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Steiner Minimum Trees for Equidistant Points on 
Two Sides of an Angle* 

Rainer E. Burkard t Tibor Dudäs t 

Abstract 

In this paper we deal with the Steiner minimum tree problem for a spe-
cial type of point sets. These sets consist of the vertex of an angle 2a and 
equidistant points lying on the two sides of this angle. 

1 Introduction 
Jarnik and Kössler (1934) formulated the following problem: Determine the short-
est tree which connects n given points in the plane. Seven years later, Courant and 
Robbins (1941) describe this problem in their classical book "What is Mathemat-
ics?" and contribute this problem for n = 3 to J. Steiner, though Torricelli and 
Cavalieri gave solutions for the triangle already in 1640. For an account on the 
history of this problem see Hwang, Richards and Winter (1992). Since Courant 
and Robbins this problem is called Steiner Minimum Tree (SMT) Problem. 

For an arbitrary point set X in the plane with .|X| = n the problem is quite 
difficult. Until Melzak (1961) it was not even known that it is finitely solvable. 
Garey, Graham and Johnson (1977) proved that the Steiner minimum tree prob-
lem is .VP-hard. This means that unless V = ÁÍV there does not exist a polynomial 
(and efficient) algorithm which solves this problem. Therefore a considerable in-
terest arose in studying special point sets X for which an SMT can be found in 
polynomial time. The first special point sets considered were ladders, see Chung 
and Graham (1978) and the recent correction by Burkard, Dudás and Maier (1994). 
Other special point sets include zigzag lines (Du, Hwang and Weng, 1983), checker-
boards (Chung, Gardner and Graham, 1989), Chinese checkerboards (Hwang and 
Du, 1991), bar waves (Du and. Hwang, 1987), sets of four points (Du, Hwang, Song 
and Weng), regular polygons (Du, Hwang and Weng, 1987) and points on a circle 
(Du, Hwang and Chao, 1985). 

In this article we contribute a new special case : triangle ladders, where the given 
points consist of the vertex of an angle 2a and further points lying equidistantly 
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on the two sides of this angle. We shall determine the structure of an SMT in 
dependence of the angle a. 

2 Definitions and preliminaries 
Let X be a point set in the plane consisting of n points (|A'| = n). If we connect 
these points just by straight lines whose total length is minimum, we get a minimum 
spanning tree (MST). For n points, such an MST can be determined in 0(n logn) 
steps (see e. g. Edelsbrunner, 1987) by using arguments from computational geom-
etry like Delaunay triangulations. Thus an MST problem is a well solvable problem. 
But in general a minimum spanning tree is not a Steiner minimum tree. Consider 
an equilateral triangle with side lengths a. A minimum spanning tree consists of 
any two sides and has length 2a. If we introduce, however, a new point S in the 
center of this triangle and connect this new point with all three vertices, we get 
an SMT of length ay/3, see Figure 1. So, by inserting new points, the so-called 
Steiner points, the total length of a connection of the given (regular) points can be 
decreased. 

Figure 1. A minimum spanning tree a) and a Steiner minimum tree b) for the 
vertices A,B,C of an equilateral triangle 

In the following we denote a minimum spanning tree for the point set X by 
M*{X) and a Steiner minimum tree by S*{X). An edge of a tree is denoted by 
e = (A, B), where A and B are the incident vertices. If A and B are connected 
by an edge, we say, A and B are adjacent. The length of an edge e = (A , B) is 
the Euclidean distance d(A,B) of the points A and B. The length of a tree T 
is the sum of the lengths of the edges in T and it is denoted by l(T). The next 
lemmas summarize some important facts about Steiner minimum trees, for the 
simple proofs see e. g. Hwang, Richards and Winter (1992). 

Lemma 2.1 (a) In any Steiner point of S*(X), exactly three edges meet in an 
angle of exactly 120°. 

(b) The angle of two edges that meet in a common regular point of S*(X) is at 
least 120°. 

(c) S*(X) has at most n — 2 Steiner points. 

C C 
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The last statement motivates the following definition: 

Definition 2.2 S*(X) is a full Steiner minimum tree (FSMT) if S*(X) contains 
exactly n — 2 Steiner points. 

Moreover, Steiner points cannot lie anywhere: 

Lemma 2.3 For any X the SMT S*(X) lies within the convex hull of X. 

In the following we shall use the notation of a clockwise path of an edge e in 
S*(X). The clockwise path of e is the path starting with e and turning clockwise 
whenever possible. For example in the SMT of Figure lb the clockwise path of the 
edge (A, S) continues with the edge (S, B) Similarly, we can define the counter-
clockwise path of e. Note that both types of paths can end only in regular points. 

3 A new special type of points sets 
In order to facilitate the description of point sets we consider a fixed coordinate sys-
tem in the plane. We describe the position of points with respect to this coordinate 
system. 

Definition 3.1 For any fixed n £ IN and angle a with 0° < a < 90° the 
point set = {I,Ai,...,An,Bi,...,Bn} is called triangle ladder if I = (0,0), 
Ai = (—¿sin a, — icosa) and Bi = (i sin a, —i cos a) (i = l , . . . ,n) (see Figure 2). 
Moreover, T° = L" \ {/} is the triangle ladder without I. 

Note that a triangle ladder consists of the vertex I of an angle and points lying 
equidistantly on the two sides of the angle 2a. The points An and Bn of L" are 
called terminal points. 

I 

Figure 2. Triangle ladder L% 

Lemma 3.2 For all n and a a terminal point in S*(L") has exactly one incident 
edge. 
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Proof. It is trivial that at least one edge is incident to An. Because of Lemma 2.1(b) 
at most three edges are incident to An. Suppose that two or three edges meet in 
An. Let /3 denote the angle between any two edges. It follows from Lemma 2.3 
that (3 < LBnAnI = 90° - a < 90° because the convex hull of L% is the triangle 
IAnBn. But this contradicts Lemma 2.1(b). So just one edge is incident to An and 
Bn- • 
Lemma 3.3 In S*(L£) no edge has a length exceeding 1. 

Proof. Suppose that S*(L%) has an edge e whose length is greater than 1. Deleting 
the edge e from S*(L%) we get two connected components which can be reconnected 
by some edge on the sides of the angle, i. e. by an edge of length 1. The total 
length of S*(L") decreases by this operation, a contradiction to the optimality of 
s*(K). -
Corollary 3.4 If n > 2 and a terminal point is in S*(L") adjacent to a Steiner 
point, then this Steiner point lies within the trapezoid AnBnBn-iAn- \. 

Lemma 3.5 (Ai,B{) (i = l,...,n) cannot be an edge of S*(L"). 

Proof. Suppose that (Ai,Bi) is an edge of 5* ( I£ ) for any i: It follows from 
Lemma 2.3 that there is an other edge e of S*(L") incident with At or B{ which 
lies within the triangle IAiBi. But the angle formed by e and (Ai, Bi) is less or 
equal than 90° - a < 120°, a contradiction to Lemma 2.1! • 

Let us next consider the path P = AnX\...XkBn in S*(L%) which begins in the 
terminal point An and ends in the terminal point Bn. We get 

Lemma 3.6 P is à clockwise path of (An,X\). 

Proof. If P is not a clockwise path of (An , X i ) , then the clockwise path of (An,Xi) 
can nowhere end, a contradiction. • 

The following two lemmas describe simple conditions for Steiner minimum trees 
on nested sets. 

Lemma 3.7 Let X and Y be two sets of points in the plane with X C Y. Then 
l{S*{X))<l(S*(Y)). 

Proof. S*(Y). connects the point set X, because X C Y. So the above inequality 
follows from the definition of the SMT. • 

Lemma 3.8 Let X and Y be two sets of points in the plane with X C Y. Suppose 
that all y £ Y fulfills one of the following two conditions : 

(i) y ex, 

(ii) y lies on an edge of a fixed S*(X). 

Then S*(X) is an SMT for Y. 

Proof. Clearly, S*(X) connects the points o f Y . Because of Lemma 3.7 l(S*(X)) < 
l(S*(Y)). But it means that S*(X) is an SMT for Y. • 
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4 The case a > 60° 
In this section we will deal with triangle ladders , where a > 60°. The following 
theorems describe the simple solution in this case. 

Theorem 4.1 If a > 60°, then the MST M*(L%) for L" which consists of the 
edges (I,A1),(I,B1),{Ai,Ai+1),{Bi,Bi+l){i = l,...,n-l)iaan SMT for . 

Proof. Let us consider the triangle T = IAnBn. Clearly, LAnIBn = 2a > 120°. 
It follows from Lemma 2.1 that the Steiner minimum tree for the triangle T cannot 
have any Steiner point. Thus the SMT for T is an MST with the edges (I, An) 
and (I,Bn). Hence, l(M*(T)) = d(I,An) + d(I,Bn) = d(I,Ai) + d(Ax,A2) -I-... + 
d(i4„_i, An) + d(I, Bi) + d{Bi, B2) + ... + d(Bn-ltBn) = 1{M*{L%)). It is obvious 
that T c L " . So Lemma 3.8 yields that the SMT for T is an SMT for L". m 

Theorem 4.2 M*(T°) which consists of the edges (Ai, Si), (Ai, Ai+i), (B{, Bi+i) 
{i = 1, ...,72 — 1) is an SMT for T™ . 

Proof. Let us consider the trapezoid T = A\AnBnB\. It can be proved by el-
ementary geometry and by Lemma 2.1 that S*(T) does not contain any Steiner 
point, so M*(T) is an SMT for T. Clearly, 1{M*{T)) = 1{M*{T%)) and T C 
so Lemma 3.8 implies the statement. • 

5 The case 30° < a < 60° 
In this section we examine the structure of the SMT for where 30° < a < 60°. 
We assume in the whole section that a fulfills the previous inequality. 

4 

Lemma 5.1 If a Steiner point is adjacent to a terminal point in S*(L%), then 
there is a path between the terminal points which contains only Steiner points. 

Proof. Suppose that in S*(L") the Steiner point 51 is adjacent to An. It follows 
from Corollary 3.4 that Si lies within the trapezoid A n B n B n - i A n ^ i . If Si is 
adjacent to Bn, then we are ready. Therefore, let us suppose that Si is adjacent to 
an other Steiner point S2. Because LSiAnBn < 9 0 ° - a < 60° and /A n SiS 2 = 120° 
the slope of the edge (Si, S2) is negative (see Figure 3). 

An-i Bn-I 

Figure 3 
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If S2 is adjacent to Bn, then we are ready, otherwise we can continue the previous 
idea. So, we get Steiner points Si,...,Sk and Sk is finally adjacent to Bn. m 

Lemma 5.2 If a Steiner point S\ is adjacent to a terminal point in S*(Lthen 
Si is adjacent to the other terminal point. 

Proof. Assume that Si is adjacent to An. It follows from Lemma 5.1 that there 
exist Steiner points Si,...,Sk such that the edges (Si,S{+1) (i = 1,..., /c — 1) and 
(Sk,Bn) are edges of S*(L"). Let us consider the polygon P = AnSi...SkBn. 
It follows from Lemma 3.6 that P is a convex polygon. Let 7 be the sum of 
the angles of P. Because P is a (k + 2)-gon 7 = £180°. On the other hand 
7 = fcl20° + ¿BnAnSi + lSkBnAn < (k+ 1)120°. It follows that fc60° < 120°, and 
so k < 2. This inequality implies k = 1. It means that on the path from A.n to Bn 

the only Steiner point is Si. ' • 

Lemma 5.3 ïf n > 2, then in S*(L") a terminal point is not adjacent to any 
Steiner point. 

Proof. Because of Corollary 3.4 it is to show that a terminal point is not adjacent to 
a Steiner point which lies within the trapezoid An BnB 71—1 sin — 1. Assume that An 

is adjacent to the Steiner point S1 which lies in A n B n B n _ iA n ^i . Lemma 5.2 yields 
that Si is adjacent to Bn. It is easy to see that d{An,Bn) > 2, because a > 30° 
and n > 1. Clearly, d{An,Si) + d(Si,Bn) > d(An,Bn) > 2. But this means that 
at least one of the edges [An, Si), (Si,Bn) is longer than 1, a contradiction to 
Lemma 3.3. • 

Theorem 5.4 Let H denotes the triangle IAxBi. 5*(L°) is the union of the tree 
S*{H) and the edges (Ai,Ai+1), (Bi,Bi+i) (i = 1 ,...,n - 1). For n=l,2,... the 
length of 5*(L^) is given by l(S*{L%)) = 2(n - 1) + cos a + v^sina. 

Proof. We prove the theorem by induction on n. 
If n = 1, then clearly S*(L®)=S*(H) and it can be proved by elementary 

geometry that l(S*{H)) = cos a + -\/3sina. 
Suppose now that for n — 1 the theorem is true. Let us consider Lemma 5.3 

implies that the terminal point An is adjacent to An-1, because 1 is the nearest 
regular point to An. Similarly, Bn is adjacent to B n _ i . It follows from the induction 
assumption that S*(L") is in fact the union of the tree S*(H) and the edges 

d(Bn,Bn-1) = 2(n - 2) + cos a + \/3sina + 2 = 2(n - 1) + cos a + V 3 s i n a . • 

In Figure 4 we present the SMT for Ll°° • 
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I 

Figure 4. Lf° and its SMT 

Let us -now consider . If we rotate all points by 135°, then we get the 
nonnegative, integer points 0,1,2 , . . . ,n lying on the x and y axis. This is an in-
teresting special case and the length of the SMT for this points set is given by 
2 ( n - l ) + ^ ( v / 3 + l) . 

Theorem 5.5 M*(T£) which consists of the edges (A\,Bi),(Ai,Ai+i),(Bi,Bi+i) 
(i = 1, , . , n - 1) is an SMT for T". The length of S*{T%) is given by l(S*(T%)) = 
2 n - 1. 

Proof. We prove the theorem by induction on n. 
If n = 1, the statements are trivial. 
Suppose that the theorem is true for n — 1 where n > 1. Because of Lemma 5.3 

An is adjacent to An-1 and Bn is adjacent to Bn-\ in S*(T°). The rest of the 
proof is similar to the proof of Theorem 5.4. • 

6 The case a < 30° 
In this section we present results for the case a < 30°. We show all solutions for 
a > 14.478° and outline the general stucture of solutions for smaller angles. 

Suppose that n > 2 and (A n , Si) is an edge of S*(L%). Because of Corollary 3.4 
Si lies within the trapezoid AnBnBn_i An-i. Consider the clockwise path P of 
(J4„,SI). Let P = AnSiXi...Xk, where X j denotes a regular point or a Steiner 
point (1 < j < k). 
Case 1. LBnAnSi < 60° 

The edge on P leaving Si has a negative slope, and it can be proved (see 
Lemma 5.1 and Lemma 5.2) that (S\,Bn) is an edge of S*(L°). 

Case 2. LBnAnSi > 60° 
a) Suppose that X{ B„_ i for 1 < % < k. Then it follows from Lemma 3.3 that 

X i a Steiner point. It is easy to check that the edge on P leaving Xi has a negative 
slope. But then Xk = Bn and are Steiner points. We show that k = 2. 
Consider the polygon AnS\Xi...Xk~\Bn and let 7 denote the sum of its angles. 
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Clearly, 7 = £180°. On the other hand 7 = ¿120° + ¿BnAnSx + ¿Xk^1BnAn < 
fcl20° + 180°. Hence, fc60° < 180°, and so k < 3. This last inequality implies k < 2 
and it is trivial that k ^ 1. 

b) Suppose that there exists an index i with 1 < i < k such that X^ = BN~ X. In 
this case (BN ,BN -\ ) is an edge of S*(L°): if BN is adjacent to a Steiner point S2, 
then the counterclockwise path of (BN ,S2) can nowhere end, a contradiction. The 
fact that (B„ ,B n _ i ) is an edge of S*(L£) and Lemma 2.1 imply / > 2, so X\ is a 
Steiner point. As above, the edge on P leaving XI has a negative slope. But then 
i — k — 1 (X K - I = BN-I), XK = BN and XI, ...,XK-I are Steiner points. Similarly 
as above, it can be proved that k = 3, so Xi — 5 „ _ 1 and = BN. 

Concluding these results, we show in Figure 5 and in Figure 6 the possibilities 
of subgraphs of S*(L%), which contain the terminal points. There are four cases. 
The subgraph T\ contains the edges (An , A„_ i ) and (Bn,Bn-1). In Ti the terminal 
points are adjacent to a common Steiner point. The subgraph T3 contains the edge 
(Bn,Bn-1) and the clockwise path from An to Bn-\ with two Steiner points. In 
T4 the terminal points are adjacent to different Steiner points Si, S2 and Si is 
adjacent to Si- Note that there is a fifth case, namely if (An, A„_ 1) is an edge and 
there is clockwise path from Bn to A„_i with two Steiner points. But because of 
symmetry this case is similar to T3. 

A Bn A 

Figure 5. The subgraphs 7\ (left) and T2 (right) 

A Bn A 

Figure 6. The subgraphs T3 (left) and T4 (right) 
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In the following we shall need two results which can easily be derived by ele-
mentary geometry. 

(i) Consider any quadrangle ABCD with ¿CDA = ¿BCD = 120°. If 
d(A,D) = d(B,C) = d(C,D) = 1, we get d{A,B) = 2. Therefore, if d(A,B) > 2, 
then at least one of the distances d(A, D), d(B, C), d(C, D) is greater than 1. 

(ii) Consider the trapezoid A n B n B n - i A n - \ . It is easy to see that 
d(An-\,Bn-1) = 2 (n - 1) sin a. By the cosine law we get 

d{An,Bn-1) = \Jl + A(n- l)2 sin2 a - 4(n - 1) sinacos(90° + a) = 

The next theorem tells us, when the terminal points in 5*(L") are adjacent to 
A n - i and B n - i . 

Theorem 6.1 Let 

If n > Na, then (An,An-i) and (Bn,Bn-i) are edges of S*(L"). 

Proof . Let n > Na. We will show that S*(L") cannot contain the subtrees T2, T3 

and T4. 
The condition n > guarantees that d(An,Bn) = 2nsina > 2. If T2 

occurs, then due to the triangle inequality at least one of the edges (An, Si) or 
(Si,Bn) must be longer than 1. This is impossible due to Lemma 3.3. If T4 occurs, 
we note first that the angles in Si and S2 are 120°, since Si and S2 are Steiner 
points. Therefore by (i), one of the edges (A„ ,5 i ) , (Si,S2) or (5 2 , f i „ ) is longer 

y i + ^ v + i 
than 1, which again is impossible. The condition n > — guarantees that 
d(An,Bn-1) > 2 (insert this expression in (1)). An analogue argument as above 
using (i) and Lemma 3.3 shows that T3 cannot occur. • 

Corollary 6.2 Let na = {Na}. For any n > na the edges 
i,An, An-1 ), •••, {Ana+i,Ana) and (Bn,Bn-i),..., (Bna+i,Bna) are edges ofS*(L£). 

It is easy to see that 

( 1 ) 

(3) 

and 
1 if sin a < \ (a < 14.478°), sin a ' 

Na (4) 

otherwise. 
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The previous corollary has the following consequence. If we fix a, we compute at 
first the number na. If n > na, then the construction of the SMT S*(L") is divided ~ 
into two parts. First, we must construct the SMT S*(L£q) which we call the upper 
component. Then we have to connect the points Ana+i,..., An,Bna+i,..., Bn by 
the edges described in Corollary 6.2 to the upper component S*(L° ). 

Now we want to apply the above procedure for angles, which yield na = 2. To 
do this, we have to determine S*(L2) for any a. 

We know already S*(L%) for a > 30°. Let us suppose a < 30°. Then M*(L%) 
contains the edge (Ai,B\). But Lemma 3.5 tells us that this M*(L2) cannot be an 
SMT. Thus S*(L%) has at least one Steiner point. Suppose that S*(L%) has one 
Steiner point. It can easily be seen that in this case the Steiner point Si is adjacent 
to the points I, Ai and B\ (use Lemma 2.1). Let T.} denote the tree which consists 
of the edges (A2,AX), (B2,Bi), (Ai,Si) , ( # i , S i ) and (Si, I). The structure of T2J 

can be seen in Figure 4. The length of T2 is 2 + i/3 sin a + cos a. 
If S*(L2) has 3 Steiner points (it is a full tree), then it is unique up to reflection. 

This tree is denoted by T2 and shown in Figure 7. The length of T2 is given by 

As last case there remains the possibility that S*(L2) has two Steiner points 
(Si and S2)-

(a) Si is adjacent to I, Ai, Bi and S2 to A\, A2, B2. This is impossible, because 
Z S 1 A 1 S 2 < 120° . 

(b) Si is adjacent to Ai, S2, A2 and S2 to B\, B2, Sx. Then S*(L2) contains 
the edge (Ai, I) or (B\, I). It can be verified that the length of this tree is greater 
than the length of T2 or T2, a contradiction. 

(c) Si is adjacent to Ax, S2, Bi and S2 to A2, B2, S\. Then S*(L2) contains 
the edge (Ai, I) or (Bi, I) and in at least one of these cases we get an angle which 
is less than 120° , a contradiction. (If we choose the other case, we cannot get an 
SMT, because the two possible trees have the same length.) 

Concluding these observations, we have 

Theorem 6.3 S*(L2) is of one of the following types (see Figure 8). 
Type a) is optimal for a > 60°, Type b) is optimal for 17.344° < a < 60° and 

Type c) is optimal for a < 17.344°. 

A2 B2 

Figure 7. L2 and the tree T22 
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AÂ 
Figure 8. The three types (a,b,c) of SMTs for 

Note that Type c) is a full SMT. 
Moreover, one can prove by a rather time consuming distinction of cases that 

for all a with sin a > S*(L3) contains the edges (A3,A2) and (B3,B2). On the 
other hand if a fulfills the above inequality, Na < 4 holds. Hence, na = 3. This 
means that we know the SMTs for L" for all n and for all a with sin a > \ (see 
Corollary 6.2). 

For smaller angles an explicit analysis is complicated due to the many possible 
cases. We have seen that the tree T2 is an FSMT. But for example if a = 10°, the 
SMT S*(L%) is not an FSMT, it has only 4 Steiner points. The structure of the 
SMT for Llf can be seen in Figure 9. 

A principal solution method for smaller angles consists in determining the cor-
responding na, then the determination of an SMT for L®a which is finally comple-
mented by edges on the sides of the angle. The determination of S*(L"a ) can be 
done by a general purpose Steiner tree algorithm, see e. g. Cockayne and Hewgill 
(1992). This method is well applicable for sets of up to 100 regular points. In our 
case it means that by this method problems with a > 1.17° can be tackled. 

I 

Figure 9. The structure of the SMT for Lf° 
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