Right group-type automata^{*}

I. Babcsányi[†] A. Nagy[†]

Abstract

In this paper we deal with state-independent automata whose characteristic semigroups are right groups (left cancellative and right simple). These automata are called right group-type automata. We prove that an A-finite automaton is state-independent if and only if it is right group-type. We define the notion of the right zero decomposition of quasi-automata and show that the state-independent automaton **A** is right group-type if and only if the quasi-automaton \mathbf{A}_{S}^{*} corresponding to **A** is a right zero decomposition of pairwise isomorphic group-type quasi-automata. We also prove that the state-independent automaton **A** is right group-type if and only if the quasiautomaton \mathbf{A}_{S}^{*} corresponding to **A** is a direct sum of pairwise isomorphic strongly connected right group-type quasi-automata. We prove that if **A** is an A-finite state-independent automaton, then |S(A)| is a divisor of |AS(A)|. Finally, we show that the quasi-automaton \mathbf{A}_{S}^{*} corresponding to an A-finite state-independent automaton **A** is a right zero decomposition of pairwise isomorphic quasi-perfect quasi-automata if and only if |AS(A)| = |S(A)|.

In his paper [5], A. C. Fleck introduced the notion of the characteristic semigroup of automata. This notion is a very useful tool for the examination of automata from semigroup theoretical aspects. In particular, it seems to be successful for state-independent automata. In this case the characteristic semigroup is left cancellative (Lemma 2). If a state-independent (quasi-) automaton is also A-finite, then its characteristic semigroup is a right group (see [9] or Lemma 3).

In 1966, Ch. A. Trauth ([8]) introduced the notion of the group-type automaton (state-independent automaton whose characteristic semigroup is a group) and characterized the quasi-perfect (strongly connected and group-type) automata. He proved that if \mathbf{A}_i $(i \in I)$ is a family of quasi-perfect (quasi-) automata and G_i $(i \in I)$ is the family of corresponding characteristic semigroups, then a quasi-perfect (quasi-) automaton \mathbf{A} is decomposable into an A-direct product of automata \mathbf{A}_i if and only if the characteristic semigroup of \mathbf{A} is a direct product of the groups G_i . In 1975, I. Babcsányi ([2]) dealt with the decomposition of group-type generated automata. He proved that every generated group-type quasi-automaton is a direct

^{*}This work was lectured on Colloquium on Semigroups, Szeged, 15-19 August, 1994., Research was supported by Hungarian National Foundation for Scientific Research grant No 7608.

[†]Department of Mathematics, Transport Engineering Faculty, Technical University of Budapest, 1111 Budapest, Műegyetem rkp. 9., HUNGA**R**Y

sum of pairwise isomorphic quasi-perfect quasi-automata. In 1976, Y. Masunaga, S. Noguchi and J. Oizumi ([7]) proved that every strongly connected state-independent A-finite (quasi-) automaton is isomorphic to a A-direct product of a quasi-perfect (quasi-) automaton and a strongly connected reset (quasi-) automaton.

In this paper we extend the investigations to the (not necessarily A-finite) stateindependent automata whose characteristic semigroups are right groups.

For notations and notions not defined here, we refer to [4] and [6].

Let $\mathbf{A} = (A, X, \delta)$ be an arbitrary automaton. We suppose that the transition function δ is extended to $A \times X^+$ (X^+ denotes the free semigroup over X) as usually, that is, $\delta(a, px) = \delta(\delta(a, p), x)$ ($p \in X^+$, $x \in X$). For brevity, let $\delta(a, p)$ be denoted by ap. For an arbitrary automaton $\mathbf{A} = (A, X, \delta)$, we consider the following quasi-automata $\mathbf{A}^* = (A, S(A), \delta^*)$ and $\mathbf{A}_S^* = (AS(A), S(A), \delta^*)$, where S(A) is the characteristic semigroup of \mathbf{A} , δ^* is defined by $\delta^*(a, \overline{p}) = \delta(a, p)$ ($a \in A$, $p \in X^+$) and $AS(A) = \{\delta^*(a, s); a \in A, s \in S(A)\}$. \mathbf{A}_S^* will be called the quasi-automaton corresponding to the automaton \mathbf{A} .

Definition 1. An automaton or a quasi-automaton A is called a (right) grouptype automaton if it is state-independent and S(A) is a (right) group.

It is clear that an automaton **A** is state-independent if and only if \mathbf{A}^* is state-independent. As $S(A) \cong S(A^*)$, it follows that **A** is a (right) group-type automaton if and only if \mathbf{A}^* is (right) group-type.

Definition 2. Let $\{S_e : e \in E\}$ be an E right zero semigroup decomposition of a semigroup S, that is, E is a right zero semigroup and S is a disjoint union of its subsemigroups S_e , $e \in E$ such that $S_eS_f \subset S_{ef} = S_f$, for every $e, f \in E$. We say that a quasi- automaton $\mathbf{A} = (A, S, \delta)$ is a right zero decomposition of quasi-automata $\mathbf{A}_e = (A_e, S_e, \delta_e)$ ($e \in E$) with $A_e \cap A_f = \emptyset$ for all $e \neq f \in E$, if $A = \bigcup_{e \in E} A_e$ and $AS_e = \{\delta(a, s) : a \in A, s \in S_e\} \subseteq A_e$.

Lemma 1. A state-independent automaton \mathbf{A} is right group-type if and only if the quasi-automaton \mathbf{A}_{S}^{*} corresponding to \mathbf{A} is right group-type.

Proof. Let A be a state-independent automaton. Then A^* and so A_S^* is state-independent. Moreover, $S(A) \cong S(A^*) = S(A_S^*)$. If A is right group-type, then A_S^* is right group-type, too.

Conversely, let \mathbf{A}_{S}^{*} be right group-type. As \mathbf{A}^{*} is state-independent and $S(A^{*}) = S(A_{S}^{*})$, we get that $S(A^{*})$ is a right group. As $S(A) \cong S(A^{*})$, the automaton \mathbf{A} is right group-type.

Theorem 1. A state-independent automaton \mathbf{A} is right group-type if and only if the quasi-automaton \mathbf{A}_{S}^{*} corresponding to \mathbf{A} is a right zero decomposition of pairwise isomorphic group-type quasi-automata.

Proof. Let the state-independent automaton A be right group-type. Then, by Lemma 1, the quasi-automaton A_S^* corresponding to A is right group-type. Since $S(A_S^*)$ is a right group, it is a right-zero semigroup E of its subgroups G_e , where $G_e = Ge$ for some subgroup G of $S(A_S^*)$. Let $A_e = AG_e$, $e \in E$. It is evident

that $\mathbf{A}_e = (A_e, G_e, \delta_e)$ are group-type qusi-automata. We show that $A_e \cap A_f = \emptyset$ if $e \neq f$. Let us suppose that $age = bhf \in A_e \cap A_f$ for some $a, b \in A$, $g, h \in G$ and $e, f \in E$. Then agf = bhf from which it follows that age = agf. As \mathbf{A} is state-independent we have e = f. Hence $A_e = A_f$. It is evident that $AG_e \subseteq A_e$ and $A_S^* = \bigcup_{e \in E} A_e$. Consequently, \mathbf{A}_S^* is a right zero decomposition of the group-type quasi-automata $\mathbf{A}_e, e \in E$. To complete the proof we show that the quasi-automata $\mathbf{A}_e, e \in E$ are isomorphic with each other. Let $\alpha_{e,f} : A_e \to A_f$ and $\beta_{e,f} : G_e \to G_f$ defined by

$$\alpha_{e,f}(age) = agf, \quad \beta_{e,f}(ge) = gf, \quad a \in A, \ g \in G.$$

It is easy to check that $(\alpha_{e,f}, \beta_{e,f})$ is an isomorphism of \mathbf{A}_e onto \mathbf{A}_f .

Conversely, assume that \mathbf{A}_{S}^{*} is a right zero decomposition of pairwise isomorphic group-type quasi-automata $\mathbf{A}_{e} = (A_{e}, G_{e}, \delta_{e}), \ e \in E$. Then it is easy to see that $S(A_{S}^{*})$ is a right group, and so, \mathbf{A}_{S}^{*} is right group-type. Therefore, by Lemma 1, we obtain that \mathbf{A} is right group-type.

The following example shows that if an automaton A is right group-type then it is not necessarily a right zero decomposition of pairwise isomorphic group-type automata.

Example 1. Let the state-independent automaton $\mathbf{A} = (\mathbf{A}, \mathbf{X}, \delta)$ be the direct sum of the automata $\mathbf{A}_1 = (\mathbf{A}_1, \mathbf{X}, \delta_1)$ and $\mathbf{A}_2 = (\mathbf{A}_2, \mathbf{X}, \delta_2)$ $((A_1 = \{1, 2, 3, 4, 5\}, (A_2 = \{6, 7, 8, 9, 10, 11\}, X = \{x, y, z\})$ which are defined by the following transition tables:

A_1	$1\ 2\ 3\ 4\ 5$	A_2	6	7	8	9	10	11
\overline{x}	23223	\boldsymbol{x}	7	8	7	7	8	7
y	32332	$egin{array}{c} y \\ z \end{array}$	8	7	8	8	7	8
	54554	z	10	9	10	10	9	10

The Cayley-table of the characteristic semigroup S(A):

	\overline{x}	\overline{y}	\overline{z}	$\overline{z^2}$
\overline{x}	\overline{y}	\overline{x}	z^2	z
\overline{y}	$egin{array}{c} \overline{x} \ \widetilde{y} \end{array}$	$rac{\overline{y}}{\overline{x}}$	\overline{z}	$\overline{z^2}$
$rac{\overline{y}}{\overline{z}}$	\widetilde{y}	\overline{x}	\overline{z}^2	\overline{z}
$\overline{z^2}$	\overline{x}	\overline{y}	\overline{z}	$\overline{z^2}$

The quasi-automaton \mathbf{A}_{S}^{*} is a direct sum of the quasi-automata \mathbf{A}_{1S}^{*} and \mathbf{A}_{2S}^{*} given by the following transition tables:

	$2\ 3\ 4\ 5$	$\mathbf{A_{2S}^{*}}$	7	8	9	10
	3223	\overline{x}	8	7	7	8
\overline{y}	$2\ 3\ 3\ 2$	$ar{y} \ ar{z}$	7	8	8	7
\overline{z}	4554	Ī	9	10	10	9
$\overline{z^2}$	$5\ 4\ 4\ 5$	$\overline{z^2}$	10	9	9	10

It is easy to check that \mathbf{A}_{S}^{*} is right group-type and is a right zero decomposition of the group-type quasi-automata \mathbf{B}_{1} and \mathbf{B}_{2} given by the following transition tables. (We note that $\{S(B_{1}), S(B_{2})\}$ is a right zero semigroup decomposition of S(A).)

B_1	2378	$\mathbf{B_2} 4 5 9 10$
\overline{x}	$\begin{array}{r} 2 3 7 8 \\ \overline{3 2 8 7} \end{array}$	\overline{z} 5 4 10 9
\overline{y}	$2\ 3\ 7\ 8$	$\overline{z^2}$ 4 5 9 10

Lemma 2. ([3]) The characteristic semigroup of a state-independent quasiautomaton is left cancellative.

Lemma 3. An A-finite automaton is state-independent if and only if it is right group-type.

Proof. Let A be an A-finite state-independent automaton. Then, by Lemma 2, S(A) is a (finite) left cancellative semigroup. It is easy to show that S(A) is also right simple. Hence S(A) is a right group, that is A is a right group-type automaton. The converse statement follows from the definition.

The following example shows that the assertion of Lemma 3 is not true in infinite case.

Example 2. Let $\mathbf{A} = (A, X, \delta)$ be an automaton where A is the set of all positive integers, $X = \{x\}$ and δ is defined by $\delta(n, x) = n + 1$ $(n \in A)$. It is easy to see that A is state-independent whose characteristic semigroup is an infinite cyclic semigroup.

Lemma 4. Every group-type quasi-automaton \mathbf{A}_{S}^{*} corresponding to a stateindependent automaton \mathbf{A} is a direct sum of pairwise isomorphic quasi-perfect quasi-automata.

Proof. See Lemma 2 and Lemma 4 of [2].

The following theorem is a generalization of Lemma 4 for right group-type (quasi-) automata.

Theorem 2. A state-independent automaton \mathbf{A} is right group-type if and only if the quasi-automaton \mathbf{A}_{S}^{*} corresponding to \mathbf{A} is a direct sum of pairwise isomorphic strongly connected right group-type quasi-automata.

Proof. Let the state-independent automaton \mathbf{A} be right group-type. Then, by Lemma 1, the quasi-automaton \mathbf{A}_{S}^{*} corresponding to \mathbf{A} be right group-type. For an arbitrary $a \in AS(A)$, we consider the following A-subautomaton $\mathbf{A}(a) = (A(a), S(A), \delta_{a})$ of \mathbf{A}_{S}^{*} , where $A(a) = \{as : s \in S(A)\}$. As S(A) is a right group, therefore $\mathbf{A}(a)$ is strongly connected. As every A-subautomaton of a stateindependent (quasi-) automaton \mathbf{A} is also state-independent such that its characteristic semigroup is S(A), we get that $\mathbf{A}(a)$ is a right group-type automaton. It is easy to see that $A(a) \cap A(b) \neq \emptyset$ implies A(a) = A(b) for every $a, b \in AS(A)$. Moreover $as \rightarrow bs$ $(a, b \in AS(A), s \in S(A))$ is an isomorphism of $\mathbf{A}(a)$ onto $\mathbf{A}(b)$. Thus \mathbf{A}_{S}^{*} is a direct sum of the pairwise isomorphic different A-subautomata $\mathbf{A}(a)$. The converse statement of the theorem is evident.

We note that the quasi-automaton \mathbf{A}_{S}^{*} considered in Example 1 is a direct sum of isomorphic strongly connected right group-type quasi-automata \mathbf{A}_{1S} and \mathbf{A}_{2S} . It shows that the components of the direct sum are different from the components of the right zero decomposition.

Lemma 5. If a quasi-automaton $\mathbf{A} = (A, S, \delta)$ is quasi-perfect, then |A| = |S(A)| (see Lemma 6 and Theorem 3 of [1]).

Corollary 1. If A is an A-finite state-independent automaton, then |S(A)| is a divisor of |AS(A)|.

Proof. Let **A** be an A-finite state-independent automaton. Then, by Lemma 3, **A** is right group-type. By Lemma 1 and Theorem 1, \mathbf{A}_S^* is a right zero decomposition of pairwise isomorphic group-type quasi-automata $\mathbf{A}_e = (A_e, G_e, \delta_e), \ e \in E$. Then $|AS(A)| = |A_e||E|$ for arbitrary $e \in E$. By Lemma 4 and Lemma 5, $|A_e| = n|G_e|$ for some positive integer n. Hence $|AS(A)| = n|G_e||E| = n|S(A)|$. \Box

Corollary 2. The quasi-automaton \mathbf{A}_{S}^{*} corresponding to an A-finite stateindependent automaton \mathbf{A} is a right zero decomposition of pairwise isomorphic quasi-perfect quasi-automata if and only if |AS(A)| = |S(A)|.

Proof. Let the quasi-automaton \mathbf{A}_{S}^{*} corresponding to an A-finite stateindependent automaton \mathbf{A} be a right zero decomposition of pairwise isomorphic quasi-perfect quasi-automata $\mathbf{A}_{e} = (A_{e}, G_{e}, \delta_{e}), \ e \in E$. By Lemma 5, $|A_{e}| = |G_{e}|$. Hence |AS(A)| = |S(A)|.

Conversely, let **A** be an A-finite state-independent automaton such that |AS(A)| = |S(A)|. By Lemma 3, **A** is right group-type. Then, by Lemma 1 and Theorem 1, \mathbf{A}_S^* is a right zero decomposition of pairwise isomorphic group-type quasi-automata $\mathbf{A}_e = (A_e, G_e, \delta_e)$, $e \in E$. (Here $G_e = Ge$, for some subgroup G of S(A), and $A_e = AG_e$.) It is sufficient to show that \mathbf{A}_e are strongly connected. It is evident that |S(A)| = |G||E| and $|AS(A)| = |A_e||E|$, for every $e \in E$. Then $|A_e| = |G|$, for every $e \in E$. As **A** is state-independent, we have $|aG_e| = |G| = |A_e|$, for every $e \in E$ and $a \in A_e$. From this it follows that \mathbf{A}_e is strongly connected, for every $e \in E$.

We note that the quasi-automata \mathbf{A}_{1S}^* and \mathbf{A}_{2S}^* in Example 1 satisfy the conditions of Corollary 2. For example, the quasi-perfect components of the right zero decomposition of \mathbf{A}_{1S}^* are:

It is easy to check that these components are isomorphic.

References

- Babcsányi, I., A félperfekt kváziautomatákról (On quasi-perfect quasi-automata), Mat. Lapok, 21, 1970, 95-102 (in Hungarian with English summary)
- [2] Babcsányi, I., Endomorphisms of group-type quasi-automata, Acta Cybernetica, 2, 1975, 313-322
- [3] Babcsányi, I., Characteristically free quasi-automata, Acta Cybernetica, 3, 1977, 145-161
- [4] Clifford, A.H. and G.B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Providence, I(1961), II(1967)
- [5] Fleck, A.C., On the automorphism group of an automaton, J. Assoc. Comp. Machinery, 12, 1965, 566-569
- [6] Gécseg, F. and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972
- [7] Masunaga, Y., S. Noguchi and J. Oizumi, A characterization of automata and a direct product decomposition, Journal of Computer and System Sciences, 13, 1976, 74-89
- [8] Trauth, Ch. A., Group-type automata, J. Assoc. Comp. Mach., 13, 1966, 170-175
- [9] Watanabe, T. and S. Noguchi, The amalgamation of automata, Journal of Computer and System Sciences, 15, 1977, 1-16

Received January, 1995