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Parallel asynchronous computation of the 
values of an associative function * 

Zoltán Horváth * 

Abstract 
This paper shows an application of a formal approach to parallel program 

design. The basic model is related to temporal logics. We summarize the 
concepts of a relational model of parallelism in the introduction. The main 
part is devoted to the problem of synthesizing a solution for the problem of 
parallel asynchronous computation of the values of an associative function. 
The result is a programming theorem, which is wide applicable for different 
problems. The abstract program is easy to implement effectively on several 
architectures. 

The applicability of results is investigated for parallel architectures such 
as for hypercubes and transputer networks. 

1 Introduction 
We summarize the basic concepts of a relational model of parallelism [11,13,12]. 
Our model is an extension of a powerful and well-developed relational model of pro-
gramming, which formalizes the notion of state space, problem, sequential program, 
solution, weakest precondition, specification, programming theorem, etc. [8,9,16]. 

1.1 A relational model of parallel programs 
We take the specification as the starting point for program design. We use a 
model of programming which supports the top-down refinement of specifications 
[19,8,10,9,2,11]. The proof of the correctness of the solution is developed parallel 
to the refinement of the specification of the problem. We formalize the main con-
cepts of UNITY [2] in an alternative way. We use a relatively simple mathematical 
machinery [8,11]. The result is an expressive model, which is related to branching 
time temporal logics. 

We give a brief survey of the main concepts and apply the methodology to solve 
the problem of parallel asynchronous computation of the values of an associative 
function in the main part. 
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1.1.1 Preliminary notions 

In the following we use the terminology used also in [17,8,10,9,11]. Notations are 
defined often by the help of the special equality sign ::=. 

The binary relation R C A x B is a /unction, if Vo g A : | J2(a) | = 1. We 
define the domain of a relation R as Pjj::={a € A|JZ(a) / 0}. We use the notation 
/ : A B fór functions. 

The set of the logical values is denoted by C, i.e., £::={|, !}• A relation / C 
A x £ iá called logical function, if it is a function. We use the words predicate 
and condition as synonyms for logical function. f / ] : : = { a 6 A|/(a) = { f } } is called 
the truth-set of the logical function f. [ /] abbreviates the theorem (|/] = A) 
[4]. The operations U, n,A\ correspond to the function compositions A,V,-i. =>• 
corresponds to C, P —* Q is an abbreviation of ->P V Q. 

The set of the subsets of a set A is called the powerset of A and denoted by 
P(A). 

Let I C M. Vi e I: A, is a finite or numerable set. The set A::=^jAi is called 
state space, the sets Ajy are called type value sets . The projections tij : A i—• A± 
are called variables. A* is the set of the finite sequences of the points of the state 
space and A°° the set of the infinite sequences. Let A** = A* U A°°. 

We can imagine a statement (a sequential program) as a relation, which asso-
ciates a sequence of points of the state space to some points of the state space, i.e., 
a statement is a subset of the direct product A x A". The full formal definition of 
statement is given in [8]. 

The effect relation of a statement s is denoted by p(s). The effect relation 
expresses the functionality of the statement. p(s) C A x A, Dp(,y.:={a 6 A | a(a) C 
A*}, and 

Va 6 Dp(,) : p(s)(a)::={6 6 A | 3a 6 «(a) : r(a) = b}, where r : A* -* A is a 
function, which associates its last element to the sequence a = (aj,...., a „ ) , i.e., 
r{a) -- an. 

The logical function tup(s, R) is called the weakest precondition of the 
postcondition R in respect of the statement s. We define [twp(s, i2)] : :={o € 
Pp(,)|p(s)(a) C [iZ]}. The logical function sp(s, Q) is called the strongest post-
condition of Q in respect of s. [sp(a, Q)]::=p(s)([Q]). 

A = A I x . . . X A „ , F = (FL,...,FN), where FI C A x A<. Let 
[7r,]::=Pfv. The relation ^<|ft] is the extension of Fi for the truth set of con-
dition t [6], i.e., fi|rji(a)::=jv(a), if a 6 fjr,-] and (o)::=o,-, otherwise. 

Let us use the notation ( i g j| (w,- -fyjuj, ..,wn)i if ""yj) for the statement sy, 
for which ((DTJ = A)a(VO S A : p(sy)(a) = i'Hftl (a)))- This kind of (simultaneous, 
nondeterministic) assignment is called conditional, if Va € A : |p(sy)(a)| < u>. 

Let us denote the set of n-ary relations over A by RnlA). A function F : 
R„(A) >— R1t(A) is monotone if X C Y => F (X ) C F ( r ) . As it is well 
known every monotone function over a complete lattice has a minimal (least) 
and a maximal (greatest) fixpoint. The minimal fixpoint of the monotone func-
tion F is HX : F(X) = n { X [ F ( X ) C X } , and the maximal fixpoint of F is 
nX:F(X) = [ j { x \ x c F ( x ) } \ n \ 



Parallel asynchronous computation of the values of an associative function 85 

1.1.2 The concepts of problem, parallel program and solution 

The specification of a problem and its solution, the abstract program, is indepen-
dent of architecture, scheduling and programming language. The abstract program 
is regarded as a relation generated by a set of deterministic (simultaneous! condi-
tional assignments similar to the concept of abstract program in UNITY 12]. The 
conditions of the assignments encode the necessary synchronization restrictions ex-
plicitly. Some assignments are selected nondeterministically and executed in each 
step of the execution of the abstract program. Every statement is executed in-
finitely often, i.e., an unconditionally fair scheduling is postulated. The concept of 
fairness is used in the same sense as by Morris in [15] (Section 5.1), i.e., stricter 
than usually [2]. If more than one processor selects statements for execution, then 
the executions of different processors are fairly interleaved. A fixed point is said to 
be reached in a state, if none of the statements changes that state [2]. 

1.1.3 The specification of a problem 

The problem is defined as a set of properties. Every property is a relation over the 
powerset of the sate space. Let P,Q,R,U : A >—• £. be logical functions. We define 

P[P{A) x ^(.4)), and FP,INIT,inv .TERM C P(A). 

We introduce the following infix notations: 
P > Q::=(J\P1,[Q1) G >, P ~ Q::=(\P], [Ql) ©-, 
P Q::=(\P\, [Ql) G - , FP => £::=|7Zl G FP, 
Q FP::=JQ| G TERM, Q G INIT::=[Q] G INIT, 
inv P: :=[P| G inv . 
The P > Q, P i-+ Q, etc. formulas are called specification properties or shortly 

properties. The >, i—«—inv , TERM relations define transition properties, the 
FP, INIT relations define boundary properties. The transition relations > and 
inv express so called safety properties, while the relations >-•,<—•, TERM express 
progress properties. The definition of a solution gives an interpretation for the 
introduced concepts. 

Definition 1.1 Let A be a state space and let B be a finite or numerable set. 
Two relations expressing boundary properties and four relations expressing tran-
sition properties are associated to every point of the set B. The relation F C 
B X x " called a Problem defined over the 
state space A. B is called the parameter space of the problem. The components of 
the elements of the direct products t€[* 3)P(P[A) X P{A)) and 4]P(P[A)) are 
denoted by >6, end by INIT&, FP&, inv j,, TERMj, respectively. 

A program satisfies the safety property P > Q, if and only if there is no direct 
transition from P A ->Q to ->P A ->Q only through Q if any. A program satisfies the 
progress properties P>-*QorP'—*Qif the program starting from P inevitably 
reaches a state, in which Q holds. P t-+ Q defines further restriction for the direction 
of progress. The fixed point property FP =>• R defines necessary conditions for the 
case when the program is in one of its fixed point. The Q G INIT property defines 
sufficient condition for the initial states of the program. Q <—• FP expresses that 
the program starting from Q inevitably reaches one of its fixed points. P is said 
to be stable if and only if P > If P holds initially and P is stable, then P is an 
invariant, denoted by inv P. 
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1.1.4 The definition of a parallel program 
Let S be an ordered pair of a conditional assignment and a nonempty, finite set of 
conditional assignments, such that 5 = (soi{sy | J G J A Dp(, ) = A AVa G A : 
( M a ) | < w ) } ) , J = { l . . m } , m ^ l . 

The program UPG(S) is a binary relation which associates equivalence classes 
of graphs generated by the effect relation of so and by disjoint union of the effect 
relations of conditional assignments {ai,..., s m } to the points of the state space. 
The formal definition of a parallel program is given in [13]. The program UPGlS) 
generated by the ordered pair S = (a0) { « i , . . .sm}) is denoted shortly by S. The 
conditional assignment só is called the initialization in 5 and ay : j G [l..m] is said 
to be an element of the program S. 

1.1.5 The formal definition of a solution 
The program 5 solves the problem F, if S satisfies all (subset of) the properties 
given 'in F. The justification of the following definitions and the proofs of the 
theorems is given in [11,13]. 

Definition 1.2 Let S be an abstract program, S = (a0, (aj, ...am}). Let us de-
note the set of the indices of the deterministic assignments of abstract program S 
by Jrf and the the set of the indices of the nondeterministic assignments by Jnd-
fixpoints-.-.=(i€Ji ^[v n] (»,-. - a, = Py,.(a)) A (y€ J n i j e | 1 . .n , ("•**))). 

Definition 1.3 Let S be an abstract program. S satisfies (FP => R) if 
fixpointg =>• R. 

Definition 1.4 Let S be an abstract program, S = (s0, { « í , . . .sm } ) . 
wp(S, Rh:=Vs G S : wp(s, R). 
wpa(S, R)::=3s G S : wp(3,R). 

(tupa(S,R) is called the "angelic" weakest precondition [15]). 

Definition 1.5 The program S satisfies the property P > Q if and only if (P A 
^Q=>wp(S,PvQ)). 

Definition 1.6 The program S satisfies the pair of properties Q G I NIT and 
inv P if and only if sp(so,Q) ^ P and P is stable. 

Definition 1.7 
G(P, Y, X)::=P V (wpa(S, Y) A typ(5, X V Y)), 
F(P, Y)::—r)X : G(P, Y, X), and 
~P::=uY : F(P,Y). 

Remark: Since G is monotone in P, Y, X, VP, Y : rjX : G(P, Y, X ) exists, moreover 
F(P, y ) is monotone in P, Y and ^ P is monotone in P. 

Definition 1.8 (ensures) The programS satisfies the specification (Q i—• P) if and 
only if (Q=>(PV (wpa(S, P) A wp(S, Q V P)))), i.e., (Q => G(P, P, Q)). 

Definition 1.9 (leads-to, inevitableJ The program S satisfies the specification 
(Q — P) if and only if (Q ( ~ P ) ) . 
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Theorem 1.1 If ( <^P) holds for a £ A, the scheduling is unconditionally fair and 
the program S is in the state a, then S inevitable reaches a state, for which P holds. 

We can prove the following theorems corresponding to the properties used in the 
definition of leads-to in UNITY [2]. The proof of progress properties is supported 
by the introduction of so called variant functions [6,2]. 

Theorem 1.2 For an arbitrary program S, 
- if P>->Q then P^Q, and 
- if P<-*Q andQ<-> R, then P <-> R. 
- Let I be an arbitrary finite set. Ifii e I: (P< <-• Q) then (3» : P.) <-+ Q. 
- Let W be a well-founded set in respect of the relation <. 

IfVmeW :: (P A v = m) <-» ( (PAu < m) V Q), thenP^Q. 

Consequence 1.1 If the program S satisfies the property: (-> fixpoints At) = 
v') ((-i fixpoints A v < v' — 1) V fixpoints), then S satisfies the property 

A new specification is called a refinement of a previous one, if any solution for 
the new specification is a solution for the problem specified originally. 

2 Computation of the values of an associative 
function 

Let H be a set. Let o : HxH •—• H denote an arbitrary associative binary operator 
over H. 

f : H* i—• H is a function describing the single or multiple application of the 
operator o. Since o is associative, for any arbitrary sequence x €E H* of length at 
least three 
f(<i xu...,x\x\ ») = /(C f { c »i.-.Z!«!-! >),«|«| ») = /(C xi,/(C 
xa,..,£|z| 3») ^ )• We write f (< i hi,h,2 instead of the infix notation (hi o h?) 
in the following. We extend / for sequences of length one: / ( c h » ) = h. 

Let a finite sequence a £ H* of the elements of H be given. The indices are 
associated to the elements of the sequence a in the reverse order, i.e., the last 
element is denoted by oj. If the length of the sequence is n, then the first element 
is denoted by an. a an , . . . ,oi in > 1). Let us compute the value of the 
function Q : [l..n] i—• H for all i S [l..n], where n > 1 and 

To solve the problem we use a similar train of thought to those presented in the 
cases of parallel synchronous computation of the sum of binary numbers and of the 
asynchronous computation of the shortest path [2]. 

2.1 The formal specification of the problem 
We specify that the program inevitably reaches a fixed point and the array g con-
tains the values of / in any fixed point. 

A — G, where G = t>ecfor([l..n], H), n > 1; g : G 

(T— fixpoints), ( T ^ FP). 

t«-» FP 
FP (Vi e [l..n]: ff(i) = /(< Oi, ....a! >)) 

( 1 ) 

(2) 
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o :k = riofl(«)l 

Figure 1: Sfs(t,Jfc) = h(i,k), if k < [Jfc(t). 

... _ k 

Let us observe that the computation of the values of Q at place t is made easier 
with the knowledge of the value of / for subsequences au , . . . , a„ indexed by 
the elements of an arbitrary [u..u] C [t..l] interval. Moreover the result computed 
for a subsequence is useful in the computation of the value of / for any sequence 
which includes the subsequence. 

FYom the above line of reasoning, we extend the state space and refine the 
specification of the problem. Let us introduce the auxiliary function h. Let h(x, k) 
denote the value of / for the sequence of which the first element is Oj and its length 
is 2* or the last element is Oi, if t < 2fc. The two-dimensional array ga is introduced 
to store the known values of h. This method is called the substitution of a function 
by a variable [7]. The connection between the variables ga, k, t and the function h is 
given by the invariants (4)-(6). The lines on the Figure 1 illustrate the connections 
among the elements of the matrix ga according to lemma 2.1 and to invariants 
(4 ) - (6 ) . 

A' = Gx GSx Kx T G = vector{[l..n\,H), 
g ga k t GS = vecior([l..n,0..(ilog(n)])], H) 

K = vector \\l..n\, A/o), 
T = vector([l..n],>/o), n > l 

The precise definition of the partial function h : [l..n] x Mo —• H is: 

i / • jl\.. / / ( < Hi •••iai » ) , if » — 2fe + 1 < 1 
« 1 * . * ; » \ / ( C o . - a ( i _ 3 f c + 1 ) » ) , if t — 2* + 1 > 1 

Lemma 2.1 
If (i -2k> 1), then f [ c h(i, Jfc), h(i - 2k,k) » ) = h{i, k + l). 

Proof: Since t'-2fc > 1 ,h(i,k) = / ( < o,•,..., a^.ak+i) » ) . If (t-2* : ) -2 f c + l > 1, 
then h(i — 2k,k) = <»(,_2*)i —»a(t—2fc—2fe+i) Since / is associative: 
/ ( C h{i,k),h{i - 2k,k) > ) = / ( C Oi, — , a ( » - 2 t + i ) i a(«-2 f c)> •••>°(«-2't-2 fc+i) » 
) = h(i,k + 1). If (»' - 2fc) - 2k + 1 < 1, then h(i - 2k,k) = /(« 
a(i-2 fc)i—>°i Using the associativity of / : f ( c h(i,k),h(i — 2k,k) » ) = 
f ( C a,-,...,a (<_2«.+1),a ( i_2t),... )a1 » ) = h(i,k+ 1). 
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Let us choose the variant function u : A i—• Mo in the following way: 
n 

v::=4 *n*n-jT (k{i) + X{k(i) = flog(.-)l A g(i) = 93(i, *(«)))) 
•=i 

The variant function depends on the number of elements of the matrix ga which 
elements are different from the value of function h at the corresponding place and 
on the number of places where the value of the array g is different from the value 
of function Q. 
Lemma 2.2 The specification below is a refinement of the specification (l)-(2). 

f — FP (3) 
FP V»' € [l..n] : (*(0 = ÍM* ' ) ] ) A (j/(t) = g.{i, [log(.)D) (4) 

inv (V»' € [l..n] : *(«) < [log(t)l AVk : k < k(i) : gs{i, k) = h{i, k)) (5) 
inv (Vi <E [1..»]: t(t) = 2*<0) (6) 

Proof: 
k{i) = [log(»)] and g(i) = ga(i, flog(t)]) in fixed point according to (4). Us-

ing (5) it follows that the equation </(t) = gs(i, [log(t)]) = h(i, [log(t)]) holds in 
fixed point. Since 2rio<f(,')1 > t, after the application of the definition of h. we get 
h(i, [log(Ol) = /(•< a,-, ...,ai which is the same as property (2). 

Remark 2.1 The property (1) is not refined. The proof of the correctness of any 
program in respect of (1)=(3) is based on Consequence 1.1. This means the choose 
of a variant function may be regarded as an implicit refinement step in respect of 
property (l) . Since the property (6) defines restrictions over the new components 
of the state space only, we need not to use it in the proof of the refinement. 

2.2 A solution 
Theorem 2.1 The abstract program below is a solution for the problem specified 
by (S)-(6), i.e., a solution for the problem of the computation of the values of an 
associative function. 

*o : < = [ ? . . » ] * ( » ' ) . * ( » ' ) ~ / K 1.0 

' f ( c gs(i, *(»)), gs{{i - «(»)), fc(t')) 3>), 2 * t(t), k(i) + 1, 
if (i-2* t(i) + 1 > 1) A (k(i - t(i')) > Jfc(»)) 

/(< gs(i, k{i)), ga(i - t{i), k(i - t(t))) »), 
2*t(t),fc(i) + l, 

if (t - t(t') > 1) A (» - 2 * t(i) + 1 < 1) 
A ( M » - i ( f ) ) = r i o g ( f - t ( 0 ) i ) 

.-=[?..»! «"(*• *(*))»/ (*(•) = riog(Ol) 
} 

where nj is used for the abbreviation of n statements. Each statement is in-
stantiated from the general form by substituting the dummy variable i by a concrete 
value. 
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Proof: 
(3): Every statement of the program decreases the variant function by 1 or does 

not cause state transition. If the program is not in one of its fixed points, then there 
exists an t € [l..n] and a corresponding conditional assignment, which assignment 
increases the value of k(t), or there exists an t for which k(i) = [log(t)] and the 
value of g(i) is different from the value of ga(i, ([log(t)])). 

(4): using the definition of the fixpointg: 

Vt e [I..n] (*(i) = [log(t)l) - g(i) = g.{i, k(i)) A (7) 
( ( i - 2 * t(i) + 1 < 1) V (*(i - t ( 0 ) < fc(0)) A (8) 

(i - t(i) < l)V (» - 2 - t(i) + 1 > 1) V (*(i - t (0) * riog(i - (t(.'))D) (9) 

We apply mathematical induction on t to prove: Vt g Jl..n] : (£(») = Jlog(t)]). 
Base case: t = 1. iVom (5) and ap(a0, T) follows that (mI) = [logflj]). Inductive 
hypothesis: Vj < :(k(j) -Jlog(y) l ) . Since i(t) > 1, (¿(¿-i(i))\ f [log(. '- (i(.))]) 
contradicts the hypothesis. This means (9) can be simplified to (» — tii) < 1) V (t — 
2»t(t) + 1 > 1). If (t ' -2*i(») + l > 1), then k{x — t(i)) < Jfc(t') else (8) does not hold. 
Using the inductive hypothesis and t(i) > 1 we get k(i — t(%)) = [log(t — i(i))], 
i.e., (logii — t(»))1 < k(i). The last statement contradicts the initial condition: 
t - 2 * t(i) + 1 > 1)) => (i - t(t) - t(t) + 1 > 1) =• [log(»" - i(t"))] > ifc(t). This means 
t' - 2 * t(i) + 1 < 1). 
t - 2 * t(t) + 1 < 1) =>• (» - i(t) < 1), otherwise (9) does not hold. (» - t(i) < 

1) => k(i) > [log(»)]. Using the invariant (5) we get: k(i) = [log(t)]. Based on (7) 
: $(t) = <?s(»',fc(t)) = ga(i, [log(t')l). 

(61: Since sp(30, t) implies t(i) = 1 and k(i) = 0, the t(t) = equality holds 
initially. All the assignments change the value of k(i) and t(i) simultaneously. 

(5): Since M»',0) = f ( c a(t) » ) , sp(s0,T) => gs(i,k(i)) = h(i,k(i)). Since Jt(t) 
is initially 0, ap(s0, T) =• [H*) < ilog(t) |). 

After calculating the weakest preconditions of the assingments it is sufficient to 
show that 

• (t" - 2 * tii) + 1 > 1) A (A:(t - «(»)) ^ Jtmi and VJfc : ifc < Jfc(t) : gs(i, k) = h(i, k) 
implies the equality for *;(»') + 1, i.e., /(«C ga(i,k(i)),ga(t — t(t),fc(t)) » ) = 
h{i,k(i) + 1) and k(i) + 1 < [log(t)*], 

(« - 2 * i(t") + 1 > 1) A (t(t) > 1) =• (»" - t(t) > 1) =• Jfc < log(t - 1) < log(t') < 

In the first case fc(t') < A;(t) implies gs(i,k[i)) = h(i,k(i)) and (if» — t(»)) > Jbit)) 
implies gs(i — t(t), k(i)) — h(i — £(t), A:(t)). In the second case k(t) < k(i) implies 
ga(i, k(i]) = h(i,kli)) and k(l-t(i)) = flog(.-t(t))l implies ga(i-t(i), (flog(t) ] ) = 
h(t — i(t), ([log(t)])). In both of the cases the application of the Lemma 2.1 leads 
to the statement. 
(end of proof.) 
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Let us suppose the abstract program is implemented on a parallel computer 
containing O(n) processors. If the left side of an assignment refers to an array com-
ponent indexed by i, then the assignment is mapped to the ith (logical) processor. 
Easy to see, that the program reaches one of its fixed point in at most Oflog(n)] 
state transforming steps. The logical processors may work asynchronously. 

2.3 Transformation of the program 

The program corresponds neither to the rule of fine-grain atomicity [l](2.4) nor to 
the shared variable schema [2]. To ensure effective asynchronous computation we 
have to transform the program by introducing new variables and using the method 
of substitution of a function by a variable for the function log [7]. 

Let us use the auxiliary arrays gst(i) = ga(t — t(i),k(i)), kt(i) = k(i — t(t)), 
gatk(i) = gs(t — t(i),kt(i)), if the values are necessary and known by the ith 
logical processor and the value of kt(i) is big enough to determine the next (i.e. 
the (£(») + l)th) value of the tth column of the matrix gs (10). Let us introduce 
the auxiliary boolean variables ktf(i), g3tf(i),gstkf(i) to administrate the usage 
of the auxiliary arrays. The tth component of the auxiliary arrays is local in respect 
of the tth processor. 

Every assignment of the transformed program will refer to at most one nonlocal 
variable. 

2.3.1 The refinement of the specification 

We extend the specification (3)-(6) with the following invariants: 

V i e [ l . . n ] : (fci(t) < k(i - t(i)) A 

ktf[i) — (Jfci(i) > Jt(i) V kt(i) = l(i - i ( i)))) (10) 
V i e [ 1 . . » ] : (gstf{i) -» ktf{i) A (i - 2 • t(i) + 1 > 1) 

A<7si(i) = gs(i — t(i), k(i))) ( H ) 
V i e [ l . .n ] : (gstkf(i) -* ktf(i) A (i - t(i) > 1) A (i - 2 * t(i) + 1 < 1) A 

9 s i * ( t ) = gs[i - t(i), fct(i)) = gs{i - t(i), k[i - t(i)))) (12) 

V i e [ l . . n ] : [ l o g ( i ) l = / ( i ) (13) 
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2.S.2 The transformed program 

ao : i=I? n]9s(i,0),t{x),k{i)tl{i),ktfii),g8tkf{i),gstfli),kt{i) ~ 
/ ( < * » ) , 1,0, [log(t)], |,0 

s : { h ? . . h : = k { i ~i(t))'* A ( t " " < ( t ) ) - 1 

.=[? »!*'/(») -=T,if "•*«/(»') A (» - t(0) > 1 A (kt(i) > &(t)v 
to(0 = l ( i - « ( i ) ) ) 

<=[?..»| 9°tf(i) := gs(x - *(»), *(.)), T, 
if ktf(i) A (»' - 2 * t(t) + 1 > 1) A (Jfct(») > Jfc(t)) A -igstf(i) 

<=[?.«] 9*tk{i), gstkf{i) := gs{i - t{i), kt(»)), T, 
if ktf[i) A (»' - t[i) > 1) A (t - 2 * i(t) + 1 < 1) 

A(fci(t) = J(i - t(i))) A ->gstkf(i) 

i=|?..»j»'M(*) + l),Hi),k(i),ktf{i),gstf(i),gstkf(i),kt{i) := 

' f ( < p ( t , k ( i ) ) , gst(i) 2 *t(i),k(t) +1 ,1 ,1 ,1 ,0 
if gstf(i) 

f(Cgs(i,k(i)), g3tk(i) » ) , 2 *t(i),k(i) + 1,1,4,4,0 
if gstkf(i) 

i=°n]9(i)-=9s(i,k{i)), if k(x) = l(t) 
} 

Proof: The invariants (10)-(13) are easy to prove by the calculation of the 
weakest preconditions and sp(so, T)- Using the invariants f 10)-(13) we can state that 
the assignments changing the variables mentioned in (3),(5)-(6) are equivalent of 
the original assignments. This means the specification properties (3),(5)-(6) remain 
valid for the transformed program too. To prove the fixpont property (4) it will 
be sufficient to show: if the transformed program reaches one of its fixed points 
then the original program is in one of its fixed points too and the conditions (7)-(9) 
hold.D 

3 Discussion 
The program is easy to implement on synchronous, asynchronous and on distributed 
architectures, such as for hypercubes [18] or T9000 transputer networks, where im-
plementation of 0([log(n)|) communication channels is supported by the concepts 
of logical links. 

A solution is developed in [14] for pipeline architectures. 
The introduced relational model provides effective tools for the stepwise devel-

opment of a parallel solution as illustrated by the chosen example. The theorem 2.1 
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may be called a programming theorem [6]. With its help we can solve a class of clas-
sical problems. For example parallel addition, comparison of ascending sequences 
[2], etc. are easy to formalize by the help of associative functions. 
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