Steiner Minimum Trees for Equidistant Points on Two Sides of an Angle*

Rainer E. Burkard ${ }^{\dagger} \quad$ Tibor Dudás ${ }^{\dagger}$

Abstract

In this paper we deal with the Steiner minimum tree problem for a special type of point sets. These sets consist of the vertex of an angle 2α and equidistant points lying on the two sides of this angle.

1 Introduction

Jarník and Kössler (1934) formulated the following problem: Determine the shortest tree which connects n given points in the plane. Seven years later, Courant and Robbins (1941) describe this problem in their classical book "What is Mathematics?" and contribute this problem for $n=3$ to J. Steiner, though Torricelli and Cavalieri gave solutions for the triangle already in 1640 . For an account on the history of this problem see Hwang, Richards and Winter (1992). Since Courant and Robbins this problem is called Steiner Minimum Tree (SMT) Problem.

For an arbitrary point set \dot{X} in the plane with $|X|=n$ the problem is quite difficult. Until Melzak (1961) it was not even known that it is finitely solvable. Garey, Graham and Johnson (1977) proved that the Steiner minimum tree problem is $\mathcal{N} \mathcal{P}$-hard. This means that unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ there does not exist a polynomial (and efficient) algorithm which solves this problem. Therefore a considerable interest arose in studying special point sets X for which an SMT can be found in polynomial time. The first special point sets considered were ladders, see Chung and Graham (1978) and the recent correction by Burkard, Dudás and Maier (1994). Other special point sets include zigzag lines (Du, Hwang and Weng, 1983), checkerboards (Chung, Gardner and Graham, 1989), Chinese checkerboards (Hwang and Du, 1991), bar waves (Du and. Hwang, 1987), sets of four points (Du, Hwang, Song and Weng), regular polygons (Du, Hwang and Weng, 1987) and points on a circle (Du, Hwang and Chao, 1985).

In this article we contribute a new special case : triangle ladders, where the given points consist of the vertex of an angle 2α and further points lying equidistantly

[^0]on the two sides of this angle. We shall determine the structure of an SMT in dependence of the angle α.

2 Definitions and preliminaries

Let X be a point set in the plane consisting of n points $(|X|=n)$. If we connect these points just by straight lines whose total length is minimum, we get a minimum spanning tree $(M S T)$. For n points, such an MST can be determined in $O(n \log n)$ steps (see e. g. Edelsbrunner, 1987) by using arguments from computational geometry like Delaunay triangulations. Thus an MST problem is a well solvable problem. But in general a minimum spanning tree is not a Steiner minimum tree. Consider an equilateral triangle with side lengths a. A minimum spanning tree consists of any two sides and has length $2 a$. If we introduce, however, a new point S in the center of this triangle and connect this new point with all three vertices, we get an SMT of length $a \sqrt{3}$, see Figure 1. So, by inserting new points, the so-called Steiner points, the total length of a connection of the given (regular) points can be decreased.

Figure 1. A minimum spanning tree a) and a Steiner minimum tree b) for the vertices A, B, C of an equilateral triangle

In the following we denote a minimum spanning tree for the point set X by $M^{*}(X)$ and a Steiner minimum tree by $S^{*}(X)$. An edge of a tree is denoted by $e=(A, B)$, where A and B are the incident vertices. If A and B are connected by an edge, we say, A and B are adjacent. The length of an edge $e=(A, B)$ is the Euclidean distance $d(A, B)$ of the points A and B. The length of a tree T is the sum of the lengths of the edges in T and it is denoted by $l(T)$. The next lemmas summarize some important facts about Steiner minimum trees, for the simple proofs see e. g. Hwang, Richards and Winter (1992).

Lemma 2.1 (a) In any Steiner point of $S^{*}(X)$, exactly three edges meet in an angle of exactly 120°.
(b) The angle of two edges that meet in a common regular point of $S^{*}(X)$ is at least 120°.
(c) $S^{*}(X)$ has at most $n-2$ Steiner points.

The last statement motivates the following definition:
Definition $2.2 S^{*}(X)$ is a full Steiner minimum tree (FSMT) if $S^{*}(X)$ contains exactly $n-2$ Steiner points.

Moreover, Steiner points cannot lie anywhere:
Lemma 2.3 For any X the $S M T S^{*}(X)$ lies within the convex hull of X.
In the following we shall use the notation of a clockwise path of an edge e in $S^{*}(X)$. The clockwise path of e is the path starting with e and turning clockwise whenever possible. For example in the SMT of Figure 1b the clockwise path of the edge (A, S) continues with the edge (S, B) Similarly, we can define the counterclockwise path of e. Note that both types of paths can end only in regular points.

3 A new special type of points sets

In order to facilitate the description of point sets we consider a fixed coordinate system in the plane. We describe the position of points with respect to this coordinate system.

Definition 3.1 For any fixed $n \in \mathbb{N}$ and angle α with $0^{\circ}<\alpha<90^{\circ}$ the point set $L_{n}^{\alpha}=\left\{I, A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right\}$ is called triangle ladder if $I=(0,0)$, $A_{i}=(-i \sin \alpha,-i \cos \alpha)$ and $B_{i}=(i \sin \alpha,-i \cos \alpha)(i=1, \ldots, n)$ (see Figure 2). Moreover, $T_{n}^{\alpha}=L_{n}^{\alpha} \backslash\{I\}$ is the triangle ladder without I.

Note that a triangle ladder consists of the vertex I of an angle and points lying equidistantly on the two sides of the angle 2α. The points A_{n} and B_{n} of L_{n}^{α} are called terminal points.

Figure 2. Triangle ladder L_{2}^{α}

Lemma 3.2 For all n and α a terminal point in $S^{*}\left(L_{n}^{\alpha}\right)$ has exactly one incident edge.

Proof. It is trivial that at least one edge is incident to A_{n}. Because of Lemma 2.1(b) at most three edges are incident to A_{n}. Suppose that two or three edges meet in A_{n}. Let β denote the angle between any two edges. It follows from Lemma 2.3 that $\beta \leq \angle B_{n} A_{n} I=90^{\circ}-\alpha<90^{\circ}$ because the convex hull of L_{n}^{α} is the triangle $I A_{n} B_{n}$. But this contradicts Lemma 2.1(b). So just one edge is incident to A_{n} and B_{n}.

Lemma 3.3 In $S^{*}\left(L_{n}^{\alpha}\right)$ no edge has a length exceeding 1.
Proof. Suppose that $S^{*}\left(L_{n}^{\alpha}\right)$ has an edge e whose length is greater than 1. Deleting the edge e from $S^{*}\left(L_{n}^{\alpha}\right)$ we get two connected components which can be reconnected by some edge on the sides of the angle, i. e. by an edge of length 1 . The total length of $S^{*}\left(L_{n}^{\alpha}\right)$ decreases by this operation, a contradiction to the optimality of $S^{*}\left(L_{n}^{\alpha}\right)$.

Corollary 3.4 If $n \geq 2$ and a terminal point is in $S^{*}\left(L_{n}^{\alpha}\right)$ adjacent to a Steiner point, then this Steiner point lies within the trapezoid $A_{n} B_{n} B_{n-1} A_{n-1}$.
Lemma $3.5\left(A_{i}, B_{i}\right)(i=1, \ldots, n)$ cannot be an edge of $S^{*}\left(L_{n}^{\alpha}\right)$.
Proof. Suppose that $\left(A_{i}, B_{i}\right)$ is an edge of $S^{*}\left(L_{n}^{\alpha}\right)$ for any i. It follows from Lemma 2.3 that there is an other edge e of $S^{*}\left(L_{n}^{\alpha}\right)$ incident with A_{i} or B_{i} which lies within the triangle $I A_{i} B_{i}$. But the angle formed by e and $\left(A_{i}, B_{i}\right)$ is less or equal than $90^{\circ}-\alpha<120^{\circ}$, a contradiction to Lemma 2.1.

Let us next consider the path $P=A_{n} X_{1} \ldots X_{k} B_{n}$ in $S^{*}\left(L_{n}^{\alpha}\right)$ which begins in the terminal point A_{n} and ends in the terminal point B_{n}. We get
Lemma 3.6 P is a clockwise path of $\left(A_{n}, X_{1}\right)$.
Proof. If P is not a clockwise path of $\left(A_{n}, X_{1}\right)$, then the clockwise path of $\left(A_{n}, X_{1}\right)$ can nowhere end, a contradiction.

The following two lemmas describe simple conditions for Steiner minimum trees on nested sets.

Lemma 3.7 Let X and Y be two sets of points in the plane with $X \subset Y$. Then $l\left(S^{*}(X)\right) \leq l\left(S^{*}(Y)\right)$.

Proof. $S^{*}(Y)$ connects the point set X, because $X \subset Y$. So the above inequality follows from the definition of the SMT.

Lemma 3.8 Let X and Y be two sets of points in the plane with $X \subset Y$. Suppose that all $y \in Y$ fúlfills one of the following two conditions :
(i) $y \in X$,
(ii) y lies on an edge of a fixed $S^{*}(X)$.

Then $S^{*}(X)$ is an $S M T$ for Y.
Proof. Clearly, $S^{*}(X)$ connects the points of Y. Because of Lemma $3.7 l\left(S^{*}(X)\right) \leq$ $l\left(S^{*}(Y)\right)$. But it means that $S^{*}(X)$ is an SMT for Y.

4 The case $\alpha \geq 60^{\circ}$

In this section we will deal with triangle ladders L_{n}^{α}, where $\alpha \geq 60^{\circ}$. The following theorems describe the simple solution in this case.

Theorem 4.1 If $\alpha \geq 60^{\circ}$, then the $\operatorname{MST} M^{*}\left(L_{n}^{\alpha}\right)$ for L_{n}^{α} which consists of the edges $\left(I, A_{1}\right),\left(I, B_{1}\right),\left(A_{i}, A_{i+1}\right),\left(B_{i}, B_{i+1}\right)(i=1, \ldots, n-1)$ is an SMT for L_{n}^{α}.

Proof. Let us consider the triangle $T=I A_{n} B_{n}$. Clearly, $\angle A_{n} I B_{n}=2 \alpha \geq 120^{\circ}$. It follows from Lemma 2.1 that the Steiner minimum tree for the triangle T cannot have any Steiner point. Thus the SMT for T is an MST with the edges $\left(I, A_{n}\right)$ and $\left(I, B_{n}\right)$. Hence, $l\left(M^{*}(T)\right)=d\left(I, A_{n}\right)+d\left(I, B_{n}\right)=d\left(I, A_{1}\right)+d\left(A_{1}, A_{2}\right)+\ldots+$ $d\left(A_{n-1}, A_{n}\right)+d\left(I, B_{1}\right)+d\left(B_{1}, B_{2}\right)+\ldots+d\left(B_{n-1}, B_{n}\right)=l\left(M^{*}\left(L_{n}^{\alpha}\right)\right)$. It is obvious that $T \subset L_{n}^{\alpha}$. So Lemma 3.8 yields that the SMT for T is an SMT for L_{n}^{α}.

Theorem 4.2 $M^{*}\left(T_{n}^{\alpha}\right)$ which consists of the edges $\left(A_{1}, B_{1}\right),\left(A_{i}, A_{i+1}\right),\left(B_{i}, B_{i+1}\right)$ $(i=1, \ldots, n-1)$ is an $S M T$ for T_{n}^{α}.

Proof. Let us consider the trapezoid $T=A_{1} A_{n} B_{n} B_{1}$. It can be proved by elementary geometry and by Lemma 2.1 that $S^{*}(T)$ does not contain any Steiner point, so $M^{*}(T)$ is an SMT for T. Clearly, $l\left(M^{*}(T)\right)=l\left(M^{*}\left(T_{n}^{\alpha}\right)\right)$ and $T \subset T_{n}^{\alpha}$, so Lemma 3.8 implies the statement.

5 The case $30^{\circ} \leq \alpha<60^{\circ}$

In this section we examine the structure of the SMT for L_{n}^{α}, where $30^{\circ} \leq \alpha<60^{\circ}$. We assume in the whole section that α fulfills the previous inequality.

Lemma 5.1 If a Steiner point is adjacent to a terminal point in $S^{*}\left(L_{n}^{\alpha}\right)$, then there is a path between the terminal points which contains only Steiner points.

Proof. Suppose that in $S^{*}\left(L_{n}^{\alpha}\right)$ the Steiner point S_{1} is adjacent to A_{n}. It follows from Corollary 3.4 that S_{1} lies within the trapezoid $A_{n} B_{n} B_{n-1} A_{n-1}$. If S_{1} is adjacent to B_{n}, then we are ready. Therefore, let us suppose that S_{1} is adjacent to an other Steiner point S_{2}. Because $\angle S_{1} A_{n} B_{n}<90^{\circ}-\alpha \leq 60^{\circ}$ and $\angle A_{n} S_{1} S_{2}=120^{\circ}$ the slope of the edge (S_{1}, S_{2}) is negative (see Figure 3).

Figure 3

If S_{2} is adjacent to B_{n}, then we are ready, otherwise we can continue the previous idea. So, we get Steiner points S_{1}, \ldots, S_{k} and S_{k} is finally adjacent to B_{n}.

Lemma 5.2 If a Steiner point S_{1} is adjacent to a terminal point in $S^{*}\left(L_{n}^{\alpha}\right)$, then S_{1} is adjacent to the other terminal point.

Proof. Assume that S_{1} is adjacent to A_{n}. It follows from Lemma 5.1 that there exist Steiner points S_{1}, \ldots, S_{k} such that the edges (S_{i}, S_{i+1}) $(i=1, \ldots, k-1)$ and $\left(S_{k}, B_{n}\right)$ are edges of $S^{*}\left(L_{n}^{\alpha}\right)$. Let us consider the polygon $P=A_{n} S_{1} \ldots S_{k} B_{n}$. It follows from Lemma 3.6 that P is a convex polygon. Let γ be the sum of the angles of P. Because P is a $(k+2)$-gon $\gamma=k 180^{\circ}$. On the other hand $\gamma=k 120^{\circ}+\angle B_{n} A_{n} S_{1}+\angle S_{k} B_{n} A_{n}<(k+1) 120^{\circ}$. It follows that $k 60^{\circ}<120^{\circ}$, and so $k<2$. This inequality implies $k=1$. It means that on the path from A_{n} to B_{n} the only Steiner point is S_{1}.

Lemma 5.3 If $n \geq 2$, then in $S^{*}\left(L_{n}^{\alpha}\right)$ a terminal point is not adjacent to any Steiner point.

Proof. Because of Corollary 3.4 it is to show that a terminal point is not adjacent to a Steiner point which lies within the trapezoid $A_{n} B_{n} B_{n-1} A_{n-1}$. Assume that A_{n} is adjacent to the Steiner point S_{1} which lies in $A_{n} B_{n} B_{n-1} A_{n-1}$. Lemma 5.2 yields that S_{1} is adjacent to B_{n}. It is easy to see that $d\left(A_{n}, B_{n}\right) \geq 2$, because $\alpha \geq 30^{\circ}$ and $n>1$. Clearly, $d\left(A_{n}, S_{1}\right)+d\left(S_{1}, B_{n}\right)>d\left(A_{n}, B_{n}\right) \geq 2$. But this means that at least one of the edges $\left(A_{n}, S_{1}\right),\left(S_{1}, B_{n}\right)$ is longer than 1 , a contradiction to Lemma 3.3.

Theorem 5.4 Let H denotes the triangle $I A_{1} B_{1} . S^{*}\left(L_{n}^{\alpha}\right)$ is the union of the tree $S^{*}(H)$ and the edges $\left(A_{i}, A_{i+1}\right),\left(B_{i}, B_{i+1}\right)(i=1, \ldots, n-1)$. For $n=1,2, \ldots$ the length of $S^{*}\left(L_{n}^{\alpha}\right)$ is given by $l\left(S^{*}\left(L_{n}^{\alpha}\right)\right)=2(n-1)+\cos \alpha+\sqrt{3} \sin \alpha$.

Proof. We prove the theorem by induction on n.
If $n=1$, then clearly $S^{*}\left(L_{n}^{\alpha}\right)=S^{*}(H)$ and it can be proved by elementary geometry that $l\left(S^{*}(H)\right)=\cos \alpha+\sqrt{3} \sin \alpha$.

Suppose now that for $n-1$ the theorem is true. Let us consider L_{n}^{α}. Lemma 5.3 implies that the terminal point A_{n} is adjacent to A_{n-1}, because A_{n-1} is the nearest regular point to A_{n}. Similarly, B_{n} is adjacent to B_{n-1}. It follows from the induction assumption that $S^{*}\left(L_{n}^{\alpha}\right)$ is in fact the union of the tree $S^{*}(H)$ and the edges $\left(A_{i}, A_{i+1}\right),\left(B_{i}, B_{i+1}\right)(i=1, \ldots, n-1)$ and $l\left(S^{*}\left(L_{n}^{\alpha}\right)\right)=l\left(S^{*}\left(L_{n-1}^{\alpha}\right)\right)+d\left(A_{n}, A_{n-1}\right)+$ $d\left(B_{n}, B_{n-1}\right)=2(n-2)+\cos \alpha+\sqrt{3} \sin \alpha+2=2(n-1)+\cos \alpha+\sqrt{3} \sin \alpha$.

In Figure 4 we present the SMT for $L_{2}^{30^{\circ}}$.

Figure 4. $L_{2}^{30^{\circ}}$ and its SMT
Let us how consider $L_{n}^{45^{\circ}}$. If we rotate all points by 135°, then we get the nonnegative, integer points $0,1,2, \ldots, n$ lying on the x and y axis. This is an interesting special case and the length of the. SMT for this points set is given by $2(n-1)+\frac{\sqrt{2}}{2}(\sqrt{3}+1)$.

Theorem 5.5 $M^{*}\left(T_{n}^{\alpha}\right)$ which consists of the edges $\left(A_{1}, B_{1}\right),\left(A_{i}, A_{i+1}\right),\left(B_{i}, B_{i+1}\right)$ $(i=1, \ldots, n-1)$ is an $S M T$ for T_{n}^{α}. The length of $S^{*}\left(T_{n}^{\alpha}\right)$ is given by $l\left(S^{*}\left(T_{n}^{\alpha}\right)\right)=$ $2 n-1$.

Proof. We prove the theorem by induction on n.
If $n=1$, the statements are trivial.
Suppose that the theorem is true for $n-1$ where $n>1$. Because of Lemma 5.3 A_{n} is adjacent to A_{n-1} and B_{n} is adjacent to B_{n-1} in $S^{*}\left(T_{n}^{\alpha}\right)$. The rest of the proof is similar to the proof of Theorem 5.4.

6 The case $\alpha<30^{\circ}$

In this section we present results for the case $\alpha<30^{\circ}$. We show all solutions for $\alpha>14.478^{\circ}$ and outline the general stucture of solutions for smaller angles.

Suppose that $n \geq 2$ and $\left(A_{n}, S_{1}\right)$ is an edge of $S^{*}\left(L_{n}^{\alpha}\right)$. Because of Corollary 3.4 S_{1} lies within the trapezoid $A_{n} B_{n} B_{n-1} A_{n-1}$. Consider the clockwise path P of $\left(A_{n}, S_{1}\right)$. Let $P=A_{n} S_{1} X_{1} \ldots X_{k}$, where X_{j} denotes a regular point or a Steiner point ($1 \leq j \leq k$).
Case 1. $\angle B_{n} A_{n} S_{1}<60^{\circ}$
The edge on P leaving S_{1} has a negative slope, and it can be proved (see Lemma 5.1 and Lemma 5.2) that (S_{1}, B_{n}) is an edge of $S^{*}\left(L_{n}^{\alpha}\right)$.

Case 2. $\angle B_{n} A_{n} S_{1} \geq 60^{\circ}$
a) Suppose that $X_{i} \neq B_{n-1}$ for $1 \leq i \leq k$. Then it follows from Lemma 3.3 that X_{1} a Steiner point. It is easy to check that the edge on P leaving X_{1} has a negative slope. But then $X_{k}=B_{n}$ and X_{1}, \ldots, X_{k-1} are Steiner points. We show that $k=2$. Consider the polygon $A_{n} S_{1} X_{1} \ldots X_{k-1} B_{n}$ and let γ denote the sum of its angles.

Clearly, $\gamma=k 180^{\circ}$. On the other hand $\gamma=k 120^{\circ}+\angle B_{n} A_{n} S_{1}+\angle X_{k-1} B_{n} A_{n}<$ $k 120^{\circ}+180^{\circ}$. Hence, $k 60^{\circ}<180^{\circ}$, and so $k<3$. This last inequality implies $k \leq 2$ and it is trivial that $k \neq 1$.
b) Suppose that there exists an index i with $1 \leq i \leq k$ such that $X_{i}=B_{n-1}$. In this case $\left(B_{n}, B_{n-1}\right)$ is an edge of $S^{*}\left(L_{n}^{\alpha}\right)$: if B_{n} is adjacent to a Steiner point S_{2}, then the counterclockwise path of $\left(B_{n}, S_{2}\right)$ can nowhere end, a contradiction. The fact that (B_{n}, B_{n-1}) is an edge of $S^{*}\left(L_{n}^{\alpha}\right)$ and Lemma 2.1 imply $i \geq 2$, so X_{1} is a Steiner point. As above, the edge on P leaving X_{1} has a negative slope. But then $i=k-1\left(X_{k-1}=B_{n-1}\right), X_{k}=B_{n}$ and X_{1}, \ldots, X_{k-2} are Steiner points. Similarly as above, it can be proved that $k=3$, so $X_{2}=B_{n-1}$ and $X_{3}=B_{n}$.

Concluding these results, we show in Figure 5 and in Figure 6 the possibilities of subgraphs of $S^{*}\left(L_{n}^{\alpha}\right)$, which contain the terminal points. There are four cases. The subgraph T_{1} contains the edges $\left(A_{n}, A_{n-1}\right)$ and (B_{n}, B_{n-1}). In T_{2} the terminal points are adjacent to a common Steiner point. The subgraph T_{3} contains the edge $\left(B_{n}, B_{n-1}\right)$ and the clockwise path from A_{n} to B_{n-1} with two Steiner points. In T_{4} the terminal points are adjacent to different Steiner points S_{1}, S_{2} and S_{1} is adjacent to S_{2}. Note that there is a fifth case, namely if $\left(A_{n}, A_{n-1}\right)$ is an edge and there is clockwise path from B_{n} to A_{n-1} with two Steiner points. But because of symmetry this case is similar to T_{3}.

Figure 5. The subgraphs T_{1} (left) and \dot{T}_{2} (right)

Figure 6. The subgraphs T_{3} (left) and T_{4} (right)

In the following we shall need two results which can easily be derived by elementary geometry.
(i) Consider any quadrangle $A B C D$ with $\angle C D A=\angle B C D=120^{\circ}$. If $d(A, D)=d(B, C)=d(C, D)=1$, we get $d(A, B)=2$. Therefore, if $d(A, B)>2$, then at least one of the distances $d(A, D), d(B, C), d(C, D)$ is greater than 1 .
(ii) Consider the trapezoid $A_{n} B_{n} B_{n-1} A_{n-1}$. It is easy to see that $d\left(A_{n-1}, B_{n-1}\right)=2(\dot{n}-1) \sin \alpha$. By the cosine law we get

$$
\begin{gather*}
d\left(A_{n}, B_{n-1}\right)=\sqrt{1+4(n-1)^{2} \sin ^{2} \alpha-4(n-1) \sin \alpha \cos \left(90^{\circ}+\alpha\right)}= \\
\sqrt{1+4 n(n-1) \sin ^{2} \alpha} \tag{1}
\end{gather*}
$$

The next theorem tells us, when the terminal points in $S^{*}\left(L_{\alpha}^{n}\right)$ are adjacent to A_{n-1} and B_{n-1}.

Theorem 6.1 Let

$$
\begin{equation*}
N_{\alpha}=\max \left\{\frac{1}{\sin \alpha}, \frac{\sqrt{1+\frac{3}{\sin ^{2} \alpha}}+1}{2}\right\} \tag{2}
\end{equation*}
$$

If $n>N_{\alpha}$, then $\left(A_{n}, A_{n-1}\right)$ and $\left(B_{n}, B_{n-1}\right)$ are edges of $S^{*}\left(L_{n}^{\alpha}\right)$.
Proof. Let $n>N_{\alpha}$. We will show that $S^{*}\left(L_{n}^{\alpha}\right)$ cannot contain the subtrees T_{2}, T_{3} and T_{4}.

The condition $n>\frac{1}{\sin \alpha}$ guarantees that $d\left(A_{n}, B_{n}\right)=2 n \sin \alpha>2$. If T_{2} occurs, then due to the triangle inequality at least one of the edges (A_{n}, S_{1}) or (S_{1}, B_{n}) must be longer than 1. This is impossible due to Lemma 3.3. If T_{4} occurs, we note first that the angles in S_{1} and S_{2} are 120°, since S_{1} and S_{2} are Steiner points. Therefore by (i), one of the edges $\left(A_{n}, S_{1}\right),\left(S_{1}, S_{2}\right)$ or $\left(S_{2}, B_{n}\right)$ is longer than 1 , which again is impossible. The condition $n>\frac{\sqrt{1+\frac{3}{\sin ^{2} \alpha}}+1}{2}$ guarantees that $d\left(A_{n}, B_{n-1}\right)>2$ (insert this expression in (1)). An analogue argument as above using (i) and Lemma 3.3 shows that T_{3} cannot occur.
Corollary 6.2 Let $n_{\alpha}=\left[N_{\alpha}\right]$. For any $n>n_{\alpha}$ the edges $\left(A_{n}, A_{n-1}\right), \ldots,\left(A_{n_{\alpha}+1}, A_{n_{\alpha}}\right)$ and $\left(B_{n}, B_{n-1}\right), \ldots,\left(B_{n_{\alpha}+1}, B_{n_{\alpha}}\right)$ are edges of $S^{*}\left(L_{n}^{\alpha}\right)$.

It is easy to see that

$$
\begin{equation*}
\frac{1}{\sin \alpha}=\frac{\sqrt{1+\frac{3}{\sin ^{2} \alpha}}+1}{2}, \text { if } \sin \alpha=\frac{1}{4} \tag{3}
\end{equation*}
$$

and

$$
N_{\alpha}= \begin{cases}\frac{1}{\sin \alpha}, & \text { if } \sin \alpha \leq \frac{1}{4}\left(\alpha \leq 14.478^{\circ}\right) \tag{4}\\ \frac{\sqrt{1+\frac{3}{\sin ^{2} \alpha}}+1}{2} & \text { otherwise }\end{cases}
$$

The previous corollary has the following consequence. If we fix α, we compute at first the number n_{α}. If $n>n_{\alpha}$, then the construction of the SMT $S^{*}\left(L_{n}^{\alpha}\right)$ is divided into two parts. First, we must construct the SMT $S^{*}\left(L_{n_{\alpha}}^{\alpha}\right)$ which we call the upper component. Then we have to connect the points $A_{n_{\alpha}+1}, \ldots, A_{n}, B_{n_{\alpha}+1}, \ldots, B_{n}$ by the edges described in Corollary 6.2 to the upper component $S^{*}\left(L_{n_{\alpha}}^{\alpha}\right)$.

Now we want to apply the above procedure for angles, which yield $n_{\alpha}=2$. To do this, we have to determine $S^{*}\left(L_{2}^{\alpha}\right)$ for any α.

We know already $S^{*}\left(L_{2}^{\alpha}\right)$ for $\alpha \geq 30^{\circ}$. Let us suppose $\alpha<30^{\circ}$. Then $M^{*}\left(L_{2}^{\alpha}\right)$ contains the edge (A_{1}, B_{1}). But Lemma 3.5 tells us that this $M^{*}\left(L_{2}^{\alpha}\right)$ cannot be an SMT. Thus $S^{*}\left(L_{2}^{\alpha}\right)$ has at least one Steiner point. Suppose that $S^{*}\left(L_{2}^{\alpha}\right)$ has one Steiner point. It can easily be seen that in this case the Steiner point S_{1} is adjacent to the points I, A_{1} and B_{1} (use Lemma 2.1). Let T_{2}^{1} denote the tree which consists of the edges $\left(A_{2}, A_{1}\right),\left(B_{2}, B_{1}\right),\left(A_{1}, S_{1}\right),\left(B_{1}, S_{1}\right)$ and $\left(S_{1}, I\right)$. The structure of T_{2}^{1} can be seen in Figure 4. The length of T_{2}^{1} is $2+\sqrt{3} \sin \alpha+\cos \alpha$.

If $S^{*}\left(L_{2}^{\alpha}\right)$ has 3 Steiner points (it is a full tree), then it is unique up to reflection. This tree is denoted by T_{2}^{2} and shown in Figure 7. The length of T_{2}^{2} is given by $l\left(T_{2}^{2}\right)=\sqrt{4+6\left(4 \sin ^{2} \alpha+\sqrt{3} \sin 2 \alpha\right)}$.

Figure 7. L_{2}^{α} and the tree T_{2}^{2}
As last case there remains the possibility that $S^{*}\left(L_{2}^{\alpha}\right)$ has two Steiner points (S_{1} and S_{2}).
(a) S_{1} is adjacent to I, A_{1}, B_{1} and S_{2} to A_{1}, A_{2}, B_{2}. This is impossible, because $\angle S_{1} A_{1} S_{2}<120^{\circ}$.
(b) S_{1} is adjacent to A_{1}, S_{2}, A_{2} and S_{2} to B_{1}, B_{2}, S_{1}. Then $S^{*}\left(L_{2}^{\alpha}\right)$ contains the edge $\left(A_{1}, I\right)$ or $\left(B_{1}, I\right)$. It can be verified that the length of this tree is greater than the length of T_{2}^{1} or T_{2}^{2}, a contradiction.
(c) S_{1} is adjacent to A_{1}, S_{2}, B_{1} and S_{2} to A_{2}, B_{2}, S_{1}. Then $S^{*}\left(L_{2}^{\alpha}\right)$ contains the edge $\left(A_{1}, I\right)$ or (B_{1}, I) and in at least one of these cases we get an angle which is less than 120°, a contradiction. (If we choose the other case, we cannot get an SMT, because the two possible trees have the same length.)

Concluding these observations, we have
Theorem 6.3 $S^{*}\left(L_{2}^{\alpha}\right)$ is of one of the following types (see Figure 8).
Type a) is optimal for $a \geq 60^{\circ}$, Type b) is optimal for $17.344^{\circ}<\alpha<60^{\circ}$ and Type c) is optimal for $\alpha<17.344^{\circ}$.

Figure 8. The three types (a,b,c) of SMTs for L_{2}^{α}

Note that Type c) is a full SMT.
Moreover, one can prove by a rather time consuming distinction of cases that for all α with $\sin \alpha>\frac{1}{4}, S^{*}\left(L_{3}^{\alpha}\right)$ contains the edges $\left(A_{3}, A_{2}\right)$ and $\left(B_{3}, B_{2}\right)$. On the other hand if α fulfills the above inequality, $N_{\alpha}<4$ holds. Hence, $n_{\alpha}=3$. This means that we know the SMTs for L_{n}^{α} for all n and for all α with $\sin \alpha>\frac{1}{4}$ (see Corollary 6.2).

For smaller angles an explicit analysis is complicated due to the many possible cases. We have seen that the tree T_{2}^{2} is an FSMT. But for example if $\alpha=10^{\circ}$, the SMT $S^{*}\left(L_{3}^{\alpha}\right)$ is not an FSMT, it has only 4 Steiner points. The structure of the SMT for $L_{3}^{10^{\circ}}$ can be seen in Figure 9.

Figure 9. The structure of the SMT for $L_{3}^{10^{\circ}}$
A principal solution method for smaller angles consists in determining the corresponding n_{α}, then the determination of an SMT for $L_{n_{\alpha}}^{\alpha}$ which is finally complemented by edges on the sides of the angle. The determination of $S^{*}\left(L_{n_{\alpha}}^{\alpha}\right)$ can be done by a general purpose Steiner tree algorithm, see e. g. Cockayne and Hewgill (1992). This method is well applicable for sets of up to 100 regular points. In our case it means that by this method problems with $\alpha \geq 1.17^{\circ}$ can be tackled.

References

[1] R. E. Burkard, T. Dudás and T. Maier, Cut and Patch Steiner Trees for Ladders, SFB Report 12, Institut für Mathematik, TU Graz (1994), in Discrete Mathematics 162 (1996).
[2] F. R. K. Chung, M. Gardner and R.L. Graham, Steiner trees on a checkerboard, Mathematics Magazine 62 (1989), 83-96.
[3] F. R. K. Chung and R. L. Graham, Steiner Trees for Ladders, Annals of Discrete Mathematics 2 (1978), 173-200.
[4] E. J. Cockayne and D. E. Hewgill, Leaf paths of full Steiner trees and computation of planar Steiner minimal trees, Algorithmica 7 (1992), 219-229.
[5] R. Courant and H. Robbins, What is Mathematics?, Oxford Univ. Press, New York (1941).
[6] D. Z. Du and F. K. Hwang, Steiner minimal trees for bar waves, Acta Mathematicae Applicatae Sinica 3 (1987), 246-256.
[7] D. Z. Du, F. K. Hwang and S. C. Chao, Steiner minimal trees for points on a circle, Proceedings of the American Mathematical Society 95 (1985), 613-618.
[8] D. Z. Du, F. K. Hwang, G. D. Song and J. F. Weng, Steiner minimal trees on sets of four points, Discrete and Computational Geometry 2 (1987), 401-414.
[9] D. Z. Du, F. K. Hwang and J. F. Weng, Steiner minimal trees on zig-zag lines, Transactions of the American Mathematical Society 278 (1983), 149-156.
[10]. D. Z. Du, F. K. Hwang and J. F. Weng, Steiner minimal trees on regular polygons, Discrete and Computational Geometry 2 (1987), 65-87.
[11] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Berlin, Springer (1987).
[12] M. R. Garey, R. L. Graham and D. S. Johnson, The complexity of computing Steiner minimal trees, SIAM J. Appl. Math. 32 (1977), 835-859.
[13] F. K. Hwang and D. Z. Du, Steiner minimal trees on Chinese checkerboards, Mathematics Magazine 64 (1991), 332-339.
[14] F. K. Hwang, D. S. Richards and P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics 53 (1992), Amsterdam, North-Holland, 3-10.
[15] V. Jarník and O. Kössler, O minimálních grafech obsahujících u daných bodu, Cas. Pêstováni Mat. 63 (1934) 223-235.
[16] Z. A. Melzak, On the problem of Steiner, Canad. Math. Bull. 4 (1961), 143148.

[^0]: *This research has been partially supported by the Spezialforschungsbereich F 003 "Optimierung und Kontrolle" / Projektbereich Diskrete Optimierung.
 ${ }^{\dagger}$ TU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria

