d) and

∧k(Rd), we consider the mass
norm ∥ · ∥ on k-vectors and the comass norm ∥ · ∥∗ on k-covectors, defined as follows:

∥ϕ∥∗ = sup{|⟨ϕ; v⟩| : v is a simple k−vector, with |v| = 1},
∥v∥ = sup{|⟨ϕ; v⟩| : ∥ϕ∥∗ = 1}.

Remark 1.2.3. Remark 1.2.2 establishes a one-to-one correspondence between simple
k-vectors with unit euclidean norm and oriented k-dimensional vector subspaces of Rd.
This fact motivates the following definition: an orientation of a k-dimensional surface S
of class C 1 is a continuous map τS : S →

∧
k(R

d) such that τS(x) is a simple unit k-vector
spanning TanS(x) for every x.

If there exists an orientation of S, then there is a canonical orientation for the boundary
of S, namely the one satisfying

τS(x) = ν(x) ∧ τ∂S(x) for every x ∈ ∂S,
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∂S

Sν

Figure 1.2.1

where ν is the outer normal to ∂S (see Figure 1.2.1).

The integral of differential k-form ω on an oriented k-surface S can be defined as
follows ∫

S

ω =

∫
S

⟨ω(x); τS(x)⟩ dH k(x).

Stokes theorem establishes that for every (k − 1)-form of class C 1 the following relation
holds:

(1.2.1)

∫
∂S

ω =

∫
S

dω,

where the orientation of ∂S is the one defined above.

Next we want to define the pull-back, under a smooth map f : Rd → Rd′ of a
differential k-form on Rd′ . First, for any simple k-vector v = v1 ∧ . . . ∧ vk ∈

∧
k(R

d) and
a point x ∈ Rd, define the push-forward of v as the simple k-vector

df♯(v) = Df(x)v1 ∧ . . . ∧Df(x)vk.

This map is extended to all k-vectors by linearity. Then, for any differential k-form ω on
Rd′ define it is pull-back f ♯ω on Rd by

(1.2.2) ⟨f ♯ω(x); v⟩ = ⟨ω(f(x)); f♯(v)⟩, for all x ∈ Rd.
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1.3. Currents

Let Dk(Rd) be the vector space of smooth differential k-forms on Rd with compact
support, endowed with the locally convex topology τ constructed as the topology on the
space D(Rd) (of smooth compactly supported functions on Rd), with respect to which
distributions are dual. The dual of Dk(Rd) is denoted by Dk(R

d) and it is called the space
of k-dimensional currents (or simply k-currents). As usual Dk(R

d) is endowed with its
weak∗ topology. In particular we will say that a sequence of k-currents (Tn)n∈N converges

to a k-current T and we write Tn
∗
⇀ T if it converges in the weak∗ topology, that is:

⟨Tn;ω⟩ → ⟨T ;ω⟩,
for every ω ∈ Dk(Rd).

Remark 1.3.1. A simple example of a k-current on Rd is the integration over an
oriented k-dimensional surface S of class C 1. We will denote such a current with [S].
This motivates some authors to use the terminology “generalized surfaces” when they
introduce currents.

Actually many geometric operations for surfaces have their analogue for currents,
defined by duality with forms. We begin with the boundary ∂T of a k-current T , which
is the (k − 1)-current defined by

⟨∂T ;ϕ⟩ = ⟨T ; dϕ⟩,
for every ϕ ∈ Dk−1(Rd). We can immediately see that ∂2T = 0, because d2ϕ = 0. By
Stokes theorem, this agrees with the usual definition of boundary if T = [S] and S is an
oriented surface of class C 1, the orientation of ∂S being defined in Remark 1.2.3.

Secondly, if f : Rd → Rd′ is a proper smooth map, then it is possible to define the
push-forward of a k-current T on Rd as the k-current f♯T on Rd′ defined by

⟨f♯T ;ω⟩ = ⟨T ; f ♯ω⟩,
for every ω ∈ Dk(Rd′). As expected, the boundary of the push forward is the push for-
ward of the boundary.

Lastly, for a normal k-current T (that will be defined later in this section), it is possible
to define the intersection with the generic level set f−1(y) of a smooth map f : Rd → Rd′

(with k ≤ d′ ≤ d). It turns out that, for almost every y, the resulting current is normal,
with the expected dimension d′− k. This operation is called slicing, but we will not enter
in the details here.

The support of a k-current in Rd is the set

supp(T ) = Rd \
∪

{U : U is open , T (ω) = 0 whenever ω ∈ Dk(Rd)and supp(ω) ⊂ U}.
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The mass of a current T is the quantity

M(T ) = sup{⟨T ;ω⟩ : ∥ω(x)∥∗ ≤ 1 for every x}.
It is easy to show that the mass is lower semicontinuous with respect to the weak∗

topology. Moreover for the current [S] associated with an oriented k-dimensional surface
S, we have M([S]) = H k(S), therefore the mass is a natural extension to k-currents of
the notion of k-volume. Note that the norm

sup{∥ω(x)∥∗ : x ∈ Rd}
induces on Dk(Rd) a weaker topology with respect to the one to which currents are dual,
therefore a current may have (even locally) infinite mass. As an example, consider the
0-current T on R such that

T (ϕ) = ϕ′(0), for every ϕ ∈ D(R).

Another useful notion is the flat norm of a current:

F(T ) := inf{M(R) +M(S) : T = R + ∂S}.

Remark 1.3.2. In a certain sense, the flat norm gives a better notion of distance
between surfaces then the mass norm. For example consider the 1-current T = [I1]− [I2]
in R2, where I1 and I2 are two parallel segments with same orientation, same length l
and ε is the (Hausdorff) distance between them. Then the flat norm of T does not exceed
(l+2)ε, confirming the intuition that the two segments are close together, while the mass
norm of T is 2l. The importance of the flat norm is due the fact that (at least in the
space of normal currents with a bound on the mass of the current and on the mass of the
boundary) it metrizes the weak∗ topology.

By Riesz theorem, a k-current with finite mass can be represented as a bounded
measure with values in

∧
k(R

d), i.e. there exists a positive finite measure µ on Rd and a
Borel measurable map τ : Rd →

∧
k(R

d) with |τ | = 1 µ-a.e. such that

⟨T ;ω⟩ =
∫
Rd

⟨ω(x); τ(x)⟩ dµ(x),

for every ω ∈ Dk(Rd). The mass of T equals the mass of the measure µ. We will often
denote such a current with T = τµ.

A k-current T is called normal if both T and ∂T have finite mass. The fact that
Dk(R

d) is dual to a separable space, implies the following result, which is an immediate
consequence of the compactness theorem for vector valued measures.

Theorem 1.3.3 (Compactness theorem for normal currents). Let (Tn)n∈N be a se-
quence of normal k-currents on Rd such that M(Tn) + M(∂Tn) is uniformly bounded.
Then there exists a subsequence (Tni

)i∈N converging to a normal k-current.



1.3. CURRENTS 17

Before giving the next definition, we need to recall a fundamental fact about k-
rectifiable sets. Let G(d, k) be the linear space of k-dimensional vector subspaces of
Rd. Given a Borel set E in Rd, we call a weak tangent field to E a Borel map TanE :
E → G(d, k), such that for every k-dimensional C 1-surface S on Rd there holds

(1.3.1) TanS(x) = TanE(x) for H k−a.e x ∈ S ∩ E.
Proposition 1.3.4. Every k-rectifiable set E in Rd admits a weak tangent field.

Proof. Cover H k-a.e. point of E with a sequence of k-dimensional C 1-surfaces
{Si}i∈N and set TanE(x) = TanSi

(x) if i is the smallest integer such that x ∈ Si,
TanE(x) = 0 otherwise. The proof that TanE is a weak tangent field to E is a con-
sequence of the following well known fact: if S and S ′ are k-dimensional C 1-surfaces,
then TanS(x) = TanS′(x) for H k-a.e. x ∈ S ∩ S ′. �

In particular, given a k-rectifiable set E, one can define an orientation of E as a choice,
for every point x ∈ E of a simple unit k-vector τE spanning TanE(x).

A k-current T is called rectifiable if T admits the following representation

⟨T ;ω⟩ =
∫
E

⟨ω(x); τE(x)⟩θ(x) dH k(x),

where E is a k-rectifiable set, τE is an orientation of E, and θ is a multiplicity, i.e.
a real-valued function such that

∫
E
θ(x) dH k(x) is finite. We often use the notation

T = T (E, τE, θ). In particular we have

M(T ) =

∫
E

|θ(x)| dH k(x).

A rectifiable current whose multiplicity takes only integral values is called an inte-
ger multiplicity rectifiable current . If both T and ∂T are integer multiplicity rectifiable
currents, than T is called an integral current .

Remark 1.3.5. An integer multiplicity rectifiable 0-current in Rd, T , admits the
following representation:

T =
k∑

i=1

miδxi
,

where xi are points in Rd, mi ∈ Z and δxi
represents the rectifiable 0-current supported on

xi with multiplicity 1. This means that the action of T on a smooth compactly supported
function f : Rd → R is

⟨T ; f⟩ =
k∑

i=1

mif(xi).

Actually an integer multiplicity rectifiable current turns out to be an integral current,
unless its boundary has infinite mass, in fact we have the following result (see Theorem
7.9.3 of [KP]).
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Theorem 1.3.6 (Boundary rectifiability theorem). Let T be an integer multiplicity
rectifiable current with M(∂T ) <∞. Then ∂T is an integer multiplicity rectifiable current.

A fundamental theorem for integral currents is the closure theorem. Indeed it is stated
as a compactness result: the reason for the name “closure theorem” is that the point is
not the existence of a converging subsequence (already established by Theorem 1.3.3),
but the fact that the limit is an integral current (see Theorem 7.5.2 of [KP]).

Theorem 1.3.7 (Compactness theorem for integral currents). Let (Tn)n∈N be a se-
quence of integral k-currents on Rd such that M(Tn) + M(∂Tn) is uniformly bounded.
Then there exists a subsequence (Tni

)i∈N converging to an integral k-current.

The main historical motivation for the introduction of currents was to develop the
correct framework to prove the existence of k-dimensional surfaces of minimal area, span-
ning a prescribed boundary. This is known as Plateau problem and the previous closure
theorem provides the main tool for the solution.

Theorem 1.3.8. Let Γ be the boundary of an integral k-current in Rd(1 ≤ k ≤ d).
Then there exists a current minimizing the mass among all integral currents T satisfying
∂T = Γ.

Proof. Let m be the infimum of M(T ) among integral k-currents with ∂T = Γ. Let
(Tn)n∈N be a minimizing sequence. Since M(Tn) is bounded and M(∂Tn) is constant, we
can apply Theorem 1.3.7 to the sequence (Tn) and find a subsequence converging to an
integral current T . By the continuity of the boundary operator we still have ∂T = Γ and
by lower semicontinuity of the mass we have M(T ) ≤ m. �

We define now a class of currents which contains the regular objects often used to
approximate currents. A polyhedral k-current, is a rectifiable k-current of the form

T =
n∑

i=1

T (Si, τi, θi),

where Si is a k-dimensional simplex in Rd, τi is a constant orientation of Si and θi is a
constant multiplicity.

The following approximation theorem is crucial for our purposes (see Theorem 4.2.24
of [Fe1]).

Theorem 1.3.9 (Polyhedral approximation theorem). Let T be a normal k-current
in Rd and ε > 0. Then there exists a polyhedral k-current P such that F(T −P ) ≤ ε and
M(P ) +M(∂P ) ≤ M(T ) +M(∂T ) + ε. Moreover if ∂T is polyhedral it is possible to take
∂P = ∂T and if T is integral it is possible to take P integral.

We conclude this review with two additional results about 1-currents. They are proved
here, even if their role in the Theory of Currents is less relevant with respect to the previous
ones. The motivation is that the literature about them is not so wide, and we are going to
make a substantial use of them in the sequel. Proposition 1.3.13 provides a decomposition
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of normal 1-currents as an average of integral currents without loss of mass. This result
firstly appeared in [S]. To prove it, we need the following two lemmas. Lemma 1.3.10
describes a decomposition of every integral polyhedral 1-current as a sum of integral
polyhedral 1-currents with mass of the boundary not exceeding 2. Via Lemma 1.3.11, we
can put also a bound on the mass of the 1-currents appearing in the decomposition.

Lemma 1.3.10. Let P be a polyhedral integral 1-current in Rd. Then there exist
finitely many polyhedral integral 1-currents Pi, with M(∂Pi) ≤ 2, such that

P =
∑
i

Pi; M(P ) =
∑
i

M(Pi); M(∂P ) =
∑
i

M(∂Pi).

Proof. We can write

P =
k∑

i=1

miSi,

where Si = [[ai, bi]] is the integral 1-current associated with the segment [ai, bi] oriented
from ai to bi, with unit multiplicity. We can assume that the Si’s can intersect only at
the extreme points and moreover

(1.3.2) |bi − ai| ≤ 1,

for every i. Following the notation of Remark 1.3.5, we have

∂P =
k∑

i=1

mi(δbi − δai) =
h∑

j=1

αjδxj
,

where αj are non-zero integers and xj ∈
∪k

i=1{ai, bi} for every j.
Construct the polyhedral 1-current P1 as follows. If there exists a point xj such that

αj < 0, then take a segment Si such that ai = xj. If there is no such xj, then start
from any segment Si. Consider the 1-current P − Si. Take a segment, having positive
multiplicity in P − Si, whose first extreme point coincide with the second extreme point
of Si. Collect segments in the same way, until it is possible. When it is no longer possible
to add a new segment, let P1 be the sum of the segments chosen. The current P1 satisfies:

M(P ) = M(P − P1) +M(P1); M(∂P ) = M(∂(P − P1)) +M(∂P1).

Repeat the same procedure for P − P1 and so on. The procedure will stop after a finite
number of steps. The collection {Pi} gives the desired decomposition. �

Lemma 1.3.11. Let P be a polyhedral integral 1-current in Rd. Then there exist
finitely many polyhedral integral 1-currents Pi, with M(Pi) ≤ 2 and M(∂Pi) ≤ 2, such
that

P =
∑
i

Pi; M(P ) =
∑
i

M(Pi);
∑
i

M(∂Pi) ≤ 2M(∂P ) + 2M(P ).
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Proof. Repeat the procedure described in the previous proof, with an additional
rule. While building the current Pi, stop whenever the sum of the lengths of the segments
is greater then or equal to 1. By (1.3.2) we have that

M(Pi) ≤ 2.

Moreover
M(P ) = M(Pi) +M(P − Pi),

and whenever
M(∂Pi) +M(∂(P − Pi)) = M(∂P ) + 2

we have
M(Pi) ≥ 1.

As a consequence, it turns out that the number of Pi satisfying

M(∂Pi) +M(∂(P − Pi)) = M(∂P ) + 2

is at most M(P ). Obviously the number of Pi satisfying

M(∂Pi) +M(∂(P − Pi)) = M(∂P ) + 1

is at most M(∂P ). In fact if Pi satisfy this, then there is a segment S = [a, b] in Pi such
that either a or b is a point in the support of ∂P and the number of such segments (counted
with multiplicity) is bounded by M(∂P ). Hence the inequality in the decomposition of
∂P . �

Remark 1.3.12. In the previous decomposition, one could even require

M(Pi) +M(∂Pi) ≥ 1

for every index except at most one. In fact one can collect the currents Pi without
boundary, in groups whose total mass is between 1 and 2 and define a new current as
the sum of the currents in the same group. It is possible that in this procedure one
group remains, whose total mass is less than one. This group determines the exceptional
index. In conclusion it is possible to perform the previous decomposition with at most
3M(P ) + 2M(∂P ) + 1 currents Pi.

Let λ be a positive Borel measure on Dk(R
d), supported on the set X of normal

currents. If λ satisfies ∫
T∈X

M(T ) dλ(T ) <∞,

we denote by

(1.3.3) N =

∫
T∈X

T dλ(T )

the normal k-current defined by:

⟨N ;ω⟩ =
∫
T∈X

⟨T ;ω⟩ dλ(T ),
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for every ω ∈ Dk(Rd).
Moreover, if ∫

T∈X
M(∂T ) dλ(T ) <∞,

we also have, for every ϕ ∈ Dk−1(Rd)

⟨∂N ;ϕ⟩ = ⟨N ; dϕ⟩ =
∫
T∈X

⟨T ; dϕ⟩ dλ(T ) =
∫
T∈X

⟨∂T ;ϕ⟩ dλ(T ),

hence

(1.3.4) ∂

(∫
T∈X

T dλ(T )

)
=

∫
T∈X

∂T dλ(T ).

Lastly, since the flat norm metrizes the topology on X, we can consider the standard
notion of weak convergence of Borel measures, i.e. we say that λn weakly converge to λ
(and we write λn

∗
⇀ λ) if ∫

X

f dλn →
∫
X

f dλ,

for every continuous bounded function f on X. Choosing as f(T ) the action of T on a
generical element of Dk(Rd), we immediately get the implication

(1.3.5) λn
∗
⇀ λ⇒

∫
T∈X

T dλn(T )
∗
⇀

∫
T∈X

T dλ(T ).

Proposition 1.3.13. Let I be the set of integral 1-currents T in Rd with M(T ) ≤ 2
and M(∂T ) ≤ 2. Every normal 1-current N in Rd can be written as

N =

∫
T∈I

T dλ(T ),

where λ is a finite Borel measure on I . Moreover

M(N) =

∫
T∈I

M(T ) dλ(T )

and ∫
T∈I

M(∂T ) dλ(T ) ≤ 2M(N) + 2M(∂N).

Proof. For every n ∈ N consider a polyhedral 1-current Pn satisfying

F(N − Pn) ≤
1

n
; M(Pn) +M(∂Pn) ≤ M(T ) +M(∂T ) +

1

n
.

The existence of such a current is guaranteed by Theorem 1.3.9. Our first aim is to replace
Pn with a multiple of an integral polyhedral 1-current. First write

Pn =
kn∑
j=1

mn,j[Sn,j],
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where Sn,j = [an,j, bn,j] are segments oriented from an,j to bn,j, which can intersect each
other only at the extreme points and mn,j > 0 is their multiplicity. Define

dn = max{1,
kn∑
j=1

|bn,j − an,j|}.

Now, take

αn =
1

nkndn
.

For j = 1 to kn consider ln,j = ⌊mn,j

αn
⌋, where ⌊x⌋ denotes the biggest integer less than x.

The current

Qn =
kn∑
j=1

αnln,jSn,j

have the following properties:

(i) α−1
n Qn is an integral polyhedral 1-current

(ii) M(Qn − Pn) ≤ αndn = 1
nkn

≤ 1
n
,

(iii) M(∂Qn − ∂Pn) ≤ 2αnkn = 1
ndn

≤ 1
n
.

By Lemma 1.3.11 and Remark 1.3.12, it is possible to write the polyhedral integral current
Bn := α−1

n Qn as a sum of integral currents {Bn,j}hn
j=1 in such a way that:

(1.3.6) M(Bn,j) ≤ 2 and M(∂Bn,j) ≤ 2, for j = 1, . . . , hn,

(1.3.7) hn ≤ 3M(Bn) + 2M(∂Bn) + 1.

(1.3.8) M(Bn) =
∑
j

M(Bn,j)

(1.3.9)
∑
j

M(∂Bn,j) ≤ 2M(∂Bn) + 2M(Bn)

In other words, defining

λn = αn

hn∑
j=1

δBn,j
,

we can write

Qn =

∫
T∈I

T dλn(T ),

in such a way that

M(Qn) =

∫
T∈I

M(T ) dλn(T ),
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and ∫
T∈I

M(∂T ) dλn(T ) ≤ 2M(Qn) + 2M(∂Qn).

By (1.3.7), ∥λn∥ is controlled by 3M(Qn) + 2M(∂Qn) + 1, which is bounded by 3M(N) +
2M(∂N) + 2. So, up to subsequences, λn weakly converges to some positive measure λ.

Since Qn
∗
⇀ N , M(Qn) → M(N) and M(∂Qn) → M(∂N) we have:

N =

∫
T∈I

T dλ(T ),

M(N) =

∫
T∈I

M(T ) dλ(T )

and ∫
T∈I

M(∂T ) dλ(T ) ≤ 2M(N) + 2M(∂N).

�
Remark 1.3.14. In some cases it is more convenient to write the normal current N

as an integral of a parametrized family of integral currents, where the parameter is in the
unit interval [0, 1] and the measure on the set of parameters is the Lebesgue measure, i.e.

N =

∫ 1

0

Tt dt.

This is always possible thanks to the following

Theorem 1.3.15. Let X be a polish space (homeomorphic to a complete separable
metric space) and λ be a probability measure on X. Then there exists a Borel map

m : [0, 1] → X

such that m♯(L 1) = λ, i.e. λ(E) = L 1(m−1(E)), for every Borel set E ⊂ X.

The previous result is very easy to prove when X is [0,1], being

m(x) = inf{t : λ([0, t]) ≥ x}.
The proof for the generical X easily follows from Theorem 2.12 of [Pa]. A warm thank
to G. Letta for helping in finding this reference.
The next proposition is a characterization of integral 1-currents as a finite sum of open
oriented curves plus a countable sum of closed ones. Given an interval I on the line, we
denote with [I] the integral 1-current in R associated with the interval I, the positive
orientation and multiplicity 1.

Proposition 1.3.16. (see section 4.2.25 of [Fe1]) Given an integral 1-current T on
Rd, there exists a sequence of Lipschitz maps fi : I = [0, 1] → Rd such that T =

∑
i Ti,

where Ti = fi♯[I], moreover

M(T ) =
∑
i

M(Ti)
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and
M(∂T ) =

∑
i

M(∂Ti).

Proof. For every i ∈ N, let Pi be a polyhedral integral 1-current satisfying

(1.3.10) F(T − Pi) ≤
1

i
,

∂Pi = ∂T, M(Pi) ≤ M(T ) +
1

i
.

The existence of such a current for every i is guaranteed by Theorem 1.3.9. By Lemma
1.3.10 we may write Pi =

∑
j Qi,j, where Qi,j are polyhedral integral 1-currents of the

form

(1.3.11) Qi,j = gi,j ♯[I],

for some sequence of Lipschitz maps gi,j : I → Rd. The decomposition can be done in
such a way that

M(Pi) =
∑
j

M(Qi,j) and M(∂Pi) =
∑
j

M(∂Qi,j).

Denote
Ai,0 = {Qi,j : ∂Qi,j ̸= 0},

Ai,1 = {Qi,j : ∂Qi,j = 0 and 1 ≤ M(Qi,j) <M(T ) + 1}
and for k ≥ 2,

Ai,k = {Qi,j : ∂Qi,j = 0 and 2−k+1 ≤ M(Qi,j) < 2−k+2}.
Notice that the families Ai,k are disjoint and

Pi =
∑
k

 ∑
Q∈Ai,k

Q

 ;

♯(Ai,0) ≤ M(∂T );

♯(Ai,k) ≤ 2k−1(M(T ) + 1), for k ≥ 1.

Moreover, there is a positive constant C such that,

(1.3.12) F

 ∑
Q∈Ai,k

Q

 ≤ C2−k for every i.

For every i and for every k there there exists a constant Ck (independent on i) such
that every Q ∈ Ai,k admits a Ck-Lipschitz map f : I → Rd such that

Q(ω) =

∫
[0,1]

⟨ω ◦ f(t); f ′(t)⟩ dt, for every ω ∈ D1(Rd).
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Hence, the compactness in these families of equi-Lipschitz functions, gives that when i
goes to infinity along a sequence of indices (i0,1, i0,2, . . .) we have∑

Q∈Ai,0

Q
∗
⇀ A0 =

j0∑
j=1

T0,j,

where T0,j are still integral 1-currents satisfying (1.3.11). Similarly when i goes to infinity
along a subsequence (i1,1, i1,2, . . .) of (i0,1, i0,2, . . .) we have∑

Q∈Ai,1

Q
∗
⇀ A1 =

j1∑
j=1

T1,j

and so on. Properties (1.3.10) and (1.3.12) guarantee that

T =
∞∑
i=0

Ai;

lower semicontinuity of the mass and continuity of the boundary operator, give the desired
properties of the decomposition of T . �





CHAPTER 2

Old and recent results on the differentiability of Lipschitz maps

This chapter is devoted to the description of the structure of the non-differentiability
set of a Lipschitz function, namely the set of those points where the function is non-
differentiable. Rademacher theorem states that a Lipschitz function f : Rd → Rn is
differentiable almost everywhere with respect to the Lebesgue measure L n. Thus, a
set of positive measure cannot be contained in the non-differentiability set of a Lipschitz
function. In dimension d = 1, by Zahorski theorem (see [Zah]), it turns out that every null
set is contained in the non-differentiability set of some Lipschitz function. Actually the
theorem gives a complete characterization of the non-differentiability set of a Lipschitz
function f : R → R: indeed E ⊂ R is the set of non-differentiability points of some
Lipschitz function f : R → R if and only if E is a Gδσ set (a union of countably many
sets, called Gδ, which are intersection of coutably many open set) with Lebesgue measure
zero. A surprising theorem due to D. Preiss show that Zahorski result cannot be extended
to dimension d = 2, where, however, a suitable counterpart (see Theorem 2.1.4) is true.

However it is possible to consider a different point of view: instead of fixing a null set
E and looking for a Lipschitz function f : Rd → Rn which is non-differentiable at any
point of E, one can fix a measure µ on Rd, singular with respect to the Lebesgue measure
and look for a Lipschitz function f : Rd → R which is non-differentiable µ-a.e. In this
framework, the dimension of the target space is irrelevant, as Lemma 2.1.6 points out. It’s
worth to mention the fascinating progress made in [CJ] for both the pointwise problem
and the “almost everywhere” one. In this chapter, we will denote by X the complete
metric space of real valued 1-Lipschitz functions on the line, endowed with the supremum
distance.

2.1. Zahorski theorem

Here we prove a weaker version of Zahorski theorem, namely that every null set in the
line is contained in the non-differentiability set of some Lipschitz function.

Theorem 2.1.1. [Zah] Let E be a set in R such that L 1(E) = 0. Then there exists
a Lipschitz function f : R → R that is non-differentiable at any point of E.

Proof. Let (En)n∈N be a decreasing sequence of open sets, of finite measure, con-
taining E, satisfying the property:

L 1(En+1 ∩ I) ≤ 2−nL 1(I),

27
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for every n and for every connected component I of En. Note that, in particular,

L 1(En+1) ≤ 2−nL 1(En).

Define

gn(x) =

∫ x

−∞
χEn(t) dt

and

fn =
n∑

k=1

(−1)k+1gk.

Since fn is a Cauchy sequence in X, it converges to a 1-Lipschitz function f . Moreover,
note that |fn − f | ≤ |fn − fn+1| for every n.

Fix a point x ∈ E and an odd integer n. Let I be the connected component of En

containing x. For every y ∈ I we have:

f(y)− f(x)

y − x
=
f(y)− fn(y) + fn(y)− fn(x) + fn(x)− f(x)

y − x
≥

fn(y)− fn(x)

y − x
− |fn(y)− f(y)|

|y − x|
− |fn(x)− f(x)|

|y − x|
≥

1− |fn(y)− fn+1(y)|
|y − x|

− |fn(x)− fn+1(x)|
|y − x|

≥ 1− 2
L 1(En+1 ∩ I)

|y − x|
.

Choosing y0 ∈ I such that |y − x| ≥ L 1(I)
4

we have

f(y0)− f(x)

y0 − x
≥ 1− 8

L 1(En+1 ∩ I)
L 1(I)

≥ 1− 2−n+3.

Since, for sufficiently large n, the length of I can be choosen arbitrarly small, then the
upper derivative of f at x is 1. Analogously it can be proved that the lower derivative is
0 at every x ∈ E. �

The following unpublished version underlines that the “size” of the family of 1-
Lipschitz functions f : R → R which are not differentiable at any point of a fixed compact
null set E ⊂ R is large, in the sense of category.

Theorem 2.1.2. Let E be a compact set in R such that L 1(E) = 0. Then the family
of Lipschitz functions f : R → R such that f is not differentiable at the points of E is a
residual set in X.

Proof. Define inductively an infinitesimal sequence of positive numbers (εi) and a
sequence of open sets (Ei), whith the following properties

• E ⊂ Ei+1 ⊂ Ei;
• Ei is a finite union of disjoint open intervals;
• L 1(Ei) ≤ εi;
• Denoting αi = minj{L 1(I ij)}, we have εi+1 ≤ αiεi.
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Define the following subsets of X

Ui = {g ∈ X : g(b)− g(a) > (b− a)− εi+1, for every (a, b) connected component of Ei},
Vi = {g ∈ X : g(b)− g(a) < εi+1 − (b− a), for every (a, b) connected component of Ei},

Aj =
∪
i≥j

Ui, Bj =
∪
i≥j

Vi.

Obviously Ui and Vi are open sets for every i, and therefore Aj and Bj are also open,
for every j. Moreover, Ui and Vi are 2εi-nets, by which we mean that for every element
ϕ ∈ X there is an element ϕi ∈ Ui (respectively Vi) such that dist(ϕ, ϕi) ≤ 2εi. To show
this, for every function ϕ ∈ X, consider the function

ϕi(x) = ϕ

(
x−

∫ x

−∞
χEi

(t) dt

)
+

∫ x

−∞
χEi

(t) dt,

which has the following property: ϕ′
i(x)ϕ

′(x) if x ̸∈ Ei and ϕ
′
i(x) = 1 if x ∈ Ei. This is

clearly an element of Ui and ∥ϕ−ϕi∥∞ ≤ 2εi. The proof that Vi is a 2εi-net is analogous.
As a consequence, Aj and Bj are dense for every j. Finally,

A =

(
∞∩
j=1

Aj

)
∩

(
∞∩
j=1

Bj

)
is a residual set in X (in particular it is non empty).

Next we prove that every function f ∈ A is not differentiable at any point of E. More
precisely, we claim that

f ′
+(x) = lim sup

|hn|↘0

f(x+ hn)− f(x)

hn
= 1

and

f ′
−(x) = lim inf

|hn|↘0

f(x+ hn)− f(x)

hn
= −1

for every x ∈ E. Fix ε > 0 and take i ∈ N such that 3εi < ε, and f ∈ Ui. Let I = (a, b)
be the connected component of Ei containing x. Take a point y ∈ I such that

dist(x, y) ≥ L 1(I)

3
.

Let I ′ be the open interval with end points x and y. Since on (a, b) we have f ′ ≤ 1 a.e.
and f(b)− f(a) ≥ b− a− εi+1, then we also have

∫
I′
f ′(t) dt ≥ |x− y| − εi+1. Therefore

we have:

f(y)− f(x)

y − x
≥ |y − x| − εi+1

|y − x|
≥ 1− 3εi+1

L 1(I)
≥ 1− 3εi+1

αi

≥ 1− 3εi ≥ 1− ε.

Analogously we can prove that f ′
−(x) = −1 for every x ∈ E. �

As we have already mentioned, in general it is not possible to extend Theorem 2.1.1
to higher dimension, as shown by the following theorem, due to D. Preiss.
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Theorem 2.1.3. [Pr] There exist a Lebesgue null set E in the plane such that every
Lipschitz function f : R2 → R is differentiable at least at one point of E.

Actually Preiss’ null set E is quite “large”, in fact it is dense (one can choose E any
Gδ set of measure zero containing countably many lines having a dense set of directions).
In the recent paper [DoMa1] M. Doré and O. Maleva constructed a compact null set
with the same property. They also proved in [DoMa2] that in every Banach space X
with separable dual there exists a closed bounded set of Hausdorff dimension 1 containing
at least one point of Fréchet differentiability for every Lipschitz function f : X → R.

These results point out that in order to find a possible converse of Rademacher theo-
rem, one should change the setting. The following theorem shows that, in dimension 2,
it is sufficient to enlarge the target space to obtain a counterpart of Theorem 2.1.1.

Theorem 2.1.4. [ACP] For every null set E in the plane, there exists a Lipschitz
map f = (f1, f2) : R

2 → R2 which is non-differentiable at every point x ∈ E.

Remark 2.1.5. Here, the non-differentiability at the points of E is intended in a sense
(stronger than the usual one) that for every point of E, there exist a direction e(x) such
that at least one of the two components of f does not admit the directional derivative

f ′
i(x, e(x)) = lim

t→0

fi(x+ te(x))− f(x)

t
.

As we said, changing the dimension of the target space, is not helpful for the “almost
everywhere” problem. Indeed, given a singular measure µ on Rd, if we have a Lipschitz
map f : Rd → Rd′ which is µ-a.e. non-differentiable, then we can find also a (real valued)
Lipschitz function on Rd with the same property. An immediate implication of Theorem
2.1.1 is that given a singular measure µ on the line, there is a Lipschitz function which
is µ-a.e. non-differentiable. The following lemma allow us to exploit Theorem 2.1.4 to
obtain the same result in the plane.

Lemma 2.1.6. Let µ be a finite measure on Rd, let e(x) be a vectorfield and let
f1, f2 : R

d → R be two Lipschitz functions such that for µ-a.e. x ∈ Rd at least one of the
fi is non-differentiable along the direction e(x). Then there exists a Lipschitz function
f : Rd → R which is non-differentiable along the direction e(x) for µ-a.e. x.

Proof. Let

δ(fi, x) = lim sup
t→0

fi(x+ te(x))− fi(x)

t
− lim inf

t→0

fi(x+ te(x))− fi(x)

t
for i = 1, 2.

We know that for every x ∈ E at least one between δ(f1, x) and δ(f2, x) is non zero. For
every λ ∈ (0, 1] we have

δ(f1 + λf2, x) ≥ |δ(f1, x)− λδ(f2, x)|.
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Note that for λ ∈ (0, 1] the sets Eλ given by

Eλ = {x ∈ Rd : |δ(f1, x)− λδ(f2, x)| = 0}λ∈(0,1]
are pairwise disjoint. Therefore µ(Eλ) > 0 for at most countably many λ. Thus for
all remaining λ we have µ(Eλ) = 0, i.e. the Lipschitz function f1 + λf2 : R2 → R is
non-differentiable along e(x) for µ-a.e. x. �

Corollary 2.1.7. Given a measure µ onR2 which is singular with respect to Lebesgue,
there exists a Lipschitz function f : R2 → R which is non-differentiable µ-a.e.

Remark 2.1.8. There exists a characterization of those sets that are contained in the
non-differentiability set of some Lipschitz function in Rd: up to the recent work [CJ] it
was in a certain sense incomplete. Indeed, it was not known whether Lebesgue null sets
belong to this family or not. The work of M. Csornyei and P. Jones gives a positive answer
to this question.

2.2. σ-Porous sets and differentiability

For a positive real number δ < 1, we say that a set E ⊂ Rd is δ-porous at a point
x ∈ E if there is sequence of points yn → 0 such that

B(x+ yn, δ|yn|) ∩ E = ∅
for every n ∈ N. In other words, at arbitrarly small scales centered at x, the complement
of E contains a ball of fixed radius. A set E is porous if there is some positive δ such that
E is δ-porous at all of its points and is σ-porous if it is a countable union of porous sets.
The Lebesgue density theorem implies that porous sets (and therefore also σ-porous ones)
are Lebesgue null. Moreover, a porous set is nowhere dense (i.e., its closure has empty
interior), so a σ-porous set is a set of first category (countable union of nowhere dense
sets). Zajicek Theorem 2.2.5 shows that the family of σ-porous sets does not contain all
Lebesgue-null, first category sets.

The following remark shows that σ-porous sets seem to be good candidates to char-
acterize those subsets of Rd for which most of the points are non-differentiability points
of some Lipschitz function f : Rd → R. It turns out that the condition is sufficient, but
not necessary.

Remark 2.2.1. It is not difficult to see that a set E is δ-porous at x, for some δ > 0
if and only if the function

dE(x) = dist(x,E)

is non-differentiable at x. Let µ be a measure on Rd and assume that Ei is a sequence of
porous sets whose union contains µ-a.e point in the support of µ. It is possible to show
that there is a linear combination of the functions dEi

which is non-differentiable µ-a.e.
Unfortunately this is not enough to prove Corollary 2.1.7. Indeed for every d ≥ 1 there
exists a measure µ, singular with respect to the Lebesgue measure on Rd, such that every
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porous set is µ-negligible (see Theorem 2.2.4). The rest of this section is devoted to the
proof of this result.

Our proof of Theorem 2.2.4 is based on a blowup argument. Given a locally finite
Borel measure µ on Rd and a point x we define the set Tan(µ, x) of the blowups of µ at
x, as the limits

lim
rn↘0

κn = lim
rn↘0

µx,rn B(0, 1)

µ(B(x, rn))
,

where, for every x and for every r > 0

µx,r(A) = µ(x+ rA), for every Borel set A.

The following lemma shows that if µ gives positive measure to some porous set, then
there exists a µ-positive set of points A such that for every x ∈ A, Tan(µ, x) contains
a measure ν satisfying L 1 ̸≪ ν (i.e. the Lebesgue measure is not absolutely continuous
with respect to ν). We just mention that the converse is also true.

Lemma 2.2.2. Let µ be a locally finite measure on the line, such that for µ-a.e.x and
for every ν ∈ Tan(µ, x), L 1 ≪ ν. Then µ(P ) = 0 for every porous set P ⊂ R.

Proof. By contradiction, consider δ > 0 and a δ-porous set P with µ(P ) > 0. It is
a general fact that if E is a Borel set, then Tan(µ E, x) = Tan(µ, x) for µ-a.e x ∈ E.
Then for µ-a.e. x ∈ P every blowup ν of µ P at x is an element of Tan(µ, x), in
particular ν gives positive measure to every non trivial interval J ⊂ (−1, 1). We show
how to find, for every x ∈ P , a blowup ν of µ P at the point x such that ν(1− δ, 1) = 0
or ν(−1,−1 + δ) = 0. Fix x ∈ P and consider a sequence yn → 0 such that

B(x+ yn, δ|yn|) ∩ P = ∅.
Possibly passing to a subsequence, we may assume that yn has constant sign, let us say
positive. It turns out that, if we take rn = yn, for every limit ν of some subsequence of
κn, we have ν(1− δ, 1) = 0. �

On [−1, 1] we call n-th generation of dyadic intervals all the intervals of the form

I = [a2−n, (a+ 1)2−n], for a = −2n, . . . , 2n − 1.

Theorem 2.2.3 (Martingale theorem). Let (µn)n∈N be a sequence of probability mea-
sures on [−1, 1]. Assume that µn = fnL 1, where fn is constant on the dyadic intervals
of the n-th generation. Assume moreover that µm(I) = µn(I) for every dyadic interval of
the n-th generation, for every m > n. Then µn weakly converges to a probability measure
µ, and the Radon Nikodym derivative f of the absolutely continuous part of µ satisfyes

f = lim
n→∞

fn, L 1 − a.e.

Proof. By the compactness theorem for measures, there is a subsequence µnh
weakly

converging to a measure µ. The proof that actually the whole sequence µn converges to µ
is a straightforward application of property (i) of Proposition 1.1.5 to the algebra of sets
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generated by the dyadic intervals. To prove the second part of the theorem, take a point
x which is a Lebesgue point for f . Assume moreover that x is a continuity point for every
fn. Let In be the dyadic intervals of the n-th generation containing x. This is a family of
sets of bounded eccentricity. Therefore the Lebesgue theorem gives:

fn(x) =
µn(In)

L 1(In)
=

µ(In)

L 1(In)
=

∫
In
f dL 1

L 1(In)
→ f(x), as n→ ∞.

�

We are now ready to prove the following theorem. This construction was suggested
by B. Kirchheim.

Theorem 2.2.4. There exists a singular measure µ on the line such that µ(P ) = 0
for every porous set P ⊂ R.

Proof. Take the 1-periodic function φ : R → R which agrees with 2χ[0,1/2] − 1 on
[0, 1] and choose a decreasing sequence of positive numbers an such that an → 0 and∑

n a
2
n = +∞. Define on [0, 1] the functions

φn(x) = anφ(2
nx), ΦN =

N∑
n=1

φn, ψn = 1 + φn, ΨN =
N∏

n=1

ψn.

Consider now the measures µN = ΨNL 1. By Theorem 2.2.3 there exists a measure µ such
that µn

∗
⇀ µ and moreover ΨN → dµabs

dx
(the Radon-Nikodym derivative of the absolutely

continuous part of µ). Then it is sufficient to prove that lim infN ΨN = 0L 1-a.e. to
guarantee that µ is singular with respect to Lebesgue. Notice now that for |x| < 1 there
holds

log(1 + x) ≤ x− x2

8
,

hence we have

log(ΨN) =
N∑

n=1

log(1 + φn) ≤
N∑

n=1

(φn −
φ2
n

8
) = ΦN −

N∑
n=1

a2n
8
.

Since the random variable ΦN has expected value E(ΦN) = 0 and variance σ2(ΦN) =∑N
n=1 a

2
n, then Chebyshev inequality gives

L 1

({
x ∈ [0, 1] : ΦN(x) >

N∑
n=1

a2n
16

})
≤ 162∑N

n=1 a
2
n

→ 0 as N → ∞,

because
∑
a2n = +∞. Therefore we have

lim inf
N

ΨN = exp

(
lim inf

N

(
ΦN −

∑N
n=1 a

2
n

8

))
= 0, L 1 − a.e.
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Now fix an = n−1/2; we want to show that for µ-a.e. point x ∈ (0, 1), every blowup of
µ at x gives positive measure to every non trivial interval J ⊂ (−1, 1). By Lemma 2.2.2,
this guarantees that every porous set is µ-negligible.

Consider a point x ∈ (0, 1), a measure ν ∈ Tan(µ, x) and a sequence rm with rm ≤
dist(x,B(0, 1)c) and rm ↘ 0 such that ν = limm κm. For every m ∈ N, there exist n ∈ N

and a dyadic interval In(x), of the n-th generation, containing x, such that it also contains
x+rn or x−rn, but no interval in the next generation has the same property. In particular
we have rn ≤ |In(x)| ≤ 2rn. Denote by I ′n(x) the neighbour dyadic interval of the same
generation as In(x), that together with In(x) covers (x − rn, x + rn). We want to show
that, eventually in n, the ratio

cn(x) =
µ(In(x))

µ(I ′n(x))

satisfies e−2 ≤ cn(x) ≤ e2 for µ-a.e. x ∈ (0, 1): this is sufficient to prove that ν(J) > 0 for
every non trivial interval J ⊂ (−1, 1), for every ν ∈ Tan(µ, x).

For every x ∈ (0, 1) let (σi(x))i∈N be the unique sequence made of 0’s and 1’s such
that

min{In(x)} =
n∑

i=0

2−iσi(x),

(see Figure 2.2.1) and analogously define (σ′
i(x))

n
i=1.

0 1

σ1 = 0 σ1 = 1

σ2 = 1 σ2 = 1σ2 = 0σ2 = 0

Figure 2.2.1

Obviously we have

max{cn(x), cn(x)−1} ≤
n∏

i=j0+1

1 + ai,

where j0 is the last index less than n such that σj0(x) = σ′
j0
(x). Notice that if I ′n(x) is the

left neighborhood of In(x), we have σj0+1(x) = 1 and σi(x) = 0 for every i = j0+2, . . . , n;
viceversa if I ′n(x) is the right neighborhood of In(x), we have σj0+1(x) = 0 and σi(x) = 1
for every i = j0 + 2, . . . , n.
For j = 0, 1, and for n ≥ 2 denote

Ej
n = {x ∈ (0, 1) : σi(x) = j, for every i ∈ [n− n1/2 + 2, n]}.
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It is easy to see that, for n sufficiently large, the set of points x such that cn(x) ̸∈ [e−2, e2] is
contained in E0

n∪E1
n. In fact if, for example, we had cn(x) > e2, then

∏n
i=j0+1 1+i

−1/2 > e2

and this means that
∑n

i=j0+1 1 + i−1/2 > 2. But
∑n

i=j0+1 1 + i−1/2 < 2 if j0 > n − n1/2.
We have

µ(Ej
n) ≤

n∏
i=n−n1/2+2

1 + i−1/2

2
≤ 2−n1/2−2

n∏
i=n−n1/2

1 + i−1/2 ≤ 2−n1/2+2.

Therefore

µ

(
∞∩
k=2

∞∪
n=k

∪
j=0,1

Ej
n

)
= 0

and since this set contains the set of points x such that c(x) ̸∈ [e−2, e2] frequently, we are
done. Actually with slightly better extimates it is possible to prove that cn(x) goes to
1 µ-a.e. and this implies that the blowups are (a multiple of) the Lebesgue measure on
(−1, 1) at µ-a.e. point. �

Theorem 2.2.5. [Zaj] In Rd there is a compact, first category, Lebesgue null set,
which is not σ-porous.

Proof. It is sufficient to prove the result for d = 1. Let µ be the measure constructed
in Theorem 2.2.4 and consider a Lebesgue null set N supporting µ. Take a compact subset
K of N such that µ(K) ≥ 1

2
. Obviously K is Lebesgue null and first category (actually

it is nowhere dense), moreover K is not σ-porous, because every porous subset of K has
measure µ equal zero by Lemma 2.2.2. �

Given a Lipschitz function f : Rd → R, Rademacher theorem on the line and Fubini
theorem are sufficient to guarantee the existence of directional derivatives f ′(x, v) for
every direction v and for a.e. x. Of course the existence of many partial derivatives is not
sufficient to have differentiability. The following result, points out that the set of points
for which the two notions differ is, in a certain sense, small.

Theorem 2.2.6. [PZ] Let f : Rd → R be a Lipschitz function. Then the set of those
points at which there exist directional derivatives in d linearly independent directions, but
f is not differentiable, is σ-porous.

Remark 2.2.7. As we said, σ-porous sets are negligible, therefore Theorem 2.2.6,
together with the previous discussion, is sufficient to deduce Rademacher theorem in Rd.
Nowadays there are much simpler proofs of Rademacher theorem in Rd: in this remark
we just want to emphatize the gap between the existence of many directional derivatives
and the differentiability. We will return on this in the next chapter.





CHAPTER 3

Differentiability of Lipschitz functions with respect to measures

The results of this chapter are original and are contained in [AM].

Definition 3.0.8. Consider a map

S : Rd → Y =
d∪

k=0

Grk(R
d)

from Rd to the vector space Y which is the union over k of the Grasmannians of k-planes
in Rd. We say that a function f : Rd → R is differentiable along S at the point x ∈ Rd if
the restriction of f to the plane x+ S(x) is differentiable at x.

We consider on the target space of S the topology inherited by distance which is given
by the Hausdorff distance of the intersection of sets with the unit ball

d(V,W ) = distH (V ∩B1(0),W ∩B1(0)).

When we refer to the measurability of S we intend it with respect to the Borel σ-algebra
generated by this topology.

3.1. Differentiability w.r.t. normal 1- currents

The aim of this section is to prove the following theorem.

Theorem 3.1.1. [AM] Let T0 = τ0µ0 be a 1-dimensional normal current in Rd. Then
every Lipschitz function f : Rd → R is differentiable along τ0(x), at µ0-a.e. x ∈ Rd.

Clearly, the theorem is valid for those 1-currents T for which there exists a Lipschitz
function γ : I → Rd, satisfying

(3.1.1) T = γ♯([I]),

where I is the interval [0, 1] in R and [I] is the integral 1-current defined in Remark 1.3.1.
Indeed, given a Lipschitz function f : Rd → R, the set of points γ(t) ∈ Rd such that f is
non-differentiable at γ(t) along the direction γ′(t) is contained in the set

A = γ(M) ∪ γ(N) ∪ γ(S),
where M and N are respectively the set of points in (0, 1) such that γ and γ ◦ f are
not differentiable and S is the set of points such that γ′ = 0. Since γ ◦ f is a Lipschitz
function, then, by Rademacher theorem on the line, N is H 1-null. Since γ is Lipschitz,
the image of M and N through γ are also H 1-null. Lastly, γ(S) is H 1-null by Sard

37
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theorem. Since f is Lipschitz, the fact that γ ◦ f is differentiable on (0, 1) \ (M ∪N ∪ S),
with non zero derivative, implies that f is differentiable along γ′ on γ((0, 1)) \ A.

By Proposition 1.3.16, this fact has an easy extension to integral currents. Proposition
1.3.13 provides the correct tool to extend the result to normal 1-current. To complete
the proof, we recall a basic result in Measure Theory, called disintegration theorem (see
[DeMe]).

Theorem 3.1.2. Let Y and X be locally compact, separable metric spaces, µ a measure
on X, π : X → Y a Borel map, and ν a measure on Y such that π♯µ ≪ ν. Then there
exists a family {µy}y∈Y of measures on X such that

(i) the function y 7→ µy is Borel measurable, in the sense that y 7→ µy(B) is Borel
measurable for every Borel set B;

(ii) µy(X \ π−1(y)) = 0, for every y ∈ Y ;
(iii) µ can be decomposed as µ =

∫
Y
µy dν(y), which means that

µ(B) =

∫
Y

µy(B) dν(y),

for every Borel set B contained in X.

Any family {µy} satisfying (i),(ii) and (iii) is called a disintegration of µ with respect to
π and ν. The disintegration is ν-a.e. uniquely determined, i.e. for any other disintegration
µ̃y there holds µy = µ̃y for ν-a.e. y.

Proof of Theorem 3.1.1. Apply Theorem 3.1.2, with

X = Rd × Sd−1; Y = Rd,

and
π : X → Y

the natural projection. By Remark 1.3.14 there is a family Tt of integral 1-currents, with
M(Tt) ≤ 2 and M(∂Tt) ≤ 2 satisfying

T0 =

∫ 1

0

Tt dt; M(T0) =

∫ 1

0

M(Tt) dt.

For every t ∈ [0, 1] define on X a positive measure µt such that

π♯(µt) = ∥Tt∥,
(∥Tt∥ being the measure associated with Tt) and such that

µt({(x, v) : v ̸= τt(x)}) = 0

(τt being the vector field associated with Tt).
Define on X the measure

µ =

∫ 1

0

µt dt

and take ν = π♯µ.
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Now, given a Lipschitz function f : Rd → R, define a function g : X → [0, 1] such
that g(y, v) = 1 if f is not differentiable at y in the direction v, g(y, v) = 0 otherwise.

The disintegration theorem gives:

0 =

∫ 1

0

(∫
X

g dµt

)
dt =

∫
X

g dµ =

∫
Y

∫
π−1(y)

g dµy dν(y).

The second integral being 0 means that f is differentiable at ν-a.e y in the direction τt(y)
for a.e. t ∈ [0, 1]. In other words we have differentiability ν-a.e. along certain directions,
but we need to show that ν is actually the measure associated with T0 and that the
directions coincide with the right one (the direction associated with T0).

Define

τ(y) =

∫
π−1(y)

v dµy(v).

Firstly, we prove that the normal current T0 satisfy T0 = τν (notice that, at this stage,
we are not saying yet that |τ | = 1, ν-a.e.). In fact, for every 1-covector ψ ∈ Rd and for
every smooth compactly supported function φ ∈ C ∞

c (Rd) we have

⟨T0;ψφ⟩ =
∫ 1

0

⟨Tt;ψφ⟩ dt =∫ 1

0

∫
Rd

⟨ψ; τt⟩φ d∥Tt∥ dt =∫ 1

0

∫
Rd×Sd−1

⟨ψ; v⟩φ dµt dt =∫
Rd×Sd−1

⟨ψ; v⟩φ dµ =∫
y∈Rd

∫
v∈π−1(y)

⟨ψ; v⟩φ(y) dµy(v) dν(y) =∫
y∈Rd

⟨
ψ;

∫
π−1(y)

v dµy(v)

⟩
φ(y) dν(y) =∫

Rd

⟨ψ; τ⟩φ dν.

Secondly, we prove that µy coincides with the Dirac measure δτ(y) for ν-a.e. y, hence ν
coincides with µ0 and f is differentiable ν-a.e along the right direction τ0. We have∫

Y

|τ | dν = M(T0) =

∫ 1

0

M(Tt) dt =

∫ 1

0

∥µt∥ dt = ∥µ∥ = ∥ν∥,

hence |τ(y)| = 1 for ν-a.e. y. Being τ(y) baricenter of a measure µy, living on Sd−1, we
must have µy = δτ(y) for µ-a.e.y. �
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Remark 3.1.3. In the previous proof we skipped the check of the measurability of
g. We prove here that g is Borel measurable. This is a consequence of the fact that the
functions

∂+f : (x, v) → ∂+f

∂v
(x) = lim sup

h

f(x+ hv)− f(x)

h
and

∂−f : (x, v) → ∂−f

∂v
(x) = lim inf

h

f(x+ hv)− f(x)

h
are Borel measurable. In fact if we call

fh(x, v) =
f(x+ hv)− f(x)

h
,

we have that fh(x, v) is measurable for every h, moreover

∂+f = inf
n∈N

sup
h∈Q,|h|≤ 1

n

fh

and similarly
∂−f = sup

n∈N
inf

h∈Q,|h|≤ 1
n

fh.

3.2. Differentiability along the decomposability bundle

In this section we prove the main differentiability result. Given a Radon measure µ on
Rd we define a map S that associates to every point x a vector subspace S(x) of Rd. Then
we prove that every Lipschitz function f : Rd → R is differentiable at µ-a.e. point along S.

We say that a Radon measure µ on Rd is 1-decomposable provided µ admits a decom-
position

(3.2.1) µ =

∫ 1

0

µt dt,

where µt are 1-rectifiable measures. We call (3.2.1) a 1-decomposition of µ. Notice that
in (3.2.1) every measure µt is endowed with a weak tangent field τt, defined in (1.3.1),
relative to the rectifiable set Et supporting the measure.

Definition 3.2.1. Let µ be a Radon measure on Rd. Let F be the class of all Borel
maps

S : Rd →
d∪

k=0

Grk(R
d),

such that:

(i) for every λ ≪ µ, such that λ =
∫ 1

0
λt dt is 1-decomposable and λt are 1-rectifiable

measures supported on Et, endowed with weak tangent fields τt, then

⟨τt(x)⟩ ⊂ S(x) for λt − a.e. x ∈ Rd, for a.e. t ∈ [0, 1];
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Among these there exists one which is minimal (see Remark 3.2.2) in the following sense:

(ii) for every S ′ satisfying (i), S(x) ⊂ S ′(x) for µ-a.e. x. This is called the decompo-
sability bundle of µ.

Remark 3.2.2. The existence of a minimal element in F can be proved as follows.
One can take a sequence of Borel maps (Sn)n∈N, satisfying (i) and minimize the quantity∫

Rd

dim(Si) dµ,

then the decomposability bundle of µ is the Borel map S(x) =
∩

n∈N Sn(x).

Definition 3.2.3. Let µ be a Radon measure in Rd. Let L be the set of pairs (λ, T ),
where λ is a Radon measures, with λ≪ µ and T = τν is a normal 1-current in Rd, such
that λ≪ ν. Given a sequence of elements of L , (λn, Tn)n∈N, we call bundle generated by
(λn, Tn) a Borel map

G : Rd →
d∪

k=0

Grk(R
d),

such that:

(i) for every n ∈ N

⟨τn(x)⟩ ⊂ G(x) for λn − a.e. x ∈ Rd;

(ii) for every G′ satisfying (i), G(x) ⊂ G′(x) for µ-a.e. x.

A cone with axis v and angle α is the set

C(v, α) = {x ∈ Rd : |⟨x; v⟩| > |x| cos(α)}.

Lemma 3.2.4. [AM] Let µ =
∫ 1

0
µt dt be a 1-decomposable measure on Rd, such that

for every t, the tangent filed τt to the rectifiable set Et supporting µt satisfies τt ∈ C(v, α),
for some v ∈ Rd, and α ∈ (0, π/2). Then there exists a normal current T = σν such that
µ≪ ν and σ ∈ C(v, α), ν-a.e.

Proof. For every t ∈ A, cover H 1-a.e. point in Ft with a sequence of C 1-curves
(γnt )n∈N such that γnt goes in the direction of C(v, α). Possibly extending the curves,
we may assume that their length is at least 1. For every t ∈ A, we denote by Nt the
1-current having the following property: Nt =

∑
n∈N R

n
t , where R

n
t is the rectifiable 1-

current supported on γnt with orientation given by the positive part of the cone C(v, α)
and with constant multiplicity θnt satisfying the property∫

γn
t

θnt = λt(γ
n
t )− λt

(
γnt ∩

∪
m<n

γmt

)
.

It is easy to see that M(∂Rn
t ) ≤ M(Rn

t ), therefore Rt is a normal 1-current. �
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Proposition 3.2.5. [AM] Let µ be a finite Radon measure on Rd. Then there exists
a sequence of elements of L , (λn, Tn)n∈N, such that the decomposability bundle of µ
coincides with the bundle generated by (λn, Tn).

Proof. Among all sequences of elements of L , choose one, (λn, Tn)n∈N, which max-
imizes the quantity

(3.2.2)

∫
Rd

dim(G(x)) dµ(x),

where G is the bundle generated by the sequence. Notice that this quantity is bounded
by d∥µ∥. Now we prove that the decomposability bundle S of µ coincides with the bundle
G generated by this sequence.
By Proposition 1.3.13 and by Remark 1.3.14, we have G(x) ⊂ S(x) µ-a.e., then it is
sufficient to prove that G satisfies condition (i) in Definition 3.2.1.
Assume by contradiction that there exists a Radon measure λ ≪ µ with the following
property: there exists a 1-decomposition λ =

∫ 1

0
λt dt, (with λt 1-rectifiable measure

supported on a 1-rectifiable set Et endowed with tangent field τt) and a set A ⊂ [0, 1],
with positive Leesgue measure, such that for every t ∈ A there exists a H 1-positive set
Ft ⊂ Et satisfying

⟨τt(x)⟩ ̸⊂ G(x) for every t ∈ A, for every x ∈ Ft.

Possibly considering subsets of A and Ft, we may assume that there exists v ∈ Sd−1,
α ∈ (0, π/2) such that τt(x) belongs to the cone C(v, α) and S(x)∩C(v, α) = ∅ for every
t ∈ A and for every x ∈ Ft. From Lemma 3.2.4 we know that there exists a normal
current N = σν such that the positive measure

µ̃ =

∫
A

λt Ft dt

(which is absolutely continuous with respect to µ) satisfies µ̃ ≪ ν and moreover σ ∈
C(v, α), ν-a.e., therefore the line with direction σ(x) is not a vector subspace of S(x) for
µ̃-a.e. x. Adding (µ̃, N) to the sequence (λn, Tn), the quantity 3.2.2 (evaluated on the
new sequence) strictly increases, which is a contradiction. �

In particular, as a consequence of Theorem 3.1.1, we have differentiability of every
Lipschitz function f : Rd → R along “many” vectorfields (namely the vectorfields as-
sociated with the currents Tn). Now we want to look for differentiability along higher
dimensional planes. Therefore we need a tool to ensure, at least, the linearity of the
directional derivatives.

Proposition 3.2.6. [AM] Let T = τν be a nomal 1-current with compact support
and f : Rd → R be a Lipschitz function. Then fT = τfν is a normal current, moreover
there exists ν-a.e. the directional derivative ∂f

∂τ
and satisfies

∂(fT ) = f∂T +
∂f

∂τ
ν.
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Proof. If T is an integral 1-current satisfying (1.3.11), then the theorem is just a
consequence of the Fundamental Theorem of Calculus. By Proposition 1.3.16 the theorem
extends to every integral 1-current. To prove the result for a normal 1-current T , we use
again Proposition 1.3.13. We write as usual

T =

∫ 1

0

Tt dt.

Denote by T (Σt, τt, θt) the integral 1-current Tt and by νt = θtH 1 Σt. Recall that in
the proof of Theorem 3.1.1 we showed in particular that τ(x) = τt(x) for νt-a.e. x and
a.e. t. Hence we have, for a.e. t,

∂f

∂τ
(x) =

∂f

∂τt
(x),

for νt-a.e. x ∈ Σt. Therefore for a.e. t we can write

(3.2.3) ∂(fTt) = f∂Tt +
∂f

∂τ
νt.

Since we have also

M(T ) =

∫ 1

0

M(Tt) dt,

then we deduce

ν =

∫ 1

0

νt dt.

Therefore, integrating on t in (3.2.3), we obtain the thesis. �
Now, we are ready to prove the first part of our main theorem.

Theorem 3.2.7. [AM] Let µ be a Radon measure on Rd and let S be the decompos-
ability bundle of µ. Then every Lipschitz function f : Rd → R is differentiable along S(x)
at µ-a.e. x ∈ Rd.

Proof. Let (λn, Tn)n∈N be the sequence given in Proposition 3.2.5. Write Tn = τnνn
for every n ∈ N. Consider (ei)i∈N the standard basis of ℓ1, and the countable set A =∪

m∈NAm, dense in ℓ1, where Am is the set of elements
∑m

i=1 aiei with ai integer multiple
of 2−m. For µ-a.e. x ∈ Rd and for every τ ∈ S(x) there exist n1, . . . , nd such that
τ ∈ ⟨τn1(x), . . . , τnd

(x)⟩, and the measure λni
satisfies

dλni

dµ
(x) > 0,∀i = 1, . . . , d.

Hence for every ε > 0 there exists a = (ai)i∈N ∈ A such that

|τ − τa(x)| ≤ ε,

where τa is the vectorfield associated with the normal 1-current ai1Ti1 + . . .+ aidTid
Now fix a Lipschitz function f : Rd → R. Consider a set N such that for every n ∈ N,

νn(N) = 0 and there exists the directional derivative ∂f
∂τn

on Rn \N . For every a ∈ A, call
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Ta =
∑∞

i=1 aiTi = τaνa. Denote with Γ the collection of the vectors τa. By Proposition

3.2.6 we can assume that on Rn \N there exists the directional derivative ∂f
∂τa

, for every
a ∈ A and we may also assume that it is linear with respect to the direction τa. We shall
now show that f is differentiable along S(x) for every x ∈ Rd \N . For every x ∈ Rd \N ,
consider the linear operator L(x) on S(x) defined by the values of ∂f

∂v
in the directions

v = τa, and a vector e ∈ S(x). For every h > 0, take vh ∈ Γ such that |e− vh| ≤ h. Then
compute:

|f(x+ he)− f(x)− hL(e)|
h

=
|f(x+ he)− f(x+ hvh)− hL(e− vh)|

h
+

+
|f(x+ hvh)− f(x)− hL(vh)|

h
≤ hLip(f) + h|L|+ o(1).

Therefore f is differentiable along S(x) on Rd \N .
�



CHAPTER 4

Non-differentiability results

In this chapter, we describe a technique to construct a Lipschitz function which is non-
differentiable at the points of a given “small” set in Rd. Given a Radon measure µ on Rd,
we use this technique to obtain a Lipschitz function which is µ-almost everywhere non-
differentiable along the directions which are not vector subspaces of the decomposability
bundle of µ. This is a simplified version of the construction given in [ACP]. In the last
section we give a new proof of the existence of such a function, inspired to the proof of
Theorem 2.1.2.

4.1. Structure of invisible sets

In the sequel E is a set in Rd, v ∈ Sd−1 is a direction, α ∈ (0, π
2
) is an angle and

γ : [0, 1] → Rd is a curve, whose image in Rd is Γ.
We say that γ goes in the direction of the cone C(v, α), if

γ(s)− γ(t) ∈ C+(v, α), for every s, t ∈ [0, 1], s ≥ t,

where
C+(v, α) = {x ∈ Rd : ⟨x; v⟩ ≥ |x| cosα}.

We say that E is invisible along the cone C(v, α), if

H 1(E ∩ Γ) = 0,

for every curve γ going in the direction of C(v, α).
We say that a set E ⊂ Rd is invisible along the direction v, if

H 1(E ∩ Γ) = 0,

for every α ∈ (0, π
2
) and for every curve γ going in the direction of C(v, α).

Given ε > 0, A ⊂ v⊥ open in v⊥ and f : A → R a Lipschitz function, we call v-slab of
thickness w(I) = ε around f the following set

I =
{
x+ tv : x ∈ A, t ∈

(
f(x)− ε

2
, f(x) +

ε

2

)}
.

If L is a Lipschitz constant for f , we say that I is an L-Lipschitz slab. If f is of class C 1,
we say that I is a slab of class C 1.
In a partially ordered set, an antichain is a set of elements no two of which are comparable
to each other. A chain is a totally ordered subset. The length of a chain (or an antichain)

45
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γ

α

v

C+(v, α)

Figure 4.1.1

A ⊂ v⊥

ε

I

v

Figure 4.1.2

is just the number of its points. The following theorem is a dual version of the classical
Dilworth theorem ([D]).

Theorem 4.1.1. [Mi] In a finite partially ordered set (X,≤), the size of the largest
chain equals the smallest number of antichains into which the set can be partitioned.
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Proof. For every x ∈ X, let l(x) be the length of the largest chain having x as
maximal element. Let

L = max
x∈X

l(x).

For every n = 1, . . . , L the set

An = {x ∈ X : l(x) = n}
is an antichain and {An}Ln=1 is a partition of X. Obviously it is not possible to find a
partition with a smaller number of antichains, since every two elements of the largest
chain must belong to different antichains. �

The next theorem is derived from a brilliant geometric interpretation of the previous
result. It is possible to find several applications of this idea in [ACP].

Theorem 4.1.2. Let E be a compact set in Rd, invisible along the cone C(v, α). Then
E can be covered by (finitely many) cot(α)-Lipschitz v-slabs in such a way that the sum
of the thickness of the slabs is arbitrarily small.

Proof. Without loss of generality, we may assume

E ⊂ G = [0, tan(α)]d−1 × [0, 1]

and v = ed. Let Gk be the grid obtained dividing each edge of G into k equal parts. Let
Ek be the set of the centers of the cells of Gk intersecting E. Define a partial order on Ek

by setting, for every y1, y2 ∈ Gk :

y1 ≤ y2 if y2 − y1 ∈ C+(v, α)

. We want to show that the length of the largest chain in Ek has lower order with respect

tan(α)

c
(k)
mktmk

t1

C+(v, α)

Gk

γk

c
(k)
1

0

1

v

E

Figure 4.1.3

to k. Assume by contradiction that there exist l > 0 such that for infinitely many k there

is a chain Ck = (c
(k)
1 , . . . , c

(k)
mk) of length at least lk. Define

γk : [0, 1] → G, such that γk(t1) = c
(k)
1 , . . . , γk(tmk

) = c(k)mk
,
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where ti = ⟨c(k)i ; en⟩. Define

γk(0) = γk(t1)− t1en, γk(1) = γk(tmk
) + (1− tmk

)en

and γk affine on [0, t1], on [tmk
, 1] and on [ti, ti+1] for every i = 1, . . . ,mk−1 (see Figure

4.1.3). Up to subsequences, γk converges to a curve γ going in the direction of C(v, α).
We want to show that H 1(γ ∩ E) > 0, which is a contradiction. For every k define

gk : [0, 1] → R, such that gk(t) = dist(γk(t), E).

Since γk uniformly converges (up to subsequences) to γ, then gk uniformly converges to
the continuous function g(t) = dist(γ(t), E). By construction we have

gk ≤ k−1(
√
d tan(α) + 1), on a set of length l, for every k.

For ε > 0, take k such that |gk − g| ≤ ε and k−1(
√
d tan(α) + 1) ≤ ε. Then g ≤ 2ε on a

set of length l. This proves that g = 0 on a set of length l, then the contradiction that
H 1(γ ∩ E) ≥ l.

By Theorem 4.1.1, Ek can be covered by o(k) antichains. Every antichain A is the
graph of a cot(α)-Lipschitz function fA from a discrete set contained in G ∩ {en = 0}
with values in [0, 1]. Take a cot(α)-Lipschitz extension gA of fA to {en = 0} in such a

way that the image of gA is contained in [0, 1]. A slab of thickness k−1(
√
d + 1) around

gA contains every cell intersected by the graph of fA. Therefore E can be covered by o(k)

cot(α)-Lipschitz v-slabs of thickness k−1(
√
d+ 1). �

For some reasons, it could be convenient to have disjoint C 1 slabs in the covering.
The next corollary shows that this could be done, as long as one is willing to lose a small
set. In the sequel, the word box indicates an n-dimensional rectangle.

Corollary 4.1.3. Let E be a compact set in Rd, invisible along the cone C(v, α),
with E contained in some closed box Q with one axis parallel to v. Let µ be a finite
Radon measure supported on E. Then it is possible to cover µ-a.e. point of E by
(finitely many) disjoint cot(α)-Lipschitz v-slabs of class C 1, contained in an arbitrarily
small neighborhood of Q and such that the sum of the thickness of the slabs is arbitrarily
small.

Proof. Assume E ⊂ Q = [0, tan(α)]d−1 × [0, 1] and v = ed and consider the covering
of E given by Theorem 4.1.2. Fix ε > 0 and consider the open box

Qε = (−ε, tan(α) + ε)d−1 × (−ε, 1 + ε).

For every index k sufficiently large, the slabs constructed in the previous proof, intersected
with

(−ε, tan(α) + ε)d−1 ×R

are contained in

(−ε, tan(α) + ε)d−1 ×
(
−ε
4
, 1 +

ε

4

)
,
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and the sum of their thickness is less than ε
4
. We want to replace them with disjoint

slabs of class C 1 with the same Lipschitz constant and “almost” the same thickness.
Let A1, . . . , Am be the antichains associated with these slabs, and gA1 , . . . , gAm as in the
previous proof.

Without loss of generality we may assume that gAi
≤ gAj

if i < j. In fact if this is not
the case one can define

i1(x) = min
i=1,...,m

{i : gAi
(x) ≤ gAj

(x) for every j = 1, . . . ,m}

and take g̃A1(x) = gAi1(x)
(x). Then for every n = 2, . . . ,m define recursively

In(x) = {ij(x) : j < n}
and

in(x) = min
i̸∈In(x)

{i : gAi
(x) ≤ gAj

(x) for every j ̸∈ In(x)}

and take g̃An(x) = gAin(x)
(x). The new fucntions g̃Ai

satisfy the above property.
Now let

h = (2k)−1(
√
d+ 1)

be half of the thickness of the slabs and define

g1 = gA1 − h

and let f1 be a C 1 function with the same Lipschitz constant of g1 and such that

0 ≤ g1 − f1 ≤ h

Let w1 ∈ [3h, 4h] be such that

µ(graph(f1 + w1)) = 0.

It is possible to choose such an w1 because the family

{graph(f1 + t)}t∈[3h,4h]
is uncountable and disjoint. Let I1 be the slab of thickness w1 around f1 +

w1

2
. Define

g2(x) = max (f1(x) + w1; gA2(x)− h) .

Let f2 be a C 1 function with the same Lipschitz constant of g2 and such that

f2 ≥ f1 + w1; 0 ≤ g2 − f2 ≤ h.

Let w2 ∈ [3h, 4h] be such that

µ(graph(f2 + w2)) = 0.

Let I2 be the slab of thickness w2 around f2 +
w2

2
(See Figure 4.1.4).

After at most m steps, the union of the slabs I1, . . . , Im covers µ-a.e. point in the
union of A1, . . . , Am, in fact, for every x ∈ Q ∩ {ed = 0} and for every i = 1, . . . ,m the

set
∪i

j=1 Ij contains the intervals (gAj
(x) − h, gAj

(x) + h) for every j ≤ i. The choice
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I2

f1

f2

gAm

gA1

2h

I1

E

Figure 4.1.4

of wi guarantees that the measure of
∪m

i=1 ∂Ii is zero. Moreover I1, . . . , Im are disjoint
cot(α)-Lipschitz v-slabs of class C 1. Their intersection with

(−ε, tan(α) + ε)d−1 ×R

is contained in Qε. �
Remark 4.1.4. For a set which is invisible along a direction, the previous covering

can be done with slabs of arbitrarily small Lipschitz constant. In particular for 1-purely
unrectifiable sets, both the direction v of the slabs and the Lipschitz constant can be
choosen arbitrarily.

4.2. Non-differentiability outside of the decomposability bundle

Lemma 4.2.1. Let E ⊂ Rd, v(x) a vectorfield. Let f : Rd → R and fn → f uniformly.
For every x ∈ E let {in} and {jn} be two increasing sequences of indices and let yn and
zn be corresponding sequences of points, both converging to x (but they are never equal
to x). Assume there exist two real numbers α > β and an infinitesimal sequence εn such
that, for every n ∈ N, the following properties are satisfied:

(4.2.1)
fin(yn)− fin(x)

|yn − x|x
≥ α,

(where |y|x = |y| if ⟨y x⟩ ≥ 0, |y|x = −|y| otherwise);

(4.2.2)
fjn(zn)− fjn(x)

|zn − x|x
≤ β;

(4.2.3) yn − x and zn − x are parallel to v(x);

(4.2.4) ∥f − fin∥∞ ≤ εn|yn − x|;

(4.2.5) ∥f − fjn∥∞ ≤ εn|zn − x|.
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Then f is non-differentiable along v(x) for every x ∈ E. In particular f ′
+(x, v) ≥ α

and f ′
−(x, v) ≤ β

Proof. We compute the difference quotient along yn:

f(yn)− f(x)

|yn − x|x
=
f(yn)− f(x) + fin(yn)− fin(x)− fin(yn) + fin(x)

|yn − x|x
≥

fin(yn)− fin(x)

|yn − x|x
− 2

∥fin − f∥∞
|yn − x|

≥ α− 2
∥fin − f∥∞
|yn − x|

≥ α− 2εn.

Analogously, along zn:

f(zn)− f(x)

|zn − x|x
=
f(zn)− f(x) + fjn(zn)− fjn(x)− fjn(zn) + fjn(x)

|zn − x|x
≤

fjn(zn)− fjn(x)

|zn − x|x
+ 2

∥fjn − f∥∞
|zn − x|

≤ β + 2
∥fjn − f∥∞
|zn − x|

≤ β + 2εn.

�

We describe now a construction that will be useful in the sequel. Consider a vector v,
a closed box Q with one axis parallel to v and a Radon measure µ supported on a compact
set E ⊂ Q such that E is invisible along the cone C(v, π

2
− α). We want to construct a

2-Lipschitz function f : Rd → R having roughly speaking the following properties:

• f is supported on a small neighborhood of Q and ∥f∥∞ is small;
• The Lipschitz constant of f along v⊥ is small;
• f is C 1 on an open set A with “large” measure µ and ∇f is small on A;
• for a large set of points x ∈ A, the slope of f in the direction v at x is almost 1
at a certain scale and it is 0 at some smaller scale.

For simplicity we describe the costruction for Q = [0, 1]n and v = en. Fix ε > 0, λ > 0,
M ∈ N. Now consider the functions g, h, f and the set A defined as follows.

STEP 1: By Corollary 4.1.3, we can consider a covering

A1 = {I1, . . . , Ik}

of µ-a.e. point of E with a finite number of disjoint tan(α)-Lipschitz v-slabs of
class C 1, such that the sum of the thickness of the slabs in A1 is less than ε and
the slabs are contained in

Qε = (−ε, 1 + ε)d.

Denote

A1 =
∪
I∈A1

I.
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Define the function g̃ : Qε → R:

g̃(x) =

∫ 0

−∞
χA1(x+ tv) dt.

Notice that g̃ is of class C 1 everywhere on Qε, except on the boundary of the
slabs and it is tan(α)-Lipschitz along v⊥ on Qε. Moreover ∥g̃∥∞ ≤ ε. Extend
g̃ to a Lipschitz function g defined on Rd, which is null on the complement of
the set (Q)2ε. The extension can be done in such a way that ∥g∥∞ ≤ 2ε, g is
2-Lipschitz on Rd and of class C 1 everywhere except on the boundary of the
slabs.

I1

Q2
Q1

Q

Qε

g̃ = 0

I2

Figure 4.2.1

STEP 2 Take a finite number of disjoint closed boxes Q1, . . . , Qm with one axis parallel
to v, such that Qi ⊂ A1 and

µ

(
A1 \

m∪
i=1

Qi

)
≤ λ.
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Let ω be the smallest among the thickness of the slabs in A1 and d̃ the minimal
distance between two boxes Qi. Define

d = min

(
d̃, dist

(∪
i

Qi,R
d \ A1

))
; d := min

(
M−1w,

d

4
√
d

)
.

Consider for every i = 1, . . . ,m a covering

A i
2 = {I i1, . . . , I ik(i)}

of µ-a.e. point of Qi with a finite number of disjoint tan(α)-Lipschitz v-slabs of
class C 1, such that the sum of the thickness of the slabs in A i

2 is less than d.
This can be done in such a way that the slabs in A i

2 are contained in (Qi)d, (the
definition of (Qi)d is analogous to that of Qε).

For i = 1, . . . ,m define the set

A2
i =

k(i)∪
j=1

I ij

and on (Qi)d define the function

hi(x) =

∫ 0

−∞
χA2

i
(x+ tv) dt.

Note that, for every i, hi is of class C 1 everywhere on (Qi)d, except on the
boundary of the slabs and it is tan(α)-Lipschitz along v⊥ on (Qi)d. Moreover
∥hi∥∞ ≤ d and

dist((Qi)d, (Qj)d) ≥ 2d, for i ̸= j.

Define

A =
m∪
i=1

A2
i .

Define a function h̃ on
∪m

i=1(Qi)d:

h̃ =
m∑
i=1

χ(Qi)d
hi.

Extend h̃ to a function h defined on Rd, which is null on the complement of the
set
∪m1

i=1(Qi)2d.

The extension can be done in such a way that ∥h∥∞ ≤ 2d, h is 2-Lipschitz and
of class C 1 everywhere except on the boundary of the slabs. Notice that in
particular h is null on Rd \ A1.

STEP 3 Consider the function
f = g − h,

defined on Rd. The following properties hold:
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– On A, f is constant along v and it is (2 tan(α))-Lipschitz along v⊥, therefore
we have |∇f | ≤ 2 tan(α) on A;

– ∥f∥∞ ≤ 2ε+ 2d;
– ∥h∥∞ ≤ 2M−1w(I) for all I ∈ A1 (remember that ω(I) is the thickness of
the slab I);

– given I ∈ A1, we have g(y)−g(x)
y−x

= 1, for every x, y in I such that y − x is

parallel to v;

– given I ∈ A i
2 , we have f(y)−f(x)

y−x
= 0, for every x, y in I such that y − x is

parallel to v, for every i = 1, . . . ,m.

If a compact set is invisible along one direction, the previous construction can be
iterated countably many times and it gives the following result.

Theorem 4.2.2. Let E ⊂ Rd be a compact set which is invisible along the direction
v, let ε > 0 and let µ be a finite Radon measure supported on E. Then there exists a
Lipschitz function f : Rd → R which is not differentiable along the direction v at any
point in a set A with µ(Rd \ A) ≤ ε.

Proof. Fix

ε1 =
1

2
,

αi = 2−i,

Mi = 4i,

λi = ε4−i.

Consider a box Q containing E with one axis parallel to v Depending on parameters
ε1, α1,M1 and λ1, construct the functions g, h, f and the set A described in the previous
construction. Denote them by g1, h1, f1 and A1 respectively.

Take a finite number of disjoint closed boxes Q1, . . . , Qm, with one axis parallel to v,
such that Qi ⊂ A1 and

µ

(
A1 \

∪
i

Qi

)
≤ λ2.

Let w1 be the smallest thickness of the slabs whose union gives A1 and d̃1 the minimal
distance between two boxes Qi. Define

d1 = min

(
d̃1, dist

(∪
i

Qi,R
d \ A1

))
; d1 := min

(
(2M1)

−1w1,
d1

4
√
d

)
.

In every box Qi build the functions g2, h2, f2 depending on parameters

α = α2,

ε = ε2 = d1,

M =M2,

λ = λ2.
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Construct in the same way g3, h3, f3 . . . and consider the function

f =
∞∑
i=1

fi.

This sum is absolutely convergent. Let s2m =
∑m

i=1 fi and s2m+1 = s2m + gm+1.
The function f = limm→∞ sm is Lipschitz, because, for every i > 1, the support of fi is
contained in the set Ai−1, where si−1 is C 1 and satisfies

|∇si−1| ≤ 2
i−1∑
j=1

tan(αj).

So the Lipschitz constant of si does not exceed the quantity

max

(
Lip(si−1); Lip(fi) + 2

i−1∑
j=1

tan(αj)

)
≤ max

i
{Lip(fi)}+ 2

∞∑
j=1

tan(αj).

For every point x ∈ A =
∩

m∈NAm it is possible to apply Lemma 4.2.1 to the sequence
sn, with α = 1, β = 0, in = 2n + 1, jn = 2n, εn = 8M−1

n , zn any point in An such that
x − zn is parallel to v and |x − zn| ≥ 1

4
w(I) (where w(I) is the thickness of the slab

of An containing x) and yn is choosen analogously in the slab of the “next generation”.
Therefore it is possible to conclude that

1 = f+(x, v) ̸= f ′
−(x, v) = 0 for every x ∈ A.

�

Remark 4.2.3. Notice that for every m ∈ N it is possible to write:

f =
m∑
i=1

fi +
∞∑

i=m+1

fi.

Let rm = f − sm. Since sm is of class C 1 on the points of Am, then rm is such that
the difference between upper and lower derivative along v is 1 on the points of A and
it is (2

∑∞
i=m+1 αi)-Lipschitz along v⊥. This implies that rm (and therefore f) is non-

differentiable at the points of A along all the directions s such that the tangent of the
angle between s and v is less then (4

∑∞
i=m+1 αi)

−1.

For m sufficiently large, the angle can be chosen arbitrarily close to π
2
, so the following

improvement of Theorem 4.2.2 holds.

Theorem 4.2.4. Let E ⊂ Rd be a compact set which is invisible along the direction
v, let ε > 0 and let µ be a finite Radon measure supported on E. Then there exists a
Lipschitz function f : Rd → R which is not differentiable along any direction, except for
the directions orthogonal to v, at any point in a set A, with µ(Rd \ A) ≤ ε.



56 4. NON-DIFFERENTIABILITY RESULTS

Now, we are look for a further improvement. Precisely we wish to obtain a statement
in which the expression “at any point in a set A, with µ(Rd \ A) ≤ ε” is replaced by “at
µ-a.e. point”. We will use the following two general facts:

Lemma 4.2.5. Let f be an L-Lipschitz function defined on Rd and let K be a compact

set. Then there exists a function f̃ defined on Rd such that f̃ = f on K, f̃ is smooth on

Rd \K and 5L-Lipschitz on Rd. Moreover ∥f̃∥∞ ≤ 4∥f∥∞.

Proof. For Every i ∈ N, i ≥ 2 define

Vi :=

{
x ∈ Rd :

1

i+ 1
< dist(x,K) <

1

i− 1

}
.

Let λi be a partition of unity associated with Vi. It is possible to write

f = fχK +
∑
i

fλi.

Let ρ be a convolution kernel supported on B(0, 1) and for every ε > 0 let

ρε(x) = ε−dρ
(x
ε

)
.

For a sequence εi ↘ 0 we define ρi = ρεi and

f̃ = fχK +
∑
i

(fλi) ∗ ρi.

If εi is chosen sufficiently small, then we can assume that λi ∗ ρi is supported on Vi−1 ∪
Vi ∪ Vi+1, for every i. In particular for every point in Rd \ K f̃ is a sum of up to four

smooth functions, hence it is smooth and there holds ∥f̃∥∞ ≤ 4∥f∥∞. We are left with

the proof that f̃ is 5L-Lipschitz. We can write

f̃ = f +
∑
i

[(fλi) ∗ ρi − (fλi)],

hence we have

Df̃ = Df +
∑
i

[D(fλi) ∗ ρi −D(fλi)] =

= Df +
∑
i

[(Dfλi) ∗ ρi −Dfλi] +
∑
i

[(fDλi) ∗ ρi − fDλi].

Denoting

gi := fDλi; hi := (Dfλi) ∗ ρi,
we can write

Df̃ = DfχK +
∑
i

hi +
∑
i

(gi ∗ ρi − gi)
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Again, since given a point x we have hi = 0 for all but at most four indices i, then we
have

∥DfχK +
∑
i

hi∥∞ ≤ 4L.

Moreover, every gi is uniformly continuous, therefore for a choice of sufficiently small εi
we can obtain

∥(gi ∗ ρi − gi)∥∞ ≤ 1

4
L

for every i. Hence

∥
∑
i

hi +
∑
i

(gi ∗ ρi − gi)∥∞ ≤ L,

which completes the proof. �
Lemma 4.2.6. For every i ∈ N let fi be an Li-Lipschitz function on Rd, Assume that

there is an open set E such that every fi is differentiable on E and:

(4.2.6)
∞∑
i=1

Li ≤ +∞;

(4.2.7)
∞∑
i=1

∥fi∥∞ ≤ +∞.

Then the sum of the fi converges to a Lipschitz function f which is differentiable on
E.

Proof. Of course the sum converges to a Lipschitz function f because of (4.2.6) and
(4.2.7). We want to prove that f is differentiable on E. Let

sn =
n∑

i=1

fi.

Fix a point x ∈ E. Let

v(x) =
∞∑
i=1

∇fi(x).

Fix ε > 0. There exists m ∈ N such that Lip(sm−f) ≤ ε and ∥(sm−f)∥∞ ≤ ε. Moreover
there exists r0 > 0 such that:

|sm(x+ h)− sm(x)−∇sm(x)h| ≤ εh; whenever |h| ≤ r0.

For every |h| ≤ r0, we have:

|f(x+ h)− f(x)− v(x)h| ≤
|(f−sm)(x+h)−(f−sm)(x)|+ |∇sm(x)h−v(x)h|+ |sm(x+h)−sm(x)−∇sm(x)h| ≤ 3εh.

�
Finally, we get the following result.
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Theorem 4.2.7. Let E ⊂ Rd be a compact set which is invisible along the direction v
and let µ be a finite Radon measure supported on E. Then there exists a Lipschitz function
f : Rd → R which is not differentiable along any direction, except for the directions
orthogonal to v, at µ a.e point.

Proof. Consider the function f and the set A given by Theorem 4.2.4 applied to the
set E, consider a compact set K1 “slightly smaller” than A, and apply Lemma 4.2.5 to

the function f1 and the set K1, obtaining a function f̃1 which agrees with f1 on K1 and
is smooth on Rd \ K1. In the next step apply Theorem 4.2.4 to some compact set K2

disjoint from K1 and perform the same construction. Repeat the procedure countably
many times, choosing Ki disjoint in such a way that:

µ

(
Rd \

∪
i

Ki

)
= 0.

Apply Lemma 4.2.6 to the sequence 2−if̃i. For every i, the function∑
j ̸=i

2−j f̃j

is differentiable on Ki and therefore the function∑
i

2−if̃i

is a Lipschitz function (because f̃i are equi-Lipschitz) which is not differentiable on Ki

along any direction, except for the directions orthogonal to v, because so is f̃i. �
Remark 4.2.8. Actually we do not need that E is invisible in one direction to perform

this construction. In fact we only use that, at some small scale, the set E is locally invisible
along a cone with axis v and an angle arbitrarily close to π

2
. In the next theorem we will

prove that the procedure works even if the axis v of the cones is allowed to vary in a
continuous way.

In order to get the main non-differentiability result, we need the following lemma.

Lemma 4.2.9 (Rainwater Lemma 9.4.3 of [R]). Let Γ be a compact set of Radon
measures on Rd. If

λ⊥
∫
Γ

µ dP

for every probability P on Γ, then there exists an Fσ set E (countable union of closed
sets) such that λ is supported on E and µ(E) = 0 for all µ ∈ Γ.

Theorem 4.2.10. Let µ be a finite Radon measure on Rd. Let S be the decomposability
bundle of µ. Then there exists a Lipschitz function f : Rd → R such that, for µ-a.e. x,
f is not differentiable at x along any direction which is not in S(x).
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Proof. Using Lemma 4.2.5 and Lemma 4.2.6 as in the proof of Theorem 4.2.7, it is
sufficient to prove the theorem when K := supp(µ) is compact, dim(S⊥) = m is constant
on K and v1(x), . . . , vm(x) is an orthonormal basis of S⊥(x) and we can assume that the
vi’s are continuous on K for every i = 1, . . . ,m. In fact, once we can find, for every
compact set Ei of a disjoint sequence, a Lipschitz function which is non differentiable on
the set Ei, then the two lemmas allows to construct a Lipschitz function which is non
differentiable on the union

∪
i∈NEi.

Let I be the set

I = {(i, j) : i = 1, . . . , d; j ∈ N}.
Define a total order on I , given by:

(i1, j1) ≤ (i2, j2) ⇐⇒ (j1 < j2) or (j1 = j2 and i1 ≤ i2).

Fix an infinitesimal sequence (εI)I∈I .
Consider the family of closed boxes{

Q(1,1)
x,r

}
x∈K

with faces parallel to v1(x), . . . , vm(x) such that

⟨v1(x); t⟩ ≤ sin(ε(1,1))|t| for every t ∈ S(y), for every y ∈ K ∩Q(1,1)
x,r .

This is a fine covering of K (i.e. for every point of K there are arbitrarily small sets
containig it). Consider a finite disjoint subfamily of (closed) boxes

Q(1,1) =
{
Q

(1,1)
i

}m(1,1)

i=1

centered at some points x
(1,1)
i such that

µ

(
Rd \

∪
i

int(Q
(1,1)
i )

)
≤ ε1,1

We can apply Lemma 4.2.9 to the measure λ = µ int(Q
(1,1)
i ) and Γ is the compact set

of 1-rectifiable measures, with unit multiplicity, supported on some curve going in the
direction of the cone

C(v1(x
(1,1)
i ),

π

2
− ε(1,1)).

This implies that µ int(Q
(1,1)
i ) is supported on a set E

(1,1)
i which is invisible along the

cone C(v1(x
(1,1)
i ), π

2
− ε(1,1)). With the same technique used in the proof of Theorem 4.2.2

we can construct for every i = 1, . . . ,m(1,1) functions g
(1,1)
i , h

(1,1)
i , f

(1,1)
i such that f

(1,1)
i is

null outside a small box containing Q
(1,1)
i . In particular we can take the support of f

(1,1)
i

disjoint from the support of f
(1,1)
j whenever i ̸= j. Let A

(1,1)
i (i = 1, . . . ,m(1,1)) be set
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described in the discussion after Lemma 4.2.1 arising from the construction relative to

the box Q
(1,1)
i , and define

A(1,1) =

m(1,1)∪
i=1

A
(1,1)
i .

At the next step, indexed by (2, 1), consider the family of closed boxes{
Q(2,1)

x,r

}
x∈A(1,1)

contained in A(1,1), with faces parallel to v1(x), . . . , vm(x) such that

⟨v2(x); t⟩ ≤ sin(ε(2,1))|t| for every t ∈ S(y), for every y ∈ K ∩Q(2,1)
x,r .

Proceeding as in the proof of Theorem 4.2.2, choose a finite family of boxes

Q(2,1) =
{
Q

(2,1)
i

}m(2,1)

i=1

such that

µ

(
A(1,1) \

∪
i

int(Q
(2,1)
i )

)
≤ ε2,1

and build analogously the functions f
(2,1)
i with respect to these boxes (the functions g

(2,1)
i

and h
(2,1)
i are obtained by integrating along the vector v = v2(x

(2,1)
i )).

Repeat this construction for every index I ∈ I . Define the function

f =
∑
I∈I

f I .

The proof that f is Lipschitz is analogous to the proof given in Theorem 4.2.2. Let
sI =

∑
J≤I f

J . The function f = limI s
I exists (provided the sum of the εI ’s is small

enough) and it is Lipschitz. The proof of this and of the fact that, for every point in the
set
∩

I∈I AI , f is not differentiable along any direction which is not in S(x) is analogous
to the proof of Theorem 4.2.4. �

Summing up the two main results of this first part (Theorem 3.2.7 and Theorem
4.2.10), we have the following result:

Theorem 4.2.11. Given a Radon measure µ on Rd, there exists a Borel map

S : Rd →
d∪

k=0

Grk(R
d)

such that every Lipschitz function f : Rd → R is µ-a.e. differentiable along S. Moreover
there exists a Lipschitz function g : Rd → R such that, for µ-a.e. x, g is non-differentiable
at x along any direction which is not in S(x).
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4.3. A Baire proof

In this section we give a new proof of Theorem 4.2.10, inspired by the proof of Theorem
2.1.2. Here, the existence of the function f is obtained by a Baire argument. Hence,
Theorem 4.2.10 is in a certain sense improved: the family of functions which (on a “large”
set) enjoy the same non-differentiability property as f is residual in a suitable space of
Lipschitz functions. This result is contained in [AM].

Let µ be a finite Radon measure on Rd. Let S be the decomposability bundle of µ.
We may assume that K =supp(µ) is compact, hence without loss of generality, we assume
K ⊂ B1(0). Given ε > 0, there exists a compact set Kε with µ(R

d \Kε) ≤ ε, such that we
can find v1(x), . . . , vd(x) : B1(0) → Sd−1 continuous, satisfying the following properties:

• for µ-a.e x ∈ Kε, if dim(S(x)⊥) = k, then S(x)⊥ is generated by

{v1(x), . . . , vk(x)};

• for every x, (v1(x), . . . , vd(x)) is an orthonormal basis of Rd.

Define
(4.3.1)

X = {u : B1(0) → R
√
d−Lipschitz, s.t. |⟨∇u; vi⟩| ≤ 1 L d−a.e. for i = 1, . . . , d}.

Notice that X, endowed with the supremum distance, is a complete metric space.
First, we want to prove that piecewise affine functions satisfying a strict inequality in
(4.3.1) are dense in X.

Consider (e1, . . . , ed) the standard basis of Rd. Let G0 = {Tn}n∈N be a tiling of Rd

made by uniformly bounded simplexes, i.e. the elements of G0 have the properties:∪
n∈N

Ti = Rd and
◦
T n ∩

◦
Tm= ∅, for n ̸= m.

One can construct such a tiling by induction on d. For d = 2 one can firstly tile the unit
square with the four triangles obtained as the convex envelop of one side of the square
and the baricenter of the square. Then it is possible to extend this tiling on R2 using the
fact that the space can be tiled by squares. For d > 2 one can tile the unit cube of Rd

with the simplexes obtained as the convex envelop of the baricenter of the cube and one
of the (d− 1)-dimensional simplexes that by induction can be used to tile the faces of the
d-dimensional cube.

For every n ∈ N, let Gn = {Tn,m}m∈N be a tiling of Rd made by uniformly bounded
simplexes such that the elements of Gn are contained in the elements of Gn−1 and every
element of Gn is contained in a cube of diameter 2−n. Let Gn be the set

Gn =
∪
m

∂Tn,m
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and let

G =
∪
n∈N

Gn.

It is easy to see that there exists v ∈ Rd such that µ(G + v) = 0. In fact, assume by
contraddiction that for every v ∈ Rd there holds µ(G+v) > 0. Since G has only countably
many faces, one can find an uncountable set {vt}t∈R with vt ∈ Rd such that for every
choice of distinct v1, . . . , vd+1 ∈ {vt}t∈R, there holds

d+1∩
i=1

G+ vi = ∅.

This means that µ(G + v) is positive for at most only countably many v ∈ {vt}t∈R. For
simplicity, from now on we assume v = 0.

Lemma 4.3.1. [AM] For every u ∈ X there is a sequence of functions (un)n∈N ⊂ X
uniformly converging to u, such that un is affine on every Tn,m. Moreover un satisfies

(4.3.2) |⟨∇un; vi⟩| ≤ 1− 3

n
L d−a.e. for every i = 1, . . . , d.

Proof. First we prove that smooth functions satisfying (4.3.2) are dense in X. Since
vi are continuous on K, then for every n ∈ N we can find ρn > 0 such that

|vi(x)− vi(y)| ≤
1

n
, whenever |y − x| ≤ ρn, for every i = 1, . . . , d.

Let ϕ be a convolution kernel supported on B1(0) and define

ϕn(x) = ρ−d
n ϕ(ρnx).

Now take u ∈ X. The functions u ∗ ϕn uniformly converge to u as n→ ∞ and satisfy

⟨∇(u ∗ ϕn); vi⟩ ≤ 1 +
1

n
, for every i = 1, . . . , d.

Therefore the functions

ũn =

(
1− 4

n

)
u ∗ ϕn

uniformly converge to u as n→ ∞ and satisfy

⟨∇ũn; vi⟩ ≤ 1− 3

n
. for every i = 1, . . . , d.

Now, for every n ∈ N it is sufficient to consider the function un which is affine on each
simplex Tn,m and whose values on Tn,m are determined by the values of ũn at the vertices
of Tn,m. �
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Theorem 4.3.2. [AM] Let µ be a finite Radon measure on Rd. Let S be the decom-
posability bundle of µ. Fix ε > 0. Then there exists a set A with µ(Rd \A) ≤ ε, such that
the following condition holds. Let F be the set of all Lipschitz functions f ∈ X which are
non-differentiable at every x ∈ A, along the directions which are not in S(x). Then F is
residual in X.

Remark 4.3.3. Since we are saying that the family F is residual, one may wonder
why we are not taking a countable intersection of families Fi with the corresponding εi
going to zero to obtain a residual subset of X where the non-differentiablity property
holds µ-a.e. The point is that the complete metric space X itself depend on the ε used
in the theorem above. And the reason is that we need to fix a continuous base of the
decomposability bundle S. To assume this continuity we are using Lusin theorem, and
therefore we need to modify the bundle on a small set.

proof of Theorem 4.3.2. Thanks to the observation made at the beginning of this
section, here we can assume that d− k = dim(S) is constant and that v1(x), . . . , vk(x) is
a continuous orthonormal basis of S(x)⊥.
Take a sequence (εn)n∈N such that ∑

n∈N

kεn ≤ ε.

For every n ∈ N and for every i = 1, . . . , k, let

Q1, . . . , Qmn

be disjoint, closed cubes, centered at

x1, . . . , xmn

with side length al (l = 1, . . . ,mn) and contained in Rd \Gn such that:

• the edges of Ql are parallel to vi(xl) for l = 1, . . . ,mn;
• |⟨vi(y); vi(xl)⟩| ≥ cos(1/n) for every y ∈ 2Ql.

• µ(Rd \
∪k

l=1Ql) ≤ εn/2;

Denote
d̃ = min

l ̸=p
{dist(Ql, Qp)}.

and
d = d−1/2 min{min

l
{al}, d̃, dist(Gn,

∪
l

Ql)}.

For every l, use Corollary 4.1.3 and Lemma 4.2.9 to cover µ-a.e x ∈ Ql with a finite
number of (open) (tan(1/n))-Lipschitz vi(xl)-slabs of class C 1 supported in (Ql)d/4 and

total thickness less than d/16n. The choice of d/4 is due to the fact that in the sequel
we will have a function defined on the boxes (Ql)d/4 and one defined outside of the boxes

(Ql)d/2 and we want to use the gap of d/4 to have a continuous extension. Notice that the

boxes (Ql)d/2 are pairwise disjoint and also disjoint from the boundary of the simplexes, so
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Gn

Ql

xl

vi(xl)

Figure 4.3.1

this operation can be done independently on each box. The choice of the total thickness
d/16n will guarantee that the gradient of the extension remains sufficiently small.
Let Al be the family of the slabs I in (Ql)d/4 and define

Al =
∪
I∈Al

I.

Lastly, consider a compact set Kn,i such that µ(Rd \Kn,i) ≤ εn and Kn,i is a subset of(
mn∪
l=1

Al

)
∩

(
mn∪
l=1

Ql

)
.

Remember that the index i individuates one of the k components of S⊥. Some ideas for
the construction of the sets Kn,i are illustrated in Figure 4.3.1.

Let Un,i be the set of all u ∈ X such that the following property holds.

• For every x ∈ Kn,i there exists rx with |rx| ≤ 1
n
such that for every z ∈ Sd−1

with

⟨vi(x); z⟩ ≥ sin

(
2

n

)
there holds

u
(
x+ zrx⟨z; vi(x)⟩−1

)
− u(x) >

1

2
rx.
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In other words, for every element u of Un,i, for every point x ∈ Kn,i there is a “small”
scale at which you can see at least slope 1

2
along the direction vi(x) and an analogous

inequality holds for all the directions z in a “large” cone with axis vi(x) (notice that the
larger is the angle between z and vi, the smaller is the slope).
Denote by Vn,i the set defined analogously to Un,i, except that the inequality

u
(
x+ zrx⟨z; vi(x)⟩−1

)
− u(x) >

1

2
rx

is replaced by

u
(
x+ zrx⟨z; vi(x)⟩−1

)
− u(x) < −1

2
rx.

Denote

U =
d∩

i=1

∩
j∈N

∪
n≥j

Un,i, V =
d∩

i=1

∩
j∈N

∪
n≥j

Vn,i

and

A =
∩
n∈N

d∩
i=1

Kn,i.

It is easy to see that every (Lipschitz) function in U ∩ V is non-differentiable at µ-a.e
x ∈ A, along the directions which are not in S(x). To prove that U ∩ V is residual, we
need to show that, for every i = 1, . . . , n and for every n ∈ N, Un,i and Vn,i are open and
that

∪
n≥j Un,i and

∪
n≥j Vn,i are dense for every i = 1, . . . , d and for every j.

We prove that Un,i is open. The proof for Vn,i is analogous. Denote

r0 = min{rx : x ∈ Kn,i}.

We have r0 > 0 because Kn,i is compact. Denote also

δ0 = min
x∈Kn,i

{
r−1
x |u

(
x+ zrx⟨z; vi(x)⟩−1

)
− u(x)| : z ∈ Sd−1 with ⟨vi(x); z⟩ ≥ sin

(
2

n

)}
.

We have δ0 >
1
2
. It is easy to see that every f ∈ X satisfying

∥f − u∥∞ <
1

2
r0

(
δ0 −

1

2

)
belongs to Un,i.

To prove that
∪

n≥j Un,i is dense take u ∈ X and fix n ∈ N. Choose a function un0

given by Lemma 4.3.1 such that n0 ≥ n and ∥u − un0∥∞ ≤ 1/n. Let Q1, . . . , Qm be the
boxes containing Kn0,i. For every l define on the box (Ql)d/4 the function

ûl(x) = un0(x− gl(x)) + gl(x),
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where

gl(x) =

(
1− 1

2n0

)∫ 0

−∞
χAl

(x+ tui(xl))

and Al is the union of the slabs in (Ql)d/4. It is easy to see that

∥ûl − un0 (Ql)d/4∥ ≤ 2d/16n0 = d/8n0.

Moreover ûl satisfies

⟨∇ûl; vj⟩ ≤ 1− 1

n0

, L d−a.e.

for every j = 1, . . . k. It is possible to extend ûl to a function ũl defined on (Ql)d/2 in such

a way that ∥ũl − u∥∞ ≤ 2/n, ũl = un0 on the boundary of (Ql)d/2 and ũl satisfies

|⟨∇ũl; vj⟩| ≤ 1 L d−a.e. for every j = 1, . . . , k.

The function ũ obtained repeating the same procedure for every l, extended to the whole
space in such a way that it agrees with un0 outside of all the enlarged boxes, belongs to
Un0,i and satisfies ∥ũ− u∥∞ ≤ 2/n. �
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Steiner tree problem revisited through
rectifiable G-currents





CHAPTER 5

Rectifiable currents over a coefficient group

Introduction to part 2

The Steiner tree problem is a classical minimization problem in Calculus of Variations:
given n distinct points p1, . . . , pn in Rd, find the shortest connected set containing them.
Some examples are given in Figure 5.0.1.

p4

p3

p1

p2

O

p1

p2

p3 O

Figure 5.0.1. Solutions for the vertices of an equilateral triangle and a square

InR2 the problem is completely solved and there exists a wide literature on the subject,
mainly devoted to improve the efficiency of algorythms for the construction of solutions:
see, for instance, [GP] and [IT] for a survey of the problem. The recent papers [PS] and
[PU] witness the current studies on the problem and its generalizations.

Our aim is to understand Steiner tree problem as a mass minimization problem, suit-
ably replacing connected sets by integral 1-currents. Here the equivalence simply means
that it is easily to pass from the solution of one problem to the other and viceversa. In
the framework of currents, we are allowed to exploit techniques and tools arising from
Calculus of Variations and Geometric Measure Theory. The results of this part of the
thesis are contained in [MM].
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The next examples show that classical polyhedral chains (and integral 1-currents, as
well) are not the right environment.1

Firstly one should replace the initial data of the Steiner problem with the boundary
assigned in the mass minimization problem: the points p1, . . . , pn must be substituted
with the integral polyhedral 0-chain supported on p1, . . . , pn, with some multiplicities
m1, . . . ,mn. Notice that m1 + . . .+mn = 0 is a necessary condition for the 0-chain to be
the boundary of a compactly supported 1-chain.
In the example with the vertices of the triangle, see Figure 5.0.1, we have to break the
symmetry at last, because m3 = −(m1 +m2), then we get the minimizer in Figure 5.0.2,
not even close to the one in Figure 5.0.1.
In the second example, again from Figure 5.0.1, even though all multiplicities in the
boundary have modulus 1, we get the “wrong” minimizer: its support is not connected,
as we can see in Figure 5.0.2.

O O

1 1 1

−1 −1

1

1

−2

1

Figure 5.0.2. Solutions for the mass minimization problems among poly-
hedral chains with integer coefficients

These examples show that Z is not the right group of coefficients.
In Chapter 5 we introduce currents with coefficient in a normed abelian group G.

Currents with coefficients in a group were introduced by W. Fleming: there is a very
interesting literature starting from the seminal paper [Fl], passing through the work of
B. White in [W3] and [W2] and proceeding, more recently, in [DeHa] and in [A].

In Chapter 6 we recast Steiner problem in terms of mass minimization over currents
with coefficients in a discrete group G, chosen only on the basis of the number of points.
This construction provides us a method to pass from a mass minimizer to a Steiner
solution and viceversa.

1For the sake of simlicity, in this introduction we will talk about 1-dimensional chains (with coefficients
in Z) or polyhedral integral currents, instead of general integral currents
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Once we have established a way to deal with the Steiner tree problem through currents
with coefficients in a group, we focus on calibrations as a sufficient condition for the
minimality (see Chapter 7).
Classically a calibration ω associated with a given oriented k-submanifold S ⊂ Rd is a
unit closed k-form taking value 1 on the tangent space of S. The existence of a calibration
guarantees the minimality of S among oriented submanifolds with the same boundary ∂S.
In fact

vol(S) =

∫
S

ω =

∫
S′
ω ≤ vol(S ′)

for any submanifold S ′ sharing the same boundary of S, thanks to the assumptions on ω
and Stokes Theorem.

In order to define calibrations in the G-currents framework it is convenient to view
currents as linear functionals on forms, which is not possible in the usual setting of
currents with coefficints in groups. This motivates the preliminary work in Chapter 5,
where we embed the group G in a normed linear space E and we construct the currents
with coefficients in E in the classical way.
In Definition 7.1.5 the notion of calibration is possibly weakened in order to include
piecewise smooth forms, which appear in Examples 7.1.9 and 7.1.10, where we exhibit
calibrations for the problem in Figure 5.0.1 and for the Steiner tree problem on the
vertices of a regular hexagon plus the center. It is worth to underline here that even
though we made explicit computations only on 2-dimensional configurations, the theory
works for every dimension. Since the existence of a calibration is a sufficient condition for
a manifold to be a minimizer, then it is natural to wonder whether this condition is also
necessary or not.
Let us clarify, firstly, that a smooth (or piecewise smooth, like in Definition 7.1.7) cali-
bration cannot always exist, nevertheless, we can still hope for a “weak” calibration, like
a differential form with bounded measurable coefficients.
In Section 7.2 we discuss a strategy in order to get the existence of such a weak calibration.
Thanks to a duality argument of H. Federer, [Fe2], a weak calibration exists for mass-
minimizing normal currents and, in our setting, for mass-minimizing normal currents with
coefficients in the normed vector space E.
Therefore an equivalence principle between minima among normal and integral 1-currents
with coefficients in E and G, respectively, is sufficient to conclude. Theorem 7.2.4 guar-
antees the equivalence between minima in the case of integral 1-currents, hence the weak
calibration always exists. The proof of this result is subject to the validity of the homo-
geneity property in Remark 7.2.5. Exemple 7.2.6 shows that for 1-dimensional G-currents
an interesting new phenomenon appears: in fact, at least in a non-euclidean setting, the
homogeneity property does not hold. It seems that in this case the problem of the equiv-
alence of minima could depend on some property of the ambient space. The problem of
the existence of a calibration in the Euclidean space is still open.
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In the next sections of this chapter we provide definitions for currents over a coefficient
group, with some basic examples.

5.1. E∗-valued differential forms

Fix an open set U ⊂ Rd and a normed vector space (E, ∥ · ∥E) with finite dimension
m ≥ 1. We will denote by (E∗, ∥ · ∥E∗) its dual space endowed with the dual norm

∥f∥E∗ := sup
∥v∥E≤1

⟨f ; v⟩ .

Definition 5.1.1. We say that a map

ω : Λk(R
d)× E → R

is a E∗-valued k-covector in Rd if

(i) ∀ τ ∈ Λk(R
d), ω(τ, ·) ∈ E∗, that is ω(τ, ·) : E → R is a linear function.

(ii) ∀ v ∈ E, ω(·, v) : Λk(R
d) → R is a (classical) k-covector.

Sometimes we will use ⟨ω; τ, v⟩ instead of ω(τ, v), in order to simplify the notation.
The space of E∗-valued k-covectors in Rd is denoted by Λk

E(R
d) and it is endowed with

the comass norm

(5.1.1) ∥ω∥ := sup {∥ω(τ, ·)∥E∗ : |τ | ≤ 1, τ simple} .

Remark 5.1.2. Fix an orthonormal system of coordinates in Rd, (e1, . . . , ed); the
corresponding dual base in (Rd)∗ is (dx1, . . . , dxd). Consider a complete biorthonormal
system, i.e. a pair

(v1, . . . , vm) ∈ Em; (w1, . . . , wm) ⊂ (E∗)m

such that ∥vi∥E = 1, ∥wi∥E∗ = 1 and ⟨wi; vj⟩ = δij. Given an E∗-valued k-covector ω, we
denote

ωj := ω(·, vj).
For each j ∈ {1, . . . ,m}, ωj is a k-covector in the usual sense. Hence the biorthonormal
system (v1, . . . , vm), (w1, . . . , wm) allows to write ω in “components” ω = (ω1, . . . , ωm),
in fact we have

ω(τ, v) =
m∑
j=1

⟨ωj; τ⟩⟨wj; v⟩ .

In particular ωj admits the usual representation

ωj =
∑

1≤i1<...<ik≤d

aji1...ikdxi1 ∧ . . . ∧ dxik j = 1, . . . ,m.

Definition 5.1.3. An E∗-valued differential k-form in U ⊂ Rd, or just a k-form when
it is clear which group we are referring to, is a map

ω : U → Λk
E(R

d);
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we say that ω is C ∞-regular if every component ωj is so (see Remark 5.1.2). We denote by
C ∞

c (U,Λk
E(R

d)) the vector space of C ∞-regular E∗-valued k-forms with compact support
in U .

We are mainly interested in E∗-valued 1-forms, nevertheless we analyze k-forms in
wider generality, in order to ease other definitions, such as the differential of an E∗-valued
form and the boundary of an E-current.

Definition 5.1.4. We define the differential dω of a C ∞ regular E∗-valued k-form ω
by components:

dωj = d(ωj) : U × Tk+1(R
d) → R j = 1, . . . ,m ,

Moreover, C ∞
c (U,Λ1

E(R
d)) has a norm, denoted by ∥ · ∥, given by the supremum of the

comass norm of the form defined in (5.1.1). Hence we mean

(5.1.2) ∥ω∥ := sup
x∈U

∥ω(x)∥ .

5.2. E-currents

Definition 5.2.1. A k-dimensional current T in U ⊂ Rd, with coefficients in E, or
just an E-current when there is no doubt on the dimension, is a linear and continuous
function

T : C ∞
c (U,Λk

E(R
d)) −→ R ,

where the continuity is meant with respect to the locally convex topology on the space of
E∗-valued k-forms with compact support in U , built on the framework of the topology on
C ∞

c (Rn), with respect to which distributions are dual. This defines the weak∗ topology
on the space of k-dimensional E-currents. Convergence in this topology is equivalent to
the convergence of all the “components” in the space of classical k-currents, by which we
mean the following. We define for every k-dimensional E-current T their components T j,
for j = 1, . . .m, and we will write

T = (T 1, . . . , Tm),

denoting

⟨T j;φ⟩ := ⟨T ; φ̃j⟩ ,
for every (classical) compactly supported differential k-form φ on Rd. Here φ̃j denotes
the E∗-valued differential k-form on Rd such that

φ̃j(·, vj) = φ,(5.2.1)

φ̃j(·, vi) = 0 for i ̸= j .(5.2.2)

It turns out that a sequence of k-dimensional E-currents Th weakly∗ converges to an E-
current T (in which case we write Th

∗
⇀ T ) if and only if the sequence of the components

T j
h converge to T j in the space of classical k-currents, for j = 1, . . . ,m.
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Definition 5.2.2. For a k-current T over E we define the boundary operator

⟨∂T ;φ⟩ := ⟨T ; dφ⟩ ∀φ = (φ1, . . . , φm) ∈ C ∞
c (U,Λk−1

E (Rd))

and the mass

M(T ) := sup
∥ω∥≤1

⟨T ;ω⟩.

As one can expect, the boundary ∂(T j) of every component T j is the relative compo-
nent (∂T )jof the boundary ∂T .

Definition 5.2.3. A k-dimensional normal E-current in U ⊂ Rd is an E-current T
with M(T ) < +∞ and M(∂T ) < +∞. Thanks to the Riesz Theorem, T admits the
following representation:

⟨T ;ω⟩ =
∫
U

⟨ω(x); τ(x), v(x)⟩ dµT , ∀ω ∈ C ∞
c (U,Λk−1

E (Rd)) .

where µT is a Radon measure on U and v : U → E is summable with respect to µT and
|τ | = 1, µT -a.e. An analogous representation holds for the boundary ∂T .

Definition 5.2.4. A rectifiable k-current T in U ⊂ Rd, over E, or a rectifiable E-
current is an E-current admitting the following representation:

⟨T ;ω⟩ :=
∫
Σ

⟨ω(x); τ(x), θ(x)⟩ dH k(x), ∀ω ∈ C ∞(Rd,Λk
E(R

d))

where Σ is an H k-rectifiable set contained in U , τ(x) ∈ TxΣ with |τ(x)| = 1 for H k-a.e.
x and θ ∈ L1(U ;E). We will refer to such a current as T = T (Σ, τ, θ).
If B is a Borel set and T (Σ, τ, θ) is a rectifiable E-current, we denote by T B the current
T (Σ ∩B, τ, θ).

Consider now a discrete subgroup G < E, endowed with the restriction of the norm
∥ · ∥E. If the multiplicity θ takes only values in G, and if the same representation holds
for ∂T , we call T a rectifiable G-current.
Pay attention to the fact that, in the framework of currents over the coefficient group
E, rectifiable E-currents play the role of (classical) rectifiable current, while rectifiable
G-currents correspond to (classical) integral currents. Actually this correspondence is an
equality, when E is the group R (with the euclidean norm) and G is Z.

Example 5.2.5. Let E = Rd and let G be the additive subgroup generated by m
elements g1, . . . , gm.
Given m + 1 points p1, . . . , pm, pm+1 ∈ R2, consider the cone C over (p1, . . . , pm) with
respect to pm+1: if Σr is the oriented segment from pm+1 to pr, r = 1, . . . ,m, then

C =
m∪
r=1

Σr .
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We can define a rectifiable G-current supported on C as

⟨T ;ω⟩ :=
m∑
r=1

∫
Σr

⟨ω(x); τr(x), gr⟩ dH 1(x),

where τr is the unit tangent vector to Σr, pointing towards pr.
It is easy to see that, denoting gm+1 = −(g1+ . . .+gm) we can represent the 0-dimensional
rectifiable G-current ∂T with the points p1, . . . , pm+1 with multiplicities g1, . . . , gm+1, re-
spectively. From now on we will denote such a current as g1δp1 + . . .+ gm+1δpm+1 .

Proposition 5.2.6. Let T = T (Σ, τ, θ) be a rectifiable E-current, then

M(T ) =

∫
Σ

∥θ(x)∥G dH 1(x) .

Since the mass is lower semicontinuous, we can apply the direct method of Calculus
of Variations for the existence of minimizers with given boundary, once we provide the
following compactness result. Here we assume for simplicity that G is the subgroup of E
generated by v1, . . . , vm. A similar argument works for every discrete subgroup G.

Theorem 5.2.7. [MM] Let (Th)h≥1 be a sequence of rectifiable G-currents such that
there exists a positive finite constant C satisfying

M(Th) +M(∂Th) ≤ C for every h ≥ 1 .

Then there exists a subsequence (Thi
)i≥1 and a rectifiable G-current T such that

Thi

∗
⇀ T.

Proof. The statement of the theorem can be proved component by component.
In fact, let T 1

h , . . . , T
m
h be the components of Th. Since (v1, . . . , vm), (w1, . . . , wm) is a

biorthonormal sistem, we have

M(T j
h) +M(∂T j

h) ≤ M(Th) +M(∂Th) ≤ C ,

hence, (since we are dealing with only finitely many components) up to subsequences,(
T j
h

)
h≥1

weakly∗ converges to some integral current T j for every j = 1, . . . ,m. Then,

denoting by T the rectifiable G-current, whose components are T 1, . . . , Tm, there exists a
subsequence (Thi

)i≥1 such that

Thi

∗
⇀ T.

�





CHAPTER 6

Steiner tree Problem revisited

In this chapter we establish the equivalence between the Steiner tree problem and a
mass minimization problem in a family of G-currents. We first need to choose the right
group of coefficients G. Once we fix the n points in the Steiner problem, we look for a
subgroup (G, ∥ · ∥G), of a normed vector space (E, ∥ · ∥E), (where ∥ · ∥G is the restriction
to G of the norm ∥ · ∥E) satisfying the following properties:

(P1) there exist g1, . . . , gn−1 ∈ G and h1, . . . , hn−1 ∈ E∗ such that (g1, . . . , gn−1),
(h1, . . . , hn−1) is a complete biorthonormal system for E, and G is additively
generated by g1, . . . , gn−1;

(P2) ∥gi1 + . . .+ gik∥G = 1 whenever 1 ≤ i1 < . . . < ik ≤ n− 1;
(P3) ∥g∥G ≥ 1 for every g ∈ G \ {0}.

For the moment we will assume the existence of G and E. The proof of their existence
and an explicit representation, useful for the computations, will be given later in this
chapter.

The next lemma has a fundamental role: through it, we can give a nice structure
of 1-dimensional rectifiable G-current to every suitable competitor for the Steiner tree
problem. From now on we will denote gn = −(g1 + . . .+ gn−1).

Lemma 6.0.8. [MM] Let B be a connected 1-rectifiable set with finite length in Rd,
containing p1, . . . , pn. Then there exists a connected set B′ ⊂ B containing p1, . . . , pn and
a 1-dimensional rectifiable G-current TB′ = T (B′, τ, θ), such that

(i) ∥θ(x)∥E = 1 for a.e. x ∈ B′,
(ii) ∂TB′ is the 0-dimensional G-current g1δp1 + . . .+ gnδpn

Proof. Since B is a connected set of finite length, B is connected by paths of finite length
(see Lemma 3.12 of [Fa]).
Consider a path B1 contained in B going from pn to p1. In analogy with Example 5.2.5,
associate it with a current T1 with constant multiplicity g1 and orientation going from pn
to p1.
Repeat this procedure keeping the starting point pn and replacing at each step p1 with
p2, . . . , pn−1.
The set B′ = B1 ∪ . . . ∪ Bn−1 ⊂ B is a connected set containing p1, . . . , pn and the 1-
dimensional rectifiable G-current T = T1 + . . . + Tn−1 satisfies the requirements of the
lemma, in particular condition (i) comes from (P2). �
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Via the next lemma, we can say that mass minimizers for our problem have connected
support.

Lemma 6.0.9. [MM] Let T be a 1-dimensional rectifiable G-current, such that ∂T is

the 0-current g1δp1 + . . .+ gnδpn . Then there exists a rectifiable G-current T̃ = T (Σ̃, τ̃ , θ̃)
such that

(i) ∂T̃ = ∂T = g1δp1 + . . .+ gnδpn ;

(ii) M(T̃ ) ≤ M(T ) and the equality holds only if T̃ = T ;

(iii) The support of T̃ is a connected 1-rectifiable set containing {p1, . . . , pn} and it
is contained in the support of T ;

(iv) H 1(supp(T̃ ) \ Σ̃) = 0.

Proof. Let T j = T (Σj, τ j, θj) be the components of T , for j = 1, . . . , n− 1 (with respect
to the biorthonormal system (g1, . . . , gn−1), (h1, . . . , hn−1))

For every j, we can use Proposition 1.3.16 and write

T j =

Kj∑
k=1

T j
k +

∑
ℓ≥1

Cj
ℓ ,

where T j
k and Cj

ℓ are integral 1-currents associated with Lipschitz curves, with ∂Cj
ℓ = 0

for every ℓ ≥ 1. Notice that, for every j = 1, . . . , n − 1, if θjk denotes the multiplicity of

T j
k , then we have

(6.0.3)

Kj∑
k=1

∣∣θjk∣∣ ≤ |θj| H 1−a.e. on supp(T j).

This is because in the decomposition of Proposition 1.3.16 there is no loss of mass,
(i.e.

M(T j) =

Kj∑
k=1

M(T j
k ) +

∑
ℓ≥1

M(Cj
ℓ ),

for every j).

We choose T̃ the rectifiable G-current whose components are

T̃ j :=

Kj∑
k=1

T j
k .

Again, because of the conservation of the mass in the decomposition of Proposition 1.3.16,

we have supp(T̃ ) ⊂ supp(T ) (the cyclic part of T j never cancels the acyclic one). Property
(i) is easy to check. Property (ii) is a consequence of (6.0.3) and of the following property

of the norm ∥ · ∥G. If θ =
∑n−1

j=1 θ
jgj and θ̃ =

∑n−1
j=1 θ̃

jgj with 0 ≤ θ̃j ≤ θj if θj ≥ 0

and 0 ≥ θ̃j ≥ θj if θj ≤ 0, then ∥θ̃∥G ≤ ∥θ∥G (this property follows from the fact that
(g1, . . . , gn−1), (h1, . . . , hn−1) is a complete biorthonormal system for E). Property (iv) is
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also easy to check, because the corresponding property holds for every T j
k and therefore

for every component T̃ j. It remains to prove property (iii). By construction T̃ is a finite
sum of oriented curves with multiplicities; since we are considering curves with ending

points (closed sets), supp(T̃ ) has a finite number of (closed) connected components far

apart: consider S a connected component of supp(T̃ ) and the related restriction T̃ S.

We notice that S has positive distance from any other connected component of supp(T̃ ).
Assume that S contains a non-empty subset of {p1, . . . , pn}, let us relabel the points such
that S ⊃ {p1, . . . , pñ}, with 1 ≤ ñ ≤ n, and pj /∈ S if j > ñ. Thus ∂(T̃ S) is the
0-current associated with p1, . . . , pñ with multiplicities g1, . . . , gñ.
Assume by contradiction that ñ < n. Then we can choose an element w ∈ E∗ such that
w(gj) = 1 for j = 1, . . . , ñ and take φ ∈ C ∞

c (Rd,Λ1
E(R

d)) a smooth E∗-valued 1-form
such that

φ ≡ w on S

φ ≡ 0 on supp(T̃ ) \ S .

Then 0 = T̃ S(dφ) = ∂(T̃ S)(φ) = ñ, which is clearly a contradiction.

Therefore there is no boundary for the restriction of T̃ to every connected component of

its support, but one. Possibly replacing T̃ by its restriction to this non-trivial connected
component, we get the thesis. �

Before stating the main theorem, let us point out that the existence of a solution
to the mass minimization problem is a consequence of the direct method of Calculus of
Variations.

Theorem 6.0.10. [MM] Assume that T0 = T (Σ0, τ0, θ0) is a mass-minimizer among
rectifiable 1-dimensional G-currents with boundary

δ0 = g1δp1 + . . .+ gnδpn .

Then S0 = supp(T0) is a solution of the Steiner tree problem. Conversely, given a set C
which is a solution of the Steiner problem for the points p1, . . . , pn, there exists a canonical
1-dimensional G-current, supported on C, minimizing the mass among the currents with
boundary δ0.

Proof. The existence of T0 is a direct consequence of Theorem 5.2.7. Moreover, since

T0 is a mass minimizer, then it must coincide with the current T̃0 given by Lemma 6.0.9.
In particular, Lemma 6.0.9 guarantees that S0 is a connected set. Let S be a competitor
for the Steiner tree problem and let S ′ and TS′ be the connected set and the rectifiable
1-current given by Lemma 6.0.8, respectively.
Hence we have

H 1(S) ≥ H 1(S ′)
(i)
= M(TS′)

(ii)

≥ M(T0)
(iii)

≥ H 1(Σ0)
(iv)
= H 1(S0) ,

in fact



80 6. STEINER TREE PROBLEM REVISITED

(i) thanks to the second property of Lemma 6.0.8 and Proposition 5.2.6, we obtain

M(TS′) =

∫
S′
∥θS′(x)∥G dH 1(x) = H 1(S ′) ;

(ii) we assumed that T0 is a mass-minimizer;
(iii) from property (P3), we get

M(T0) =

∫
Σ0

∥θ0(x)∥G dH 1(x) ≥
∫
Σ0

1 dH 1(x) = H 1(Σ0) .

(iv) is property (iv) in Lemma 6.0.9.

To prove the second part of the Theorem, apply Lemma 6.0.8 to the set C. Notice
that with the procedure described in the lemma, the rectifiable G-current TC′ is uniquely
determined, because for every point pi, C contains exactly one path from pn to pi, in
fact it is well known that solutions of the Steiner tree problem cannot contain cycles. By
Lemma 6.0.9 TC′ is a solution of the mass minimization problem. �

Eventually, we give an explicit representation for G and E. Let e1, . . . , en be the
standard basis of Rn; we consider on Rn the seminorm

∥u∥⋆ := max
i=1,...,n

u · ei − min
i=1,...,n

u · ei .

We now take the quotient

E :=
Rn

Span{e1 + . . .+ en}
,

denoting with π the standard projection from Rn to E. According to the relation in the
quotient, we get [(u1, . . . , un)] = [(u1 + c, . . . , un + c)], for every c ∈ R and for every
u = (u1, . . . , un) ∈ Rn (here [u] denotes the element of the quotient associated with the
vector u ∈ Rn).
Since ∥u∥∗ = ∥u + v∥∗ for every u ∈ Rn, v ∈ Span{e1 + . . . + en}, then it is well defined
the corresponding seminorm ∥ · ∥E induced on E and it is actually a norm satisfying

∥v∥E := inf
π(u)=v

∥u∥⋆ = ∥u∥⋆ for any u ∈ π−1(v) .

For the sake of completeness, we remark that, with this notation, the dual space E∗ can be
represented as E∗ = {(z1, . . . , zn) ∈ Rn :

∑n
i=1 zi = 0} and its dual norm ∥ · ∥E∗ coincides

with 1
2
∥ · ∥1. In fact, for every [u] ∈ E with ∥[u]∥E = 1 we can choose a representative u,

such that |ui| ≤ 1
2
, i = 1, . . . , n and then

∥z∥E∗ = sup
∥[u]∥E=1

n∑
i=1

ziui =
1

2

n∑
i=1

|zi| .
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The choice of E as a quotient is motivated by the idea that the sum of the coefficients
ei must be zero, for boundary reasons. Anyway, we find that a slightly different repre-
sentation of E, would ease computations later and we would rather introduce G with this
new representation.
Consider

F := {v ∈ Rn : v · en = 0} ⊂ Rn

and the omomorphism ϕ : Rn → F such that

(6.0.4) ϕ(u1, . . . , un) := (u1 − un, . . . , un−1 − un, 0) ;

the seminorm ∥ · ∥⋆ is a norm on F .

The omomorphism ϕ in (6.0.4) induces an isometrical isomorphism ϕ̃ : E → F defined

by the relation ϕ̃◦π = ϕ: in fact, if v ∈ E and u ∈ π−1(v), then ∥v∥E = ∥u∥⋆ = ∥ϕ(u)∥⋆ =
∥ϕ̃(v)∥⋆.
For every i = 1, . . . , n− 1, define gi = ϕ̃−1(ei) and define gn = −(g1 + . . .+ gn−1). Let G
be the subgroup of E generated by g1, . . . , gn−1.
For every i = 1, . . . , n − 1 denote by hi the element of E∗ satisfying hi(gj) = δij:
(g1, . . . , gn−1), (h1, . . . , hn−1) is a biorthonormal system.
With these coordinates, an element v ∈ E has unit norm ∥v∥E = 1 if and only if

(6.0.5) ∥v∥E = ∥ϕ̃(v)∥⋆ = max
i=1,...,n−1

(vi ∨ 0)− min
i=1,...,n−1

(vi ∧ 0) = 1 .

The norm ∥ · ∥E∗ of an element w = w1h1 + . . . wn−1hn−1 ∈ E∗ can be characterized in
the following way: let us abbreviate wP :=

∑n−1
i=1 (wi ∨ 0) and wN := −

∑n−1
i=1 (wi ∧ 0) and

λ(v) = maxi=1,...,n−1(vi ∨ 0) ∈ [0, 1], then

(6.0.6) ∥w∥E∗ = sup
∥v∥E=1

n−1∑
i=1

wivi = sup
∥v∥E=1

[λ(v)wP + (1− λ(v))wN ]

= sup
λ∈[0,1]

[(λwP + (1− λ)wN ] = wP ∨ wN .

Notice that, recalling the notation of Chapter 5, m = n − 1. Properties (P1), (P2)
and (P3) are easy to check. In the sequel, we will fix both the normed space E and the
group G, where n is the number of points in the corresponding Steiner tree problem that
we want to solve.

Remark 6.0.11. We already know that the elements g1, . . . , gn are the multiplicities
of the n points in the boundary, for the Steiner tree problem. The definition we just gave
does not seem to be “symmetric”, in fact gn has, in a certain sense, a privileged role,
while the n points in the Steiner tree problem have of course all the same importance.
To restore this lost symmetry, one may note that the group E is represented in Rn as
the hyperplane P := {x1 + . . .+ xn = 0} with a norm which is a multiple of the norm
induced on P by the norm ∥ · ∥⋆ of Rn. Here g1, . . . , gn are the orthogonal projections on
P of e1, . . . , en−1 and −(e1 + . . . + en−1) respectively. It is easy to see that these points
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of π are the vertices of an (n − 1)-dimensional regular tetrahedron. In particular the
unit elements of G are the vertices of a convex (n − 1)-dimensional polyhedron which is
symmetric with respect to the origin. The vertices of the polyhedron are all the points of
the form gi1 + . . .+ gik with 1 ≤ i1 < . . . < ik ≤ n− 1 and their inverses. It is clear that
in this representation the role of the pi’s is perfectly symmetric.



CHAPTER 7

Calibrations

7.1. Definitions and examples

As we recalled in the Introduction, our interest in calibrations is the reason why we
have chosen to provide an integral representation for E-currents, in fact the existence
of a calibration guarantees the minimality of the associated current, as we will see in
Proposition 7.1.2.

Definition 7.1.1. A smooth calibration associated with a k-dimensional rectifiable
G-current T (Σ, τ, θ) is a smooth compactly supported E∗-valued differential k-form ω,
with the following properties:

(i) ⟨ω(x); τ(x), θ(x)⟩ = ∥θ(x)∥G for H k-a.e. x ∈ Σ;
(ii) dω = 0;
(iii) ∥ω∥ ≤ 1, i.e. ∥⟨ω; τ⟩∥E∗ ≤ 1, for every simple k-vector τ with |τ | = 1.

Proposition 7.1.2. [MM] A rectifiable G-current T which admits a smooth calibra-
tion ω is a minimizer for the mass among the normal E-currents with boundary ∂T .

Proof. Fix a competitor T ′ which is a normal E-current associated with the vector-
field τ ′, the multiplicity θ′ and the measure µT ′ , with ∂T ′ = ∂T . Since ∂(T − T ′) = 0,
then T − T ′ is a boundary of some current S in Rd, and then

M(T ) =

∫
Σ

∥θ∥G dH k(7.1.1)

(i)
=

∫
Σ

⟨ω(x); τ(x), θ(x)⟩ dH k = ⟨T ;ω⟩(7.1.2)

(ii)
= ⟨T ′;ω⟩ =

∫
Rd

⟨ω(x); τ ′(x), θ′(x)⟩ dµT ′(7.1.3)

(iii)

≤
∫
Rd

∥θ′∥G dµT ′ = M(T ′) ,(7.1.4)

where each equality (respectively inequality) holds because of the corresponding property
of ω, as established in Definition 7.1.1. In particular, equality in (ii) follows from

⟨T − T ′;ω⟩ = ⟨∂S;ω⟩ = ⟨S; dω⟩ = 0.

�
83
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Remark 7.1.3. If T is a rectifiable G-current calibrated by ω, then every mass mini-
mizer with boundary ∂T is calibrated by the same form ω.
In fact, choose a mass minimizer T ′ = T (Σ′, τ ′, θ′) with boundary ∂T ′ = ∂T : obviously
we have M(T ) = M(T ′), then equality holds in (7.1.4), which means

⟨ω(x); τ ′(x), θ′(x)⟩ = ∥θ′(x)∥G for H k − a.e. x ∈ Σ′ .

At this point we need a short digression on the representation of a E∗-valued 1-form
ω; we will consider d = 2, all our examples being for the Steiner tree problem in R2.
Remember that in Chapter 6 we fixed a basis (h1, . . . , hn−1) for E∗, dual to the basis
(g1, . . . , gn−1) for E. We will represent

ω =

 ω1,1 dx1 + ω1,2 dx2
...

ωn−1,1 dx1 + ωn−1,2 dx2

 ,

so that, if τ = τ1e1 + τ2e2 ∈ T1(R
2) and v = v1g1 + . . .+ vn−1gn−1 ∈ E, then

⟨ω; τ, v⟩ =
n−1∑
i=1

vi(ωi,1τ1 + ωi,2τ2) .

Example 7.1.4. Consider the vector space E and the group G defined in Chapter 6
with n = 3; let

p0 = (0, 0), p1 = (1/2,
√
3/2), p2 = (1/2,−

√
3/2), p3 = (−1, 0)

(see Figure 5.0.1). Consider the rectifiable G-current T supported in the cone over
(p1, p2, p3), with respect to p0, with piecewise constant weights g1, g2, g3 = −(g1 + g2)
on Σ1,Σ2,Σ3 respectively (recall Example 5.2.5 for notation and orientation). This cur-
rent T is a minimizer for the mass. In fact, a constant G-calibration ω associated with T
can be represented as

ω :=

(
1
2
dx1 +

√
3
2
dx2

1
2
dx1 −

√
3
2
dx2

)
.

Condition (i) is easy to check and condition (ii) is trivially verified because ω is constant.
To check condition (iii) we note that, for the generical vector τ = cosα e1 + sinα e2, we
have

⟨ω; τ, ·⟩ =

(
1
2
cosα +

√
3
2
sinα

1
2
cosα−

√
3
2
sinα

)
.

In order to calculate the comass norm of ω, we could stick to the method explained in
Chapter 6, but for n = 3 computations are simpler. Since the unit ball of E is convex,
and its extreme points are the unit points of G, then it is sufficient to evaluate ⟨ω; τ, ·⟩ on
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±g1,±g2,±(g1 + g2)(remember that ∥g1 − g2∥E = 2). We have

|⟨ω; τ, g1⟩| = |⟨ω; τ,−g1⟩| =
∣∣∣sin(α +

π

6

)∣∣∣ ≤ 1 ,

|⟨ω; τ, g2⟩| = |⟨ω; τ,−g2⟩| =
∣∣∣∣sin(α +

5

6
π

)∣∣∣∣ ≤ 1 ,

|⟨ω; τ, g1 + g2⟩| = |⟨ω; τ,−(g1 + g2)⟩| = | cosα| ≤ 1 .

p1

p2

p3 p0

g3

g1

g2

Figure 7.1.1. Solution for the problem with boundary on the vertex of
an equilateral triangle

An interesting way to generalize this result will be recalled in Remark 7.1.14.

In Definition 7.1.1 we intentionally kept vague the regularity of the form ω. Indeed
ω has to be a compactly supported1 smooth form, a priori, in order to fit Definition
5.2.1. Nevertheless, in some situations it will be useful to consider calibrations with lower
regularity, for instance piecewise constant forms. As long as (7.1.2)-(7.1.4) remain valid,
it is meaningful to do so; for this reason we introduce the following very general definition.

Definition 7.1.5. A generalized calibration associated with a k-dimensional normal
E-current T is a linear and bounded functional ϕ on the space of normal E-currents
satisfying the following conditions:

(i) ϕ(T ) = M(T );
(ii) ϕ(∂R) = 0 for any (k + 1)-dimensional normal E-current R;
(iii) ∥ϕ∥ ≤ 1.

1Since we deal with currents that are compactly supported, we can easily drop the assumption that
ω has compact support.
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Remark 7.1.6. The thesis in Proposition 7.1.2 is still true, since for every competitor
T ′ with ∂T = ∂T ′, there holds

M(T ) = ϕ(T ) = ϕ(T ′) + ϕ(∂R) ≤ M(T ′) ,

where R is chosen such that T − T ′ = ∂R. Such R exists because T and T ′ are in the
same homology class.

As examples, we present the calibrations for two well-known Steiner tree problems in
R2. Both calibrations in Example 7.1.9 and in Example 7.1.10 are piecewise constant
1-forms (with values in normed vector spaces of dimension 2 and 6, respectively), so first
of all we have to establish a compatibility condition which brings piecewise constant forms
back to Definition 7.1.5.

Definition 7.1.7. Fix a 1-dimensional rectifiable G-current T in R2, T = T (Σ, τ, θ).
Assume we have a collection {Cr}r≥1 which is a locally finite, Lipschitz partition of R2,
i.e.

∪
r≥1Cr = R2, the boundary of every set Cr is a Lipschitz curve and Cr ∩ Cs = ∅

whenever r ̸= s. Assume moreover that ∂Cr is a connected set for every r and that Cr

contains the connected non-empty interior of its closure. Let us consider a compactly
supported piecewise constant E∗-valued 1-form ω with

ω ≡ ωr on Cr

where ωr ∈ Λ1
E(R

2) for every r. In particular ω ̸= 0 only on finitely many elements of the
partition. Then we say that ω represents a compatible calibration for T if the following
conditions hold:

(i) for almost every x ∈ Σ, ⟨ω(x); τ(x), θ(x)⟩ = ∥θ(x)∥G;
(ii) for H 1-almost every point x ∈ ∂Cr ∩ ∂Cs we have

⟨ωr − ωs; τ(x), ·⟩ = 0,

where τ is the weak tangent field of ∂Cr;
(iii) ∥ωr∥ ≤ 1 for every r.

We will refer to condition (ii) with the expression of compatibility condition for a piecewise
constant form.

Proposition 7.1.8. [MM] Let ω be a compatible calibration for the rectifiable G-
current T . Then T minimizes the mass among the normal E-currents with boundary
∂T .

Proof. Firstly we see that a suitable counterpart of Stokes Theorem holds. Namely,
given a component ωj of ω and a classical integral 1-current T = T (Σ, τ, 1) in R2, without
boundary, then the quantity

⟨ωj;T ⟩ :=
∫
Σ

⟨ωj(x); τ(x)⟩dH 1(x)



7.1. DEFINITIONS AND EXAMPLES 87

is well defined, and we claim that it is equal to zero. The fact that it is well defined is a
direct consequence of the compatibility condition (ii) in Definition 7.1.7. To prove that it
is equal to zero, note that it is possible to find at most countably many unit multiplicity
integral 1-currents Ti = T (Σi, τi, 1) in R2, without boundary, each one supported in a
single tile Cr, such that

∑
i Ti = T . Since∫

Σi

⟨ωj(x); τi(x)⟩dH 1(x) = 0

for every i, then the claim follows from (ii). As a consequence we have that there exists a
family of Lipschitz functions ϕj : R

2 → R such that for every (classical) integral 1-current
T with M(∂T ) ≤ 2 (in particular ∂T = δxT

− δyT , with xT = yT if and only if ∂T = 0)
there holds:

⟨ωj;T ⟩ = ϕj(xT )− ϕj(yT ), for every j.

In fact it is sufficient to choose

ϕj(x) = |x|
∫ 1

0

⟨ωj(tx);
x

|x|
⟩ dt.

Moreover it is easy to see that every ϕj is constant outisde of the support of ωj, so we
can assume, possibly subtracting a constant, that ϕj is compactly supported.

Now, take a 2-dimensional normal E-current T . Let {T j}j be the components of T .

For every j, use Proposition 1.3.13 to write Sj := ∂T j =
∫ 1

0
Sj
t dt. Then we have

⟨ω; ∂T ⟩ =
∑
j

∫ 1

0

⟨ωj;Sj
t ⟩ dt =

∑
j

∫ 1

0

ϕj(xSj
t
)− ϕj(ySj

t
) dt.

Since for every j we have

0 = ∂(∂T j) =

∫ 1

0

δx
S
j
t

− δy
S
j
t

dt,

then, for every j, we must have∫ 1

0

g(xSj
t
)− g(ySj

t
) dt = 0,

for every compactly supported Lipschitz function g, in particular for every ϕj. Hence we
have ⟨ω; ∂T ⟩ = 0. �

Example 7.1.9. Consider the points

p1 = (1, 1), p2 = (1,−1), p3 = (−1,−1), p4 = (−1, 1) ∈ R2.

The length-minimizer graphs for the classical Steiner tree problem are those represented
in Figure 5.0.1. We associate with each point pj with j = 1, . . . , 4 the coefficients gj ∈ G,
where G has “dimension” m = 3: let us call

B := g1δp1 + g2δp2 + g3δp3 + g4δp4 .
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By this, we denote the 0-dimensional rectifiable G-current B such that

⟨B;ω⟩ =
4∑

j=1

⟨ω(pj); gj⟩,

for every ω ∈ C ∞
c (R2,Λ0

E(R
2)). This 0-dimensional current is our boundary.

Intuitively our mass-minimizing candidates among 1-dimensional rectifiable G-currents
are those represented in Figure 7.1.2: these currents Thor, Tver are supported, respectively,
in the graphs of Figure 5.0.1 and have piecewise constant coefficients intended to satisfy
the boundary condition ∂Thor = B = ∂Tver.

g1

g2g3

g4

g1g4

g2

g1 + g2

g1 + g4 g1g4

g3

g3 g2

Tver

ω1

ω3

ω2ω4
Thor

part.

Figure 7.1.2. Solution for the mass minimization problem

In this case, a compatible calibration for both Thor and Tver is defined piecewise as follows
(the notation is the same as in Example 7.1.4 and the partition is delimited by the dotted
lines):

ω1 ≡


√
3
2
dx1 + 1

2
dx2(

1−
√
3
2

)
dx1 − 1

2
dx2(

−1 +
√
3
2

)
dx1 − 1

2
dx2

 ω2 ≡


1
2
dx1 +

√
3
2
dx2

1
2
dx1 −

√
3
2
dx2

−1
2
dx1 −

(
1−

√
3
2

)
dx2



ω3 ≡


(
1−

√
3
2

)
dx1 + 1

2
dx2

√
3
2
dx1 − 1

2
dx2

−
√
3
2
dx1 − 1

2
dx2

 ω4 ≡


1
2
dx1 +

(
1−

√
3
2

)
dx2

1
2
dx1 −

(
1−

√
3
2

)
dx2

−1
2
dx1 −

√
3
2
dx2
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It is easy to check that ω satisfies both condition (i) and the compatibility condition of
Definition 7.1.7. To check that condition (iii) is satisfied, we use formula (6.0.6).

Example 7.1.10. Consider the vertices of a regular hexagon plus the center, namely

p1 = (1/2,
√
3/2), p2 = (1, 0), p3 = (1/2,−

√
3/2),

p4 = (−1/2,−
√
3/2), p5 = (−1, 0), p6 = (−1/2,

√
3/2), p7 = (0, 0)

and associate with each point pj the corresponding multiplicity gj ∈ G, where G is the
group with dimension m = 6. A mass-minimizer for the problem with boundary

B =
7∑

j=1

gjδpj

is illustrated in Figure 7.1.3, the other one can be obtained with a π/3-rotation of the
picture.

g1g6

g2

g3g4

g5
g7

Figure 7.1.3. Solution for the mass minimization problem

Let us divide R2 in 6 cones of angle π/3, as in Figure 7.1.3; we will label each cone
with a number from 1 to 6, starting from that containing (0, 1) and moving clockwise. A
compatible calibration for the two minimizers is the following
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(7.1.5)

ω1 =


−

√
3
2
dx1+

1
2
dx2√

3
2
dx1+

1
2
dx2

0
0
0
0

 ω2 =


0
dx2√

3
2
dx1−1

2
dx2

0
0
0

 ω3 =


0
0√

3
2
dx1+

1
2
dx2

−dx2
0
0



ω4 =



0
0
0√

3
2
dx1−1

2
dx2

−
√
3
2
dx1−1

2
dx2

0

 ω5 =


0
0
0
0
−dx2

−
√
3
2
dx1+

1
2
dx2

 ω6 =


dx2
0
0
0
0

−
√
3
2
dx1−1

2
dx2


Again, it is not difficult to check that ω satisfies both condition (i) and the compatibil-

ity condition of Definition 7.1.7. To check that condition (iii) is satisfied, we use formula
(6.0.6).

Remark 7.1.11. We may wonder whether or not the calibration given in Example
7.1.10 can be adjusted so to work for the set of the vertices of the hexagon (without the
seventh point in the center): it does not, in fact the support of the current in Figure
7.1.3 is not a solution for the Steiner tree problem on the six points, the perimeter of the
hexagon minus one side being shorter.

Remark 7.1.12. In both Examples 7.1.9 and 7.1.10, once we fixed the group G and we
decided to look for a piecewise constant calibration for our candidates, the construction of
ω was forced by both conditions (i) of Definition 7.1.1 and the compatibility condition of
Definition 7.1.7. Notice that the calibration for the Example 7.1.10 has evident analogies
with the one exhibited in the Example 7.1.4. Actually we obtained the first one simply
pasting suitably “rotated” copies of the second one.

In the following remarks we intend to underline the analogies and the connections
with calibrations in similar contexts.

Remark 7.1.13. There is an interesting and deep analogy between calibrations and
null-lagrangians, analogy that keeps unaltered in the group coefficients framework.
Consider some points {η1, . . . , ηn} ⊂ Rm, with

(7.1.6) |ηi − ηj| = 1 ∀ i ̸= j ;

for instance, the vertices of the regular n-tetrahedron with unit edge in Rn−1 satisfy
condition (7.1.6) (see Remark 6.0.11 to deepen the analogy with our group G in Chapter
6). We fix an open set with Lipschitz boundary Ω ⊂ Rd, for example Ω = B(0, 1) and
consider a bounded variation map u : Ω → {η1, . . . , ηn}. Let us call S[u] ⊂ Ω the jump
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set associated with u: if ν is the unit normal according to some orientation of S[u], let
us say that u+ and u− are the traces of the BV function from above and from below the
jump set (with respect to ν) respectively. We are interested in BV maps because∫

Ω

|Du(x)| dx =

∫
S[u]

|u+(x)− u−(x)| dx = H d−1(S[u]) ,

thanks to condition (7.1.6).
Therefore it is natural to study the variational problem

(7.1.7) min

{∫
Ω

|Du| : u ∈ BV (Ω; {η1, . . . , ηp}) , u|∂Ω ≡ u0

}
.

η4 η2

η1

η3

Ω

Figure 7.1.4. Boundary data

Assume there exists a vector field V : Ω × {η1, . . . , ηn} → Rd such that the following
conditions hold:

(i) for every x ∈ S[u],

[V (x, u+(x))− V (x, u−(x))] · ν(x) = 1 ;

(ii) marking vi(x) := V (x, ηi), i = 1, . . . , n,

divxV (x, ηi) = div vi(x) = 0 ;

(iii) for every i, j = 1, . . . , n,

|vi(x)− vj(x)| ≤ 1 .

In this case we can say that the functional u 7→
∫
Ω
div(V (x, u(x))) dx is a null-lagrangian,

because it depends only on the boundary value u0. As it happens in Proposition 7.1.2,
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if u admits a vector field V with the previous properties, then u is a minimizer for the
variational problem (7.1.7) with u0 = u|∂Ω, because∫

Ω

|Du| dx = H d−1(S[u])
(i)
=

∫
Ω

div(V (x, u(x))) dx =

∫
Ω

div(V (x, u′(x))) dx

(ii)
=

∫
Ω

Vu(x, u
′(x)) · ∇u′(x) dx

=

∫
S[u′]

(
V (x, (u′)+(x))− V (x, (u′)−(x))

)
· ν(x) dH d−1(x)

(iii)

≤
∫
S[u′]

|(u′)+ − (u′)−| dH d−1(x) =

∫
Ω

|Du′| dx .

where u′ is a competitor in BV (Ω; {η1, . . . , ηn}) with the same trace as u on ∂Ω.
In order to clarify the similarity of the Null Lagrangian problem with the Steiner tree
problem, consider the trace u0 in Figure 7.1.4.
The minimizers of the problem (7.1.7) are showed in Figure 7.1.5. As a matter of fact,
the minimizers uhor, uver admit a Null Lagrangian vector field, satisfying a compatibility
condition and clearly related to the calibration ω defined above.

Ω uver ≡ η1

uver ≡ η3

uver ≡ η4 uver ≡ η2

uhor ≡ η1 Ω

uhor ≡ η4 uhor ≡ η2

uhor ≡ η3

Figure 7.1.5. Minimizers

Remark 7.1.14. In [Mo], F. Morgan applies flat chains with coefficients in a group
G to soap bubble clusters and immiscible fluids, following the idea of B. White in [W1].
The model (in Rd for m immiscible fluids) associates to each fluid a coefficient fi ∈ G,
where G ∼= Zm ⊂ R⊗G ∼= Rm throughout the paper. Naturally, we are looking for least-
energy interfaces, that is a mass-minimizing (d−1)-dimensional flat chain with coefficient
in G. The mass norm is induced by the largest norm in R⊗G such that

∥fi∥G = ai ∀ i ∈ {1, . . . ,m}
and

∥fi − fj∥ = aij ∀ i, j .
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Concerning soap bubble clusters, we choose ai = aij = 1; hence, if m = 2, the unit ball is
pictured below in Figure 7.1.6.

1

1
−1

R2

−1

Figure 7.1.6. Unit ball in F. Morgan’s model for soap bubble clusters

Following the idea in [Mo], a calibration for a rectifiable m-chain T in Rd is a homo-
morphism

ω : G→ Λm(Rd)

with the following properties:

(i) ⟨T⃗ (x);ω(g)(x)⟩ = ∥g∥G for a.e. x ∈ supp(T );
(ii) ω(g) is a closed differential m-form for every g ∈ G;
(iii) ∥ω(g)∥ ≤ ∥g∥G for every g ∈ G, where Λm(Rd) is naturally endowed with the

comass norm.

These properties guarantee that T is a mass-minimizer among flat chains with the same
boundary; the proof is by all means analogous to the one given in Proposition 7.1.2.
Notice that this definition for the calibration works truly well in the case of a free abelian
group, because we are considering homomorphisms with values in a vector space and every
finite order subgroup is trivialized by such a homomorphism.
As F. Morgan shows in Proposition 4.5 of [Mo], in this framework it is easy to prove a
generalization of Example 7.1.4: consider a cone C =

∑n
i=1 givi in Rd of unit vectors vi

with coefficients in G = span{gi} and assume that∣∣∣∣∣
n∑

i=1

λi∥gi∥Gvi

∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
i=1

λigi

∥∥∥∥∥
G

∀λi ≥ 0 ,

then C is a minimizer because it admits a calibration with constant coefficients.
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7.2. Existence of the calibration and open problems

Once we established that the existence of a calibration is a sufficient condition for a
rectifiable G-current to be a mass-minimizer, we may wonder if the converse is also true:
does a (sort of) calibration exist for every mass-minimizing rectifiable G-current?

Let us step backward: does it occur for classical integral currents? The answer is quite
articulate, but we can briefly summarize the state of the art we will rely upon.

Remark 7.2.1. An actual calibration cannot exist for every minimizer. In fact there
are currents which minimize the mass among integral currents with a fixed boundary, but
not among normal currents (in some cases the two problems have different minima). This
means that such currents cannot be calibrated, infact the existence of a calibration proves
the minimality among normal currents.

Remark 7.2.2. For every mass-minimizing classical normal k-current T , there exists
a generalized calibration ϕ in the sense of Definition 7.1.5. Moreover, by means of the
Riesz Representation Theorem, ϕ can be represented as a measurable map U → Λk(Rd).
This result is contained in [Fe2].

In particular, Remark 7.2.2 provides a positive answer to the existence of a generalized
calibration for mass-minimizing integral currents of dimension k = 1, because minima
among both normal and integral currents coincide, as we prove in Proposition 7.2.4.
It is possible to apply the same technique in the class of normal E-currents, therefore we
have the following proposition.

Proposition 7.2.3. For every mass minimizing normal E-current T , there exists a
generalized calibration.

In order to guarantee the existence of a generalized calibration also for 1-dimensional
mass-minimizing rectifiable G-currents, we need the analogous of Proposition 7.2.4 in the
framework of G-currents. Namely, we need to prove that the minimum of the mass among
1-dimensional normal E currents with the same boundary coincides with the minimum
calculated among rectifiable G-currents. Here the boundary is of course a 0-dimensional
rectifiable G-current. This is a well known issue for classical k-dimensional currents: for
k ≥ 2 it is not even know whether the two minima are commensurable, i.e. whether or not
there exist a constant C such that, for every fixed (k − 1)-dimensional integral boundary
B, the minimum of the mass among integral k-currents with boundary B is less then C
times the minimum among normal k-currents with the same boundary.
From the argument used in the proof of Proposition 7.2.4 we realize that the equality of
the two minima in the framework of 1-dimensional E-currents is equivalent to the homo-
geneity property in Remark 7.2.5. This property, which is trivially verified for classical
integral currents, seems to be an interesting issue in the class of rectifiable G-currents.
In Example 7.2.6 we exhibit a subset M ⊂ R2 such that, if our currents are forced to
be supported on M , then the homogeneity property does not hold. In other words, we
can say that equality of the two minima does not hold in the framework of 1-dimensional
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E-currents on the metric space M . We can see the same phenomenon if we substitute
the metric space M with the metric space R2 endowed with a density, which is unitary
on the points of M and very high outside.

The following proposition is probably in the folklore, we give a proof here because we
were not able to find any literature on it.

Proposition 7.2.4. [MM] Consider the boundary of an integral 1-current in Rd,
represented as

(7.2.1) ∂0 = −
N−∑
i=1

aiδxi
+

N+∑
j=1

bjδyj , ai bj ∈ N .

If we denote

MN(∂0) := min{M(T ) : T is a normal current , ∂T = ∂0}
and

MI(∂0) := min{(T ) : T is an integral current ∂T = ∂0} ,
then the minima of the mass of 1-currents with boundary ∂0 among normal 1-currents
and among integral 1-currents coincide, that is

MN(∂0) = MI(∂0) .

Proof. Let us assume that the minimum among normal currents is attained at some
current T0, that is

M(T0) = MN(∂0) .

By definition
MN(∂0) ≤ MI(∂0) .

Let {Th}h∈N be an approximation of T0 made by polyhedral 1-currents, such that

• M(Th) → M(T0) as h→ ∞,
• ∂Th = ∂0 for all h ∈ N,
• the multiplicities allowed in Th are only integer multiples of 1

h
.

The existence of such a sequence is a consequence of the Polyhedral Approximation
Theorem.
It is possible to decompose such a Th as a sum of two addenda:

(7.2.2) Th = Ph + Ch ,

with
M(Th) = M(Ph) +M(Ch) ∀h ≥ 1

and

• ∂Ch = 0, so Ch collects the cyclical part;
• Ph does not admit any decomposition Ph = A + B satisfying ∂A = 0 and
M(Ph) = M(A) +M(B)
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It is clear that Ph is the sum of a certain number of polyhedral currents P i,j
h each one

having boundary a non-negative multiple of − 1
h
δxi

+ 1
h
δyj and satisfying

M(Ph) =
∑
i,j

M(P i,j
h )

We replace each P i,j
h with the oriented segment Qi,j, from xi to yj having the same bound-

ary as P i,j
h (therefore having multiplicity a non-negative multiple of 1

h
). This replacement

is represented in Figure 7.2.1

yj

P i,j
h

Qi,j
h

Ch

xi

Figure 7.2.1

Since this replacement obviously does not increase the mass, there holds M(Ph) ≥
M(Qh), where Qh =

∑
i,j Q

i,j
h . In other words we can write Qh =

∫
I
T dλh, as an integral

of currents, with respect to a discrete measure λh supported on the finite set I of unit
multiplicity oriented segments with the first extreme among the points x1, . . . , xN− and
second extreme among the points y1, . . . , yN+ . It is also easy to see that the total variation
of λh has eventually the following bound from above

∥λh∥ ≤ M(Th)

mini̸=j d(xi, yj)
≤ M(T0) + 1

mini̸=j d(xi, yj)
.

Hence, up to subsequences, λh converges to some positive measure λ on I and so the
normal 1-current

Q =

∫
T∈I

T dλ

satisfies

(7.2.3) ∂Q = ∂0

and
M(Q) ≤ M(T0) = MN(∂0) .
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In order to conclude the proof of the theorem, we need to show that Q can be replaced
by an integral current R with same boundary and mass M(R) = M(Q) ≤ MN(∂0).
Since I is the set of unit multiplicity oriented segments Σij from xi to yj, we can obviously
represent

Q =
∑
i,j

kijΣij with kij ∈ R ,

and, again, thanks to (7.2.3),

N−∑
i=1

kij = bj and

N+∑
j=1

kij = ai .

If kij ∈ Z for any i, j, then Q itself is integral and then we are done; if not, let us consider
the finite set of non-integer multiplicities

KR\Z :=
{
kij : i = 1, . . . , N−, j = 1, . . . , N+

}
\ Z ̸= ∅ .

We fix k ∈ KR\Z and we choose an index (i0, j0), such that k is the multiplicity of the
oriented segment Σi0j0 in Q.
It is possible to track down a non-trivial cycle Q in Q with the following algorithm: after
Σi0j0 , choose a segment from xi1 ̸= xi0 to yj0 with non-integer multiplicity, it must exist
because ∂0 = ∂Q is integral. Then choose a segment from xi1 to yj1 ̸= yj0 with non-integer
multiplicity and so on. Since KR\Z is finite, at some moment we will get a cycle. Up to
reordering the indices i and j we can write

Q =
n∑

l=1

(Σiljl − Σil+1jl) .

We will denote by

α := min
l
(kiljl − ⌊kiljl⌋) > 0

β := min
l
(kil+1jl − ⌊kil+1jl⌋) > 0 .

Finally notice that both Q−αQ and Q+βQ have lost at least one non-integer coefficient;
in addition, we claim that either

(7.2.4) M(Q− αQ) ≤ M(Q) or M(Q+ βQ) ≤ M(Q) .

In fact we can define the linear auxiliary function

F (t) := M(Q)−M(Q− tQ) =
∑
l

(kiljl − t)d(xil , yjl) + (kil+1jl + t)d(xil+1
, yjl)

for which F (0) = 0, so either

F (α) ≥ 0 or F (−β) ≥ 0 .

Iterating this procedure finitely many times, we obtain an integral current without
increasing the mass. �
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Now, we want to know whether the analogous of this result holds also in the framework
of 1-dimensional E-currents. Fix a 0-dimensional rectifiable G-current R in U ⊂ Rd.
Do the minima for the mass among 1-dimensional normal E-currents and rectifiable G-
currents with boundary R coincide?

Remark 7.2.5. The answer to the previous question is positive if and only if the
following is true: given R =

∑n
i=1 giδxi

with ∥gi∥G = 1 and T a rectifiable G-current
which is mass-minimizer with ∂T = R, then for every k ∈ N we have that

(7.2.5) min {M(S) : S rectifiable G− current, ∂S = kR} = kM(T ) .

Notice that, using the notation introduced in Theorem 7.2.4, (7.2.5) can be meaningfully
written as

(7.2.6) MI(kR) = kMI(R) .

The condition 7.2.6 is clearly necessary to have the equality of the two minima. It is also
sufficient, in fact one can approximate a normal E-current with polyhedral currents with
coefficients in QG.

p1 p2

p3

3

3
1

2

3

Figure 7.2.2. Metric space in the Example 7.2.6

Example 7.2.6. Consider a very simple subset M ⊂ R2 with few paths2 to move on,
as in Figure 7.2.2.
Consider the groupG, with n = 3, introduced in Chapter 6 and letR = g1δp1+g2δp2+g3δp3 .

2The length of each segment is explicitly declared in Figure 7.2.2, mind that the set is symmetric
with respect to the vertical axis.
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We will show that (7.2.6) does not hold even when k = 2. in fact it is trivial to prove that

MI(R) = 12 .

p1 p2

p3

−g1 −g2

−g2

−g2

g3 g3

g3

−g1

−g1

Figure 7.2.3. Counterexample to (7.2.6)

Nevertheless, concerning MI(2R), it is proved in Figure 7.2.3 that

MI(2R) ≤ 23 < 24 = 2MI(R) .
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