
Acta Cybernetica 12 (1996) 217-233.

representing RE languages by one-sided internal
contextual languages*

A. Ehrenfeucht 1 A. Mateescu * Gh. Paun *

G. Rozenberg + § A. Salomaa *

A b s t r a c t

In this paper we prove that each recursively enumerable language L can
be written in the form L — cutd(L' fl R), where L' is a language generated
by a one-sided internal contextual grammar witli context-free choice, R is a
regular language, and cutd is the operation which removes the prefix bounded
by the special symbol d, which appears exactly once in the strings for which
cutd is defined.

However, the context-free choice sets are always deterministic linear lan-
guages of a very simple form. Similar representations can be obtained using
one-sided contextual grammars with finite choice and with erased or with
erasing contexts.

K e y w o r d s . Formal languages, contextual grammars, recursively enumer-
able languages.

1 Introduction
In [3] it is proved that each recursively enumerable language L can be written in the
form L — cutd(L' D R), where L' is a finite choice internal contextual language, R
is a regular language, and cutd is the operation which removes the prefix; bounded
by the special symbol d, which appears exactly once in the strings for which cutd is
defined. It is also asked in [3] whether or not the language L' can be generated by
an internal contextual grammar with one-sided contexts only, and it is conjectured
that the answer is negative. We prove that each recursively enumerable language
L can be written in the form L = cutd(L' fl R), where V is a language generated
by a one-sided internal contextual grammar with context-free choice, R is a regular

•Research supported by the Academy of Finland, project 11281, and the E S P R I T Basic Re-
search Working Group ASMICS II. All correspondence to Alexandru Mateescu.

t Department of Computer science, University of Colorado at Boulder, Boulder, CO 80309,
U.S.A.

* Academy of Finland and University of Turku, Department of Mathematics, FIN-20014 Turku,
FINLAND

§Leiden University, Department of Computer Science, P.O.Box 9512, NL-2300 RA Leiden,
T H E NETHERLANDS

217

218 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

language, and cutj is the operation which removes the prefix bounded by the special
symbol d, which appears exactly once in the strings for which cutd is defined.

An internal contextual (ic, for short) grammar (as introduced in [9], as a coun- -
terpaxt of external contextual grammars in [7]), consists of an alphabet, a finite set
of starting strings (axioms), and a finite set of context adjoining productions of the
form (C, u$v), where C is a finite set of strings and u,v are strings over the given
alphabet. For each x € C we can assume that there is a rewriting rule x —> uxv (the
context (u,v) is adjoined to x). When all productions are of the form (C, $v), then
we say that the grammar is a one-sided one. All the strings obtained by finitely
many adjoinings, starting from axioms, constitute the language generated by the
grammar. When all sets C are of a given type F, we say that the grammar has
F-choice (or ^-selection).

The family of languages generated by a (one-sided) ic grammar with finite choice
includes strictly the family of regular languages, is incomparable with each family
intermediate between those of linear and of context-free languages and is strictly
included in the family of context-sensitive languages [8], [10].

In [3] it is proved that every recursively enumerable (RE, for short) language L
can be written as L = cutd(L' n R), where L' is a finite choice ic language, R is
a regular language and cutd is the operation which maps x\dx2 into x^, providing
X\X2 contains no occurrence of d. The last section of [3] asks wheter or not L' above
can be a one-sided ic language. In [10] it is shown that the restriction to one-sided
contexts decreases strictly the power of ic grammars, for all types of selection, which
leads to the conjecture in [3] that the answer to this problem is negative. However,
all context-free languages L can be written as L = h(L' fi R), for h a week coding,
L' a finite choice one-sided ic language, and R a regular set. Moreover, there are
non-context-free languages which can be represented in this way.

Here we contribute to this question by proving that for each RE language L
there is a one-sided ic language L' with context-free selection and a regular language
R such that L = cutd(L' fl R). Therefore, we pay the price of using a one-sided ic
language in the representation in [3] by involving context-free languages as choice
sets. In fact, the used context-free languages are of three particular types, namely
finite, deterministic linear, or of the form where z is a string of length
two and Li is a deterministic linear language. Further arguments supporting the
conjecture in [3] are also discussed. It is shown that representations ELS above can be
obtained when using grammars with finite selection, providing we also use erased
or erasing contexts, in the sense of [10].

The proof of our results makes use of the one-sided normal form for context-
sensitive grammars, [11].

2 Formal language prerequisites

We refer to [12] for basic formal language notions and results we use here, and we
specify only some notations.

For an alphabet V, V* is the free monoid generated by V, A is the empty string,

On representing RE languages by one-sided internal contextual languages 219

| x | is the length of x G V*, \ x |a is the number of occurrences of the symbol a in
x, and V+ = V* — {A}. A morphism h : V* U* is called coding if h(a) G U for
all a G V and week coding if h(a) £ U Li {A} for all a G V.

The left quotient of a language L2 with respect to a language L\ is:

Li\L2 = {iv | uw € L2 for some u G Li} .

For the alphabet Vn = {a\,bi,... ,an,bn}, the Dyck language Dn is defined as
the smallest set E C V* such that:

1) A G E,

2) if x, y e E, then xy G E,

3) if x G E, then xiaibix2 G E for all 1 < i < n and x\x2 G V* such that
X — XIX2.

A Chomsky grammar is written in the form G = (N, T, S, P), where N is the
nonterminal alphabet, T is the terminal alphabet, S G TV is the axiom, and P is
the set of productions. The families of finite, regular, linear, context-free, context-
sensitive, recursively enumerable and of arbitrary languages are denoted by FIN,
REG, LIN, CF, CS, RE, ARB, respectively.

3 Internal contextual grammars
Let F be a family of languages. An ic grammar (with F choice) is a triple

G = (V, M, P)

where V is an alphabet, M is a finite set of strings over V, and P is a finite set of
pairs (C,u$v), where C G F, u,v are strings over V and $ is a special symbol not
in V.

The elements of M are called axioms, those of P are called productions', for a
production 7r = (C,u$v), C is called the selector and (u, v) the context of 7r.

For any ic grammar G = (V, M, P) and x,y G V*, we write x => y iff x = x\zx2,
y = x\uzvx2 and (C,u$v) is a production of P with z G C. Denoting by =>* the
reflexive and transitive closure of =>, the language generated by G is defined by:

L(G) - {y G V* | x =>* y for some x G M}.

If all productions of P are of the form (C, $t>), then we say that G is a one-sided
ic grammar.

We denote by IC{F) the family of languages generated by ic grammars with F-
choice and by 1IC(F) the family of languages generated by one-sided ic grammars
with F choice.

Proofs of the following results can be found in [8], [9], [10], [3] :

220 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

1) REG C 1 IC(FIN) C IC{CS) C CS

2) IC(FIN) C IC(REG) C IC(CF) C IC{CS) C IC(RE)

3) for all F containing the finite languages, 1IC(F) and IC(F) are incomparable
with each family F' such that LIN C F' C CF (there are linear languages
not in IC(ARB) and there are non-context-free languages in 1 IC(FIN)).

For instance, the linear language

L = a+ U {anbn | n > 1}

is not in IC(ARB) [8]. Consider also the ic grammar

G = ({a,b,c,d,e},{a},P),

P = {(a, Uc), (a, $cb), (cbbc, $6), (bccb, $c), (ebb, $d),{bcc, $e)}.
(Usually we write the singleton languages {z} without parenthesis.)

In [3] it is proved that

L(G) n a(cbb)+(de)+ = {a(cbb)n (de)m \m>l,n> 4m + 2{im~1 - l) /3 , n even},

which implies that L(G) is not a context-free language.

4 Representing RE languages using ic languages
For an alphabet V and a symbol d ^ V, we define the operation

cutd : V*dV* V*

cutd(xidx2) =X2,XI,X2 6 V*.

The main result in [3] is

Theorem 1 Every language L g RE can be written in the form L = cut¿(L' n
R), for V e IC(FIN), R& REG.

Because we shall use here a similar idea, we recall the construction in [3] :
Take LCV*, Le RÉ, and a type 0 grammar for L, G = (N, V, S, P). Denote

lhs(P) = {u £ (N U V)* | u v £ P)

(the left hand sides of rules in P) and consider the new symbols [,] , ! " , # • We
construct the ic grammar

G = (A r u V U { [,] , h , # } , { S # } , P ')

with P1 containing the following productions :

On representing RE languages by one-sided internal contextual languages 221

1) (u, [S]u), for each u —> v G P,

2) (a[u] ,h$a) ,aeJVU^ue! / is (P) ,

3) (a 1-/3,1- $a), for a, /? 6 TV U V,

4) (a# ,h $a), for a G V.

Consider also the regular language

R = ({[«] I u G lhs(P)} U {h Q I a G TV U V})*#V.

Then
cut#(L{G')NR) = L(G).

The symbols [,], b are called killers ; a pair [] kills all symbols bracketed by [and
], whereas I- kills the symbol to the right of it. The intersection with R ensures
that rules of type 1 are applied to alive symbols only, killing the substring u of the
current string and introducing the alive string v. Rules of type 2 and 3 move alive
symbols from the left to the right, crossing over dead symbols. By rules of type 4,
the alive terminal symbols can be transported to the right of # . Eventually a string
of the form i o # z is obtained, with w containing only killers and dead symbols and
z G L(G).

The main result of the present paper is:

Theorem 2 Every language L G RE can be written in the form L = cutd(L' fi
R), wi th L' £ IIC{CF) and R G REG.

Proof Let us recall a result from [11]. A (grammatical) transformation (often
also called a rewriting system) is a triple T = (TV, T, P), where TV is a nonterminal
alphabet, T is a terminal alphabet and P is a finite set of rewriting rules over TVUT.
For a language L C TV* we define

T{L) = {a; G T* | y =>* x for some y G L}.

According to Theorem 3 and the remarks following it in [11] (see also [6]), each
language L G CS, L C T*, can be written in the form L = T(L0), FOR a regular
language LQ C TV* and r = (TV, T, P) a transformation with the productions in P
of the forms

A ^ B, AB ->• AC, A a, for A,B,C G TV, a € T.

Note that r contains either context-free rules or left-context rules AB —> AC (no
one of them increasing the length of the current string).

Let us now take a language L G RE, L C T*. There are two new symbols
b,c £ T, and a language L' C b*CL, V G CS, such that for every w £ L there
is a string blcw in L'. We denote X" = T U {b, c}. For this language L', consider
L0 G REG, and r as above, r = (TV0, T', P), L0 C TV*, such that TV0 n V = 0 and
V = T{L0). Take a grammar GO = (TVi(TV0, X 0 l P 0) with TVjHTVo = 0, NI PIT" = 0,
generating LQ, with TVi = TV{ U {XF} and with the rules in PQ of the forms

222 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

a) XI - > X2A, f o r XI G N[,C2 ENUAE N0,

b) XF A.

(Such a grammar always exists for a regular language: take a left-regular grammar
and replace each terminal rule X-TABYX-^XFA, then add the rule XF —> A .)

We construct the ic grammar

G = (W,M,P')

with W = Ni U N0 U T" U {], d), for d a new symbol, M = { X 0 } and P' contains
the following productions:

1) (X I . S ^ A) , for X ! X2A G PO,X! G N[,X2 G NUA G N0,

2) (A : / , $]) ,

:3) (A, $]a), for A -4 a G P, ,4 G Â o, a G N0 U T',

4) (A B , $]]AC) , for AB A C G P, A , B , C G N0,

5) ({ax]!1 ' | x G (7V0 U T ') + } , $]a), for a G N0 U T\

6) | x G (./Vo UT')+}+6*c,$(i)

Consider also the regular language

R= { X] | X G JVIJ+IAT/JXJVO U T ' U {]>.)*DT*.

We claim that:
L = cutd{L{G) n R) (*)

Note that only the productions in groups 5,6 contain selectors which are not sin-
gleton languages.

Assume JV0UT' = { a i , . . . , an} and consider the Dyck.language Dn. We define
the coding <p by <p(ai) = a^ y>(bi) =], for 1 < i < n.

The intuition behind the previous construction is the following. The symbol] is
a killer. Each occurrence of] kills a symbol a in iVo U T" according to the following
rules:

1) if x = X\Q\X2, for a G Ni, then the specified occurrence of A is killed by the
specified occurrence of],

2) if x = x!a]x2]^]x3, for a 6 N0UT' and x2 G (N0\JT')*, then a is killed by
the occurrence of] in front of £3.

The productions of type 1,2 in P' produce a string in Go, together with a
sequence of dead symbols and killers. The productions of type 3,4 simulate corre-
sponding rules in r. The productions of type 5 move alive symbols from left to the
right, across dead symbols and killers. This is useful both for preparing substrings

On representing RE languages by one-sided internal contextual languages 223

AB for productions of type 4 and for transporting to the right alive copies of ter-
minals. In order to obtain a string in R we must use exactly once the production of
type 6. This ĉhecks whether the pairs X], X £ AY, appears in the left of symbols
used when simulating the work of r and that all symbols in the left of d are either
killers or dead symbols (hence the derivation in T is terminal), or alive b and c.

The inclusion L C cutd(L(G) fl R) can be easily proved. Namely, take a deriva-
tion in the grammar Go,

X0 XxAi X2A2Ai =>...=> XkAk ... A2AX => Ak ... A2Ai

According to the form of productions of Go, Xk = Xf and Xt ^ Xf for all
1 < i < k — 1. Consider also a derivation in r starting from Ak ... A2A\.

wo = Ak ... A2Ai => w\ w2 => ... =>ws = blcw,

for some w £ T*, w £ L, i > 0 .
The derivation

X0 => XojXiAi XojX^X^Ai =>...

...=> ... Xk^]XfAk ... A2 At => X0] Xi]... Xk~i]Xf]Ak ... A2Ai

is obviously possible in G.
For a string 2 generated by G, let us denote by alive (z) the string obtained by

erasing the dead symbols and the killers from z. Then

alive (Xo]X x] . . .]Xf]Ak ... A2AX) = Ak... A2Ai = w0

and

... Xk^)Xf}Ak ... A2Ai => Xo jX j] . . . Xf}w[

can be obtained in G with alive (X 0]X i] . . . Xf]w[) = wi. (A rule of type 3, 4 is
in P', corresponding to the rule used intuo => w\ •) Now, using rules of type 5, all
the alive symbols in w[can be moved to the right, thus obtaining

XolXx]... Xf]w[X0]Xi] • • • Xf]w'{wi.

The process can be iterated, each step Wi => Wj+i can be simulated in G and
after such a step the alive symbols can be transported to the right. Finally we
obtain a string z = Xo }X{\.. .Xf\u)"ws, hence with alive(z) — ws. The rule of
type 6 is now applicable and we get a string in R ended with blcdw. Using the
operation cutd we obtain the string w € L.

Conversely, let us take a string w £ cutd(L(G) fl R).
There is a successful derivation in G,

5 : XQ =>* z\Xf]z2dw,

224 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

for some Zl 6 {X}\ X e Nx}+ , z2 G (N0 U T' U {] }) * , w G T* (this is the form of
strings in R).

Assertion 1 For every successful derivation 6 as above there is a successful
derivation of the form

6' : Xo =>* ziXf]w\ => ZiXf]Z2dw,

that is, a derivation with the rules of types 1,2 used before using any rule of other
types.

Indeed, every derivation in G starts by a rule of type 1, iVi fl (N0UT') = 0 , and
the symbols in N\ do not appear in rules of type 5 (hence they cannot be moved).
Consequently, the rules of types 1,2 do not interfere with rules of other types, if we
have

X 0] . . . Xj]Xj+1Aj+1 ... Aj. X 0] . . . X^Xj+iu => X 0] . . . X ^ X ^ J X , ^

then we may change the order of using rules, thus producing

Xo] . . . Xj]Xj-|_i Aj+i ... A\ =>

=> Xo] •.. Xj]Xj+ i]Xj+2 Aj+2 Aj+i . . . Ai =>*

Xo] . . . Xj]Xj + i]Xj + 2Aj + 2U

By induction on the length of zi we have the assertion.

Assertion 2 If in a successful derivation 6' as above we use further rules of
types 1,2 for deriving the prefix z^Xf], then we obtain a derivation 6" which is not
successful.

Take z = Xo] . . .Xk]Xf]. If we use a production (Xi,$]YA), then we obtain
X 0] . . . Xi-i}Xi}YA]Xi+i\... Xf] and A, as well as, any symbol in N0 U T" derived
from A by rules of types 3,4 cannot go to the right of Xf], the obtained string will
not be in R, the derivation is not a successful one. If we use (Xf, $]), then we get
X 0] . . . X/t]X/]] and again the form of strings in R is contradicted.

Consequently, in view of Assertions 1 and 2 we can consider from now on only
derivations in G of the form Z\Xf]wi =>* Z\X¡]Z2dw using productions of types
3-6 for deriving wi. Thus we shall discuss only derivations x =>* y, for x € (No U
T" U {]})*• We call such a derivation successful when it is a part of a successful
complete derivation in G.

Assertion 3 If in a derivation u => v in G we use a production of type 3,
(A, $]a), a G NQ U T', for an occurrence of A which is alive in u, then A will be
dead in v and the newly introduced occurrence of a is alive in v.

Indeed, if u = u\Au2 and u cannot be written in the form u = uiAu^u'i for
u'2 G tfi(Dn), then u = uiA]au2 and we cannot have u = u\ A]av'2]v'2 for some
v'2 G <p(Dn) (otherwise u = uiAv^v'^), hence a is alive in v.

On representing RE languages by one-sided internal contextual languages 225

Assertion 4 If in a derivation u v in G we use a production of type 4,
(AB, $]]AC), A,B,C G No for alive occurrences of A, B in u, then A,B are dead
in v and .4, C are alive in v.

Indeed, if u = u\ABu2 and u cannot be written in the form u = uiABu^u^,
for u'2 €• ip(Dn), or in the form u = uiABui^u'^u'^1, for u'2,u'2 G <p(Dn), then
v = u-iAB)]ACu2 and we cannot have v = u\AB}]ACv2}}v2 for some v'2 G f(Dn)
(otherwise u - uiABv^v'^) or v = uiABWACv^v'^v'^, for v'2,v% G f(Dn) (oth-
erwise u"= uiABv^v'^v'i'). Consequently, A and C are alive in V.

Assertion 5 If in a derivation u => v in G we use a production of type 3,
(.A, %), a € Nq UT', for an occurrence of A which is dead in v, then both A and
a are dead in v.

Take u = uiAu2]w3 for u2 G y{Dn)- Then v = uiA]cm2]u3 and, clearly, both A
and a are dead symbols in v.

Assertion 6 If in a derivation u => v in G we use a production of type 4,
(AB, $]]AC), A,B,C G No, for dead A, B symbols in u, then in v all involved
occurrences of A,B,C are dead.

Indeed, for u = uiABu2]]u3, with u2 G <p(Dn), we get v = uiAB]]ACu2]]u3 ,
and for u = uiABu2]u3]ii4, with u2 ,u3 G <p{Dn), we get v = uiAB]]ACu2]u3]u4.
Clearly, the specified occurrences of A,B,C are dead in v.

Assertion 7 If in a derivation u v in G we use a production of type 4,
(AB,$]]AC), for A,B such that A is alive and B is dead in u, then the new-
occurrence of A will be alive in v, whereas the old occurrence of A, the occurrence
of B and the new occurrence of C are dead in v.

If u = ui ABu2]u3, for U2 E <p(Dn), but we do not have u = ui ABu2]]u3, for
u2 G <p{Dn), or U = U\ABU2]uz\UI, for U2,U3 G <p(Dn),then v = t t i A B]] A C u 2] u 3

(hence the first occurrence of A, as well as B and C are dead symbols), but we
cannot have v = u\AB}]ACv2\\VZ, for t>2 G y>{Dn) (otherwise u = UIABU2]]V3 or
v = u\AB]\ACv2]vs]vi); consequently, the newly introduced occurrence of A is
alive.
(This is the place where the one-sided normal form for context-sensitive grammars
is essentially useful; for the rest of the proof a grammar in the Kuroda normal form
would suffice.)

As we cannot have A dead and B alive in a substring AB, there are all the cases
of applying productions of types 3,4.

Consider now the use of a production of type 5.

Assertion 8 If in a derivation u => v in G we use a production of type 5, that
is to some ax]'1 ' we adjoin]a, a G No UT', and the used a is alive in u, then it will
be dead in v and the newly introduced occurrence of a will be alive in v.

If u = u\ax]\x\u2 and we cannot have u — uiax^u'^u'^ for u'2 G f(Dn) , then
v — uiQx]lIl]au2 (clearly, the first occurrence of a is dead in v) and we cannot

226 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

have v = u\ax}^]a}v2)vA, for some v2 G <p(Dn) (otherwise u = U\ax]^v2]vz);
consequently, the new occurrence of a is alive.

Assertion 9 If in a derivation u => v in G we use a production of type 5,
namely we replace some ax]^ by]a, aGiVoU T", such that the used a is dead in
u, then it will be dead in v, too, and also the new occurrence of a will be dead in
v.

If u = uax^x\]au2}uz, for u2 G ip(Dn), then v = uax]lIl]au2]w3, which implies
that both specified occurrences of a are dead in v.

As a consequence of Assertions 3-7, we have:

Assertion 10 If in a derivation u => v in G we use a production n of types 3,4,
then alive(u) => alive(v) in r, namely by using the rule in P corresponding to 7r.

Moreover, from Assertions 8,9 we get:

Assertion 11 If u v is a derivation in G using a production of type 5, then
alive(u) = alive(v).

Consequently, for each (successful) derivation in G,

<5 : Xo =S>* Z\Xf\u>i z\Xf]w2 =>. . .=> ziXf]wk

the subderivation
Wl => U)2 =$>...=> U)k

corresponds to a derivation in r

w\ = alive(wi) => alive(w2) =>...=> alive(wk) (**)

Consider now the use of a production 6. It only introduces an occurrence of
d (and no killer). Because d is not involved in other productions, in view of the
form of strings in R, such a rule can be used exactly once and to the right of
the introduced d we must have only symbols in T. Because the selector of the
production 6 is bounded by the prefix X/] and a suffix blc, it follows that the whole
string to which this rule is applied is of the form

ZiXf]Wk = Z\Xf]uiblCU2

for Ui G {No U T ' U {]})* such that alive(ui) = A, and i > 0, whereas u2 G T*.
Hence we obtain

z\Xf]uiblcu2 => ziXf]uiblcdv,2-

In view of (**), this implies that blcu2 G r(Lo) = L' hence u2 G L. Because
in the above writing, alive(u\) = A, if we continue to apply to U\ productions of
types 3,4 or 5, then we have to use in selectors only dead symbols. According to
Assertions 5,6 and 9, we obtain new dead symbols only, hence the string will remain
in the form zxXf]u\blcdu2 with alive{u\) = A. In conclusion, the derivation will
ultimately produce a string of the form xdu2 with u2 £ L. By the operation cutd we

On representing RE languages by one-sided internal contextual languages 227

obtain u2, hence cutd{L(G) C\R) C L, and this completes the proof of the equality
(*), hence of Theorem 2. ¡-j

Example Here we exemplify the equality (*) from the above proof, for a simple
case. Take the regular language

L0 = CA+B+

generated by
G0 = ({X1,X2,X3,Xf},{A,B,C},X1,

{ X x X1B,Xl -4 X2B,X2 X2A,X2 -> X 3 A , X 3 -> XFC.XF ->• A})

and the transformation

T = ({A,B,C},{aua2,b,c},{C c,A ->• auB a2j).

The produced language is T(LO) = cafa2. The associated ic grammar is

G = ({Xl,X2,X3,Xf,A,B,C,},aua2,b,c,d},{X1},P')

P1 = {(X^S^B), (XU$}X2B), (X2,$]X2A), (X2, $]X3A), (X 3 , $] X f C) , (X f , $]) }U

U(C, $ } c) , (A ,$]a 1) , (B ,$]a 2) , }U

uKjaa;] '1 ' | x € {A, B, C, au a2, b, c ,] } +) , $]a) | a € {A, B,C,alt 03, b,c}}U

U{(^/]{®]|a| I x € {A,B,C,aua2,b,c}+b*c,U)}

whereas

R = {X1},X2],X3]}*{Xf}}{A,B,C,a1,a2,b,c,}yd{a1,a2y.

For a derivation in Go

Xi => XiB => X2BB => X2ABB X3AABB =» XfCAABB => CAABB

followed by a derivation in r

CAABB =>• cAABB => caiABB => ca\aiBB =>• caiaia2B => caiaia2a2,

we construct a derivation in G, leading to the same string 001010202 as follows:

XI => XI]XIB => X^XI]X2BB => Xi]XI]X2]X2]X3AABB =»

(we have simulated the derivation Go)

Xi]Xi]X 2]X2]X 3]X /]C]cA]oiA]aiB]a 2B]o 2

(we have simulated the derivation r; all the underlined symbols are alive, the other
are dead)

=> Xi]Xi]X2}X2]X3\Xf]C}cA\a1A\a-iB}a2B\\a2a2 =>

228 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

Xi]... Xf]C]cA)a1A]a-iB]]a1a2B)]a2a2 =>

=> X x] . . .X/]C ,]cA]a1A]aiB]]aia2B]]]a1a2a2

=>* X i] . . . X/]C]cA]]ca1yl]]]caiaiB]]]]caiaia2jB]]]]]ca1a1a2a2

(the alive symbols are separated from the dead ones)

=>• X i] . . . X/]C]cA]]... caiaia2B]]]]]ciiaiaia2a2.

This is a string in R. Cutting the prefix bounded by d we get the string aio.ya2a2.
•

5 Consequences, variants, comments
Because both the intersection by a regular set and the operation cutd can be real-
ized, at the same time, by a gsm, we obtain

Corollary 1 Every language L G RE can be written in the form L = g(L'), for
g a gsm and V G 1 IC(CF).

Moreover, we have

Corollary 2 Every language L G RE, L C T*, can be written in the form
L = (R'\L') n T*, for L' € IIC(CF),R' G REG.

Proof Construct G and R as in the proof of Theorem 2 and take

• R' = { X] | X G iV i } * {X /] } (A f 0 U T ' U T ' U {]})*-№•

Then
cutd{L(G) n R) = (R'\L(G)) n T*.

(We need the intersection with T* in order to prevent cases when strings uiblcdu2,
u2 T*, are produced in G; the intersection with R avoids such cases, but by a
left quotient we can get u2, which is a parasitic string.) •

The use of context-free selections is a very powerful feature. For instance, we
have

Theorem 3 Every language L € RE,L C T*, can be written in the form
L = h(L' n R), where h is a morphism, L' G 1IC{LIN) and R G REG.

Proof It is known [1] that each L G RE can be written as L = hi(Li fl L2),
for hi a morphism and L\,L2 G LIN. For such L\,L2 C V*, we construct the ic
grammar

G = (V U {X1,X2,Y1,Y2},{X1},P)

with P containing the following productions:

On representing RE languages by one-sided internal contextual languages 229

1. (X1:$a),a £ V,

2. (Xi jSXî) ,

3. (XiX2Li,$Y\),

4. {X1X2L2Y1,$Y2).

Take also the regular language

R = X1X2V*Y1Y2

and the morphism h : (V U {XI: X2,Yi,Y2})* T* defined by h(a) = h'i(a) for
a G V, and h(Xi) = h{X2) = H(Ki) = H(Y2) = A.

Then, clearly,

h(L(G) DR) = h(XMLI N L2)YXY2) = h^LX D L2) = L

•
The representation in Theorem 2 cannot be obtained as a consequence of the

results in [1], [4], because LIN - IIC(CF) ± 0.
Note that the main difference between representations in Theorems 2 and 3 is

the use of the operation cut¿ in Theorem 2 and of an erasing morphism in Theorem
3. Moreover, from Theorem 3 we cannot obtain a consequence as Corollary 2 above.

From the previous representations we get

Theorem 4 The family 1 IC(CF) is incomparable with each family F such that
LIN Ç F C RE, which is closed under

1) left quotient and intersection with regular sets, *
or
2) arbitrary morphisms and intersection with regular sets.

Proof We know that LIN - IIC{CF) ± 0, hence F - IIC{CF) / 0 for all F
as above. Conversely, 1 IC{CF) Ç F, together with the specified closure properties
imply RE Ç F, a contradiction. Q

Important families of languages having the properties in Theorem 4 are, for
instance, the family of ETOL languages and the family of languages generated
by programmed (matrix, controlled, etc.) grammars with A-rules but without ap-
pearance checking. The family 1 IC(CF) contains languages outside these fami-
lies. (The same conclusion follows from Theorem 1, with respect to the family
IC(FIN).)

Comparing the proof in [3] with the proof of Theorem 2, the main difficulty
in the case above arises when changing the place of alive symbols with respect to
dead symbols. For instance, instead of productions of type 6, one might try to use
finite-choice productions of the form

230 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

(aa:] |B|,.$]<*),a € N0UT',

for finitely many given strings x. Assume, that we have productions of this form
for all | x |< k, for given A;. Take a substring abbk]k] (all occurrences of 6 are dead).
Moving the first b, we get•a6fefc]'!j6]) hence, we obtain a new dead occurrence of b.
In order to move the alive a to the right, we cannot use rules as above. Suppose
that we also have a rule

(ab, $]a)

If this rule is used for both ab alive, then we get ab]a, now with b dead and two
alive occurrences of a. If it is used to derive abbk]k], we obtain abbk]k] => ab]abbk]k].
The first a is still alive, the second one is dead. Using also the rule (ab],$]a), we
get a6]]dabfc.]fcl.and-the alive a is again at the distance of k + 1 dead sumbols to the
first] to its. right. We have obtained, nothing. This might, be a further argument
supporting the conjecture that we cannot represent RE languages starting from
languages 'm.HC(FIN)^

The previous difficulty appears because we have substrings of killers,]*, with
i > 2. Such substrings are introduced, for instance, by rules of type 4. If we
could "distribute" the killers to the killed symbols, then this difficulty would be
avoided. A possible way to do this is to consider paired contextual grammars,
that is constructs G = (V , M , P) , with P containing productions of the form
(zi, z2; Svx, $v2), where z1,z2,vi,v2 are strings over V. For x,y e V+, we write
x •=> y, iff x = x1z1z2x2, y = xiZiViZ2V2x2, for (zi, z2; $v2) a production of
P. However, such (one-sided) grammars can simulate usual two-sided contextual
grammars: for IR '= (z, u$v), we consider V = (A, z, ; $u, $w) and x => y by IT if and
only if x => y by 7r'.

6 Erased and erasing contexts
Two extensions of contextual grammars were considered in [10], adding the possi-
bility to remove symbols, not only to adjoin them.

An ic grammar with erased contexts is a construct

G = (V,M,PuP2)

were V, M, Pi are as in an usual ic grammar and P2 is a finite set of pairs (C, u$v),
C C V*,u,v 6 V*. For any x,y € V* we write x => y if either

(1) x — xizx2,y = xiuzvx2, for (C,u$v) S P\,z € C,
or
(2) x = xiuzvx2,y = xizx2 and there is (C,u$v) 6 P2 with z € C.
Hence the contexts in Pi are adjoined, those in P2 are erased.
When all u as above are equal to A in all productions of P\,P2, we say that G is

one sided. The type of selectors C defines the type of selection of G. We denote by
ICD(F) the families of languages generated by ic grammars with erased contexts
and F-choice; when only one-sided contexts are used, we write 1 ICD(F).

On representing RE languages by one-sided internal contextual languages 231

In [10] it is proved that the extension to erased contexts increases strictly the
generative power of ic grammars with F-choice. In view of the following result, this
increase is considerable.

A variant of the operation cutc has been considered in [3], namely, for c ^ V,

mcutc : (V U {c})*{c}V*

defined by
mCUtc(x\CX2) = x2,x2 E V*.

(The maximal prefix bounded by c is erased; c appears at least once in the strings
for which mcutc is defined.)

Theorem 5 Every language L G RE,L € T*, can be written in the form
L = mcutc(L' n R), for V G IICD(FIN),R € REG.

Proof Take again a left-linear grammar G0 = (Ni,N0,X0,P0), Nx = N[U{Xf},
and a transformation r = (N0 ,T U {b,c},P), as in the proof of Theorem 2, such
that T(L(G0)) = L' G CS,L' C b*cL, for L € RE given. We construct the ic
grammar with erased contexts (and finite choice)

G'= (W,M,P1,P2)

where W, M are as in the grammar G constructed in the proof of Theorem 2, Pi
contains all the rules of types 1,2,3,4 in that proof, and

P2 = { (A ,$^]) ¡AeJVo} .

Consider also the regular set.

R= {X}\X & N[Y{Xf])r*.

Because no erasing of pairs € N\, is possible, each derivation in Gi ends
by using the symbol Xf, which appears as a separator in R, all Assertions 1-7 (hence
also Assertion 10) are still true for the use of rules in Px. Moreover, the pairs A],
A £ No, can be freely erased, and A erased in this way is a dead symbol. Erasing
such pairs, we make possible the use of productions of type 4 (the nonterminals
A, B become neighbours) and we remove the useless symbols. More such erasings
correspond to a string in ip(Dn). Therefore, each derivation in Go followed by a
derivation in r can be simulated in G' and, conversely, a derivation in G' which
ends by a string in R corresponds to a derivation in Go followed by a derivation in.
r, in the sense that the produced string will be of the form zxXf]w, z\ G { X] | X G
N[},w G r(i/(Go)). Consequently, z\Xf]w = ziXf)blcw',w' G L, hence using the
operation mcutc we obtain w' G L. Q

An ic grammar with erasing contexts is a construct G = (V,M,P\,P2), where
V, M, Pi, P2 are as in a grammar with erased context. For x,y G V* we write x => y
if either

232 A. Ehrenfeucht, A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa

(1) x = x\zx2,y = xiuzvx2, for (C,u$v) £ Pi, z £ C,
or
(2) x = x\uzvx2,y = X1UVX2 and there is (C,u$v) £ P2 with z £ C.
Hence the string z braketted by the context (u, v) is erased when z £ C for

some (C,u$v) in P2.
We denote by ICG(F),IICG(F), the families of languages generated by such

grammars.
The use of erasing contexts increases strictly the generative power of ic gram-

mars. As for erased contexts, we have

Theorem 6 Every language L £ RE,L C T*, can be written in the form
L = mcutc(L' n R), for V £ IICG{FIN),R £ REG.

Proof We simply repeat the proof of Theorem 5 taking instead of P2 the set

P^={(A},$)\A£N0}.

Erasing the context (A, A]) when bracketing A (as in the case of P2) is the same
with erasing A] when bracketed by (A, A) (as in P2), hence all arguments in the
proof of Theorem 5 remain valid. Q

Again consequences as in Corollaries 1,2 and in Theorem 4 (point 1) can be
obtained for families IICD(FIN), 1ICG{FIN).

These representations of RE languages remind the representations of linear
languages by cancellation operations, as in [2], [5]. However, here we start from
families of languages which are incomparable with LIN: again L — a+ U {anbn \
n > 1} cannot be generated by an ic grammar with erased or with erasing contexts
and with F choice, whichever F is (in order to produce strings am with arbitrarly
large m we either need a production (C, a®$aJ') with C D a+ 0 and i + j > 1 or
the possibility to erase the occurrences of b from some anbn; in the first case we
can derive strings aPV in L into strings aqbp with q > p; in the second case we
have intermediate steps of derivation when strings asbl with s > n, t > n, s > t. are
produced; in both cases we have obtained parasitic strings).

Since the family RE is closed under all the operations involved in the previous
proofs, all the representations given above are in fact characterizations of recursively
enumerable languages.

References

[1] B. S. Baker, R. V. Book, Reversal-bounded multipushdown machines, J.
Comput. Systems Sci. 8(1974). 315-332.

[2] F. J. Brandenburg, Concellations in linear context-free languages, Univ.
Passau, Fak. fur Math, und Informatik, Report MIP-8904, 1989.

On representing RE languages by one-sided internal contextual languages 233

[3] A. Ehrenfeucht, Gh. Páun, G. Rozenberg, On representing recursively enu-
merable languages by internal contextual languages, Technical Report, Dept.
of Comp. Sci., Leiden University, The Netherlands, 94-30, 1994, to appear
also in Th. Comp.Sci.

[4] M. Latteux, B. Leguy, B. Ratoandromanana, The family of one-counter
languages is closed under quotient, Acta Informática, 22(1985), 579-588.

[5] M. Latteux, P. Turakainen, A characterization of recursively enumerable
languages, Acta Informática, 28(1990), 179-186.

[6] B. E. Katz, Synchronized left context-sensitive transformations of regular
languages, Nauch. Tekh. Inform., Ser. 2, 4(1974).

[7] S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appi, 14(1969),
1525-1534.

[8] Gh. Páun, Contextual Grammars The Publ. House of the Romanian
Academy of Sciences, Bucharest, 1982 (in Romanian).

[9] Gh. Páun, X. M. Nguyen, On the inner contextual grammars, Rev. Roum.
Math. Pures Appl. 25(1980), 641-651.

[10] Gh. Páun, G. Rozenberg, A. Salomaa, Contextual grammars: erasing, deter-
minism, one-sided contexts, Developments in Language Theory (G. Rozen-
berg, A.Salomaa, Eds.), World Sci., Singapore, 1994, 370-388.

[11] M. Penttonen, One-sided and two-sided contexts in formal grammars, In-
form. Control, 25(1974), 371-392.

[12] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.

Received December, 1995

