
Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Parallel asynchronous computation of the
values of an associative function *

Zoltán Horváth *

Abstract
This paper shows an application of a formal approach to parallel program

design. The basic model is related to temporal logics. We summarize the
concepts of a relational model of parallelism in the introduction. The main
part is devoted to the problem of synthesizing a solution for the problem of
parallel asynchronous computation of the values of an associative function.
The result is a programming theorem, which is wide applicable for different
problems. The abstract program is easy to implement effectively on several
architectures.

The applicability of results is investigated for parallel architectures such
as for hypercubes and transputer networks.

1 Introduction
We summarize the basic concepts of a relational model of parallelism [11,13,12].
Our model is an extension of a powerful and well-developed relational model of pro-
gramming, which formalizes the notion of state space, problem, sequential program,
solution, weakest precondition, specification, programming theorem, etc. [8,9,16].

1.1 A relational model of parallel programs
We take the specification as the starting point for program design. We use a
model of programming which supports the top-down refinement of specifications
[19,8,10,9,2,11]. The proof of the correctness of the solution is developed parallel
to the refinement of the specification of the problem. We formalize the main con-
cepts of UNITY [2] in an alternative way. We use a relatively simple mathematical
machinery [8,11]. The result is an expressive model, which is related to branching
time temporal logics.

We give a brief survey of the main concepts and apply the methodology to solve
the problem of parallel asynchronous computation of the values of an associative
function in the main part.

'Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.
2045

fDept. of General Computer Science, Eotvos Lorind University, Budapest, Hungary,
1088 Budapest, Muzeum krt. 6-8., E-mail: hz@ludens.elte.hu

83

mailto:hz@ludens.elte.hu

84 Zoltán Horváth

1.1.1 Preliminary notions

In the following we use the terminology used also in [17,8,10,9,11]. Notations are
defined often by the help of the special equality sign ::=.

The binary relation R C A x B is a /unction, if Vo g A : | J2(a) | = 1. We
define the domain of a relation R as Pjj::={a € A|JZ(a) / 0}. We use the notation
/ : A B fór functions.

The set of the logical values is denoted by C, i.e., £::={|, !}• A relation / C
A x £ iá called logical function, if it is a function. We use the words predicate
and condition as synonyms for logical function. f /] : : = { a 6 A|/(a) = { f } } is called
the truth-set of the logical function f. [/] abbreviates the theorem (|/] = A)
[4]. The operations U, n,A\ correspond to the function compositions A,V,-i. =>•
corresponds to C, P —* Q is an abbreviation of ->P V Q.

The set of the subsets of a set A is called the powerset of A and denoted by
P(A).

Let I C M. Vi e I: A, is a finite or numerable set. The set A::=^jAi is called
state space, the sets Ajy are called type value sets . The projections tij : A i—• A±
are called variables. A* is the set of the finite sequences of the points of the state
space and A°° the set of the infinite sequences. Let A** = A* U A°°.

We can imagine a statement (a sequential program) as a relation, which asso-
ciates a sequence of points of the state space to some points of the state space, i.e.,
a statement is a subset of the direct product A x A". The full formal definition of
statement is given in [8].

The effect relation of a statement s is denoted by p(s). The effect relation
expresses the functionality of the statement. p(s) C A x A, Dp(,y.:={a 6 A | a(a) C
A*}, and

Va 6 Dp(,) : p(s)(a)::={6 6 A | 3a 6 «(a) : r(a) = b}, where r : A* -* A is a
function, which associates its last element to the sequence a = (aj,...., a „) , i.e.,
r{a) -- an.

The logical function tup(s, R) is called the weakest precondition of the
postcondition R in respect of the statement s. We define [twp(s, i2)] : :={o €
Pp(,)|p(s)(a) C [iZ]}. The logical function sp(s, Q) is called the strongest post-
condition of Q in respect of s. [sp(a, Q)]::=p(s)([Q]).

A = A I x . . . X A „ , F = (FL,...,FN), where FI C A x A<. Let
[7r,]::=Pfv. The relation ^<|ft] is the extension of Fi for the truth set of con-
dition t [6], i.e., fi|rji(a)::=jv(a), if a 6 fjr,-] and (o)::=o,-, otherwise.

Let us use the notation (i g j| (w,- -fyjuj, ..,wn)i if ""yj) for the statement sy,
for which ((DTJ = A)a(VO S A : p(sy)(a) = i'Hftl (a)))- This kind of (simultaneous,
nondeterministic) assignment is called conditional, if Va € A : |p(sy)(a)| < u>.

Let us denote the set of n-ary relations over A by RnlA). A function F :
R„(A) >— R1t(A) is monotone if X C Y => F (X) C F (r) . As it is well
known every monotone function over a complete lattice has a minimal (least)
and a maximal (greatest) fixpoint. The minimal fixpoint of the monotone func-
tion F is HX : F(X) = n { X [F (X) C X } , and the maximal fixpoint of F is
nX:F(X) = [j { x \ x c F (x) } \ n \

Parallel asynchronous computation of the values of an associative function 85

1.1.2 The concepts of problem, parallel program and solution

The specification of a problem and its solution, the abstract program, is indepen-
dent of architecture, scheduling and programming language. The abstract program
is regarded as a relation generated by a set of deterministic (simultaneous! condi-
tional assignments similar to the concept of abstract program in UNITY 12]. The
conditions of the assignments encode the necessary synchronization restrictions ex-
plicitly. Some assignments are selected nondeterministically and executed in each
step of the execution of the abstract program. Every statement is executed in-
finitely often, i.e., an unconditionally fair scheduling is postulated. The concept of
fairness is used in the same sense as by Morris in [15] (Section 5.1), i.e., stricter
than usually [2]. If more than one processor selects statements for execution, then
the executions of different processors are fairly interleaved. A fixed point is said to
be reached in a state, if none of the statements changes that state [2].

1.1.3 The specification of a problem

The problem is defined as a set of properties. Every property is a relation over the
powerset of the sate space. Let P,Q,R,U : A >—• £. be logical functions. We define

P[P{A) x ^(.4)), and FP,INIT,inv .TERM C P(A).

We introduce the following infix notations:
P > Q::=(J\P1,[Q1) G >, P ~ Q::=(\P], [Ql) ©-,
P Q::=(\P\, [Ql) G - , FP => £::=|7Zl G FP,
Q FP::=JQ| G TERM, Q G INIT::=[Q] G INIT,
inv P: :=[P| G inv .
The P > Q, P i-+ Q, etc. formulas are called specification properties or shortly

properties. The >, i—«—inv , TERM relations define transition properties, the
FP, INIT relations define boundary properties. The transition relations > and
inv express so called safety properties, while the relations >-•,<—•, TERM express
progress properties. The definition of a solution gives an interpretation for the
introduced concepts.

Definition 1.1 Let A be a state space and let B be a finite or numerable set.
Two relations expressing boundary properties and four relations expressing tran-
sition properties are associated to every point of the set B. The relation F C
B X x " called a Problem defined over the
state space A. B is called the parameter space of the problem. The components of
the elements of the direct products t€[* 3)P(P[A) X P{A)) and 4]P(P[A)) are
denoted by >6, end by INIT&, FP&, inv j,, TERMj, respectively.

A program satisfies the safety property P > Q, if and only if there is no direct
transition from P A ->Q to ->P A ->Q only through Q if any. A program satisfies the
progress properties P>-*QorP'—*Qif the program starting from P inevitably
reaches a state, in which Q holds. P t-+ Q defines further restriction for the direction
of progress. The fixed point property FP =>• R defines necessary conditions for the
case when the program is in one of its fixed point. The Q G INIT property defines
sufficient condition for the initial states of the program. Q <—• FP expresses that
the program starting from Q inevitably reaches one of its fixed points. P is said
to be stable if and only if P > If P holds initially and P is stable, then P is an
invariant, denoted by inv P.

86 Zoltán Horváth

1.1.4 The definition of a parallel program
Let S be an ordered pair of a conditional assignment and a nonempty, finite set of
conditional assignments, such that 5 = (soi{sy | J G J A Dp(,) = A AVa G A :
(M a) | < w) }) , J = { l . . m } , m ^ l .

The program UPG(S) is a binary relation which associates equivalence classes
of graphs generated by the effect relation of so and by disjoint union of the effect
relations of conditional assignments {ai,..., s m } to the points of the state space.
The formal definition of a parallel program is given in [13]. The program UPGlS)
generated by the ordered pair S = (a0) { « i , . . .sm}) is denoted shortly by S. The
conditional assignment só is called the initialization in 5 and ay : j G [l..m] is said
to be an element of the program S.

1.1.5 The formal definition of a solution
The program 5 solves the problem F, if S satisfies all (subset of) the properties
given 'in F. The justification of the following definitions and the proofs of the
theorems is given in [11,13].

Definition 1.2 Let S be an abstract program, S = (a0, (aj, ...am}). Let us de-
note the set of the indices of the deterministic assignments of abstract program S
by Jrf and the the set of the indices of the nondeterministic assignments by Jnd-
fixpoints-.-.=(i€Ji ^[v n] (»,-. - a, = Py,.(a)) A (y€ J n i j e | 1 . .n , ("•**))).

Definition 1.3 Let S be an abstract program. S satisfies (FP => R) if
fixpointg =>• R.

Definition 1.4 Let S be an abstract program, S = (s0, { « í , . . .sm }) .
wp(S, Rh:=Vs G S : wp(s, R).
wpa(S, R)::=3s G S : wp(3,R).

(tupa(S,R) is called the "angelic" weakest precondition [15]).

Definition 1.5 The program S satisfies the property P > Q if and only if (P A
^Q=>wp(S,PvQ)).

Definition 1.6 The program S satisfies the pair of properties Q G I NIT and
inv P if and only if sp(so,Q) ^ P and P is stable.

Definition 1.7
G(P, Y, X)::=P V (wpa(S, Y) A typ(5, X V Y)),
F(P, Y)::—r)X : G(P, Y, X), and
~P::=uY : F(P,Y).

Remark: Since G is monotone in P, Y, X, VP, Y : rjX : G(P, Y, X) exists, moreover
F(P, y) is monotone in P, Y and ^ P is monotone in P.

Definition 1.8 (ensures) The programS satisfies the specification (Q i—• P) if and
only if (Q=>(PV (wpa(S, P) A wp(S, Q V P)))), i.e., (Q => G(P, P, Q)).

Definition 1.9 (leads-to, inevitableJ The program S satisfies the specification
(Q — P) if and only if (Q (~ P)) .

Parallel asynchronous computation of the values of an associative function 87

Theorem 1.1 If (<^P) holds for a £ A, the scheduling is unconditionally fair and
the program S is in the state a, then S inevitable reaches a state, for which P holds.

We can prove the following theorems corresponding to the properties used in the
definition of leads-to in UNITY [2]. The proof of progress properties is supported
by the introduction of so called variant functions [6,2].

Theorem 1.2 For an arbitrary program S,
- if P>->Q then P^Q, and
- if P<-*Q andQ<-> R, then P <-> R.
- Let I be an arbitrary finite set. Ifii e I: (P< <-• Q) then (3» : P.) <-+ Q.
- Let W be a well-founded set in respect of the relation <.

IfVmeW :: (P A v = m) <-» ((PAu < m) V Q), thenP^Q.

Consequence 1.1 If the program S satisfies the property: (-> fixpoints At) =
v') ((-i fixpoints A v < v' — 1) V fixpoints), then S satisfies the property

A new specification is called a refinement of a previous one, if any solution for
the new specification is a solution for the problem specified originally.

2 Computation of the values of an associative
function

Let H be a set. Let o : HxH •—• H denote an arbitrary associative binary operator
over H.

f : H* i—• H is a function describing the single or multiple application of the
operator o. Since o is associative, for any arbitrary sequence x €E H* of length at
least three
f(<i xu...,x\x\ ») = /(C f { c »i.-.Z!«!-! >),«|«| ») = /(C xi,/(C
xa,..,£|z| 3») ^)• We write f (< i hi,h,2 instead of the infix notation (hi o h?)
in the following. We extend / for sequences of length one: / (c h ») = h.

Let a finite sequence a £ H* of the elements of H be given. The indices are
associated to the elements of the sequence a in the reverse order, i.e., the last
element is denoted by oj. If the length of the sequence is n, then the first element
is denoted by an. a an , . . . ,oi in > 1). Let us compute the value of the
function Q : [l..n] i—• H for all i S [l..n], where n > 1 and

To solve the problem we use a similar train of thought to those presented in the
cases of parallel synchronous computation of the sum of binary numbers and of the
asynchronous computation of the shortest path [2].

2.1 The formal specification of the problem
We specify that the program inevitably reaches a fixed point and the array g con-
tains the values of / in any fixed point.

A — G, where G = t>ecfor([l..n], H), n > 1; g : G

(T— fixpoints), (T ^ FP).

t«-» FP
FP (Vi e [l..n]: ff(i) = /(< Oi,a! >))

(1)

(2)

88 Zoltán Horváth

o :k = riofl(«)l

Figure 1: Sfs(t,Jfc) = h(i,k), if k < [Jfc(t).

... _ k

Let us observe that the computation of the values of Q at place t is made easier
with the knowledge of the value of / for subsequences au , . . . , a„ indexed by
the elements of an arbitrary [u..u] C [t..l] interval. Moreover the result computed
for a subsequence is useful in the computation of the value of / for any sequence
which includes the subsequence.

FYom the above line of reasoning, we extend the state space and refine the
specification of the problem. Let us introduce the auxiliary function h. Let h(x, k)
denote the value of / for the sequence of which the first element is Oj and its length
is 2* or the last element is Oi, if t < 2fc. The two-dimensional array ga is introduced
to store the known values of h. This method is called the substitution of a function
by a variable [7]. The connection between the variables ga, k, t and the function h is
given by the invariants (4)-(6). The lines on the Figure 1 illustrate the connections
among the elements of the matrix ga according to lemma 2.1 and to invariants
(4) - (6) .

A' = Gx GSx Kx T G = vector{[l..n\,H),
g ga k t GS = vecior([l..n,0..(ilog(n)])], H)

K = vector \\l..n\, A/o),
T = vector([l..n],>/o), n > l

The precise definition of the partial function h : [l..n] x Mo —• H is:

i / • jl\.. / / (< Hi •••iai ») , if » — 2fe + 1 < 1
« 1 * . * ; » \ / (C o . - a (i _ 3 f c + 1) ») , if t — 2* + 1 > 1

Lemma 2.1
If (i -2k> 1), then f [c h(i, Jfc), h(i - 2k,k) ») = h{i, k + l).

Proof: Since t'-2fc > 1 ,h(i,k) = / (< o,•,..., a^.ak+i) ») . If (t-2* :) -2 f c + l > 1,
then h(i — 2k,k) = <»(,_2*)i —»a(t—2fc—2fe+i) Since / is associative:
/ (C h{i,k),h{i - 2k,k) >) = / (C Oi, — , a (» - 2 t + i) i a(«-2 f c)> •••>°(«-2't-2 fc+i) »
) = h(i,k + 1). If (»' - 2fc) - 2k + 1 < 1, then h(i - 2k,k) = /(«
a(i-2 fc)i—>°i Using the associativity of / : f (c h(i,k),h(i — 2k,k) ») =
f (C a,-,...,a (<_2«.+1),a (i_2t),...)a1 ») = h(i,k+ 1).

Parallel asynchronous computation of the values of an associative function 89

Let us choose the variant function u : A i—• Mo in the following way:
n

v::=4 *n*n-jT (k{i) + X{k(i) = flog(.-)l A g(i) = 93(i, *(«))))
•=i

The variant function depends on the number of elements of the matrix ga which
elements are different from the value of function h at the corresponding place and
on the number of places where the value of the array g is different from the value
of function Q.
Lemma 2.2 The specification below is a refinement of the specification (l)-(2).

f — FP (3)
FP V»' € [l..n] : (*(0 = ÍM* ')]) A (j/(t) = g.{i, [log(.)D) (4)

inv (V»' € [l..n] : *(«) < [log(t)l AVk : k < k(i) : gs{i, k) = h{i, k)) (5)
inv (Vi <E [1..»]: t(t) = 2*<0) (6)

Proof:
k{i) = [log(»)] and g(i) = ga(i, flog(t)]) in fixed point according to (4). Us-

ing (5) it follows that the equation </(t) = gs(i, [log(t)]) = h(i, [log(t)]) holds in
fixed point. Since 2rio<f(,')1 > t, after the application of the definition of h. we get
h(i, [log(Ol) = /(•< a,-, ...,ai which is the same as property (2).

Remark 2.1 The property (1) is not refined. The proof of the correctness of any
program in respect of (1)=(3) is based on Consequence 1.1. This means the choose
of a variant function may be regarded as an implicit refinement step in respect of
property (l) . Since the property (6) defines restrictions over the new components
of the state space only, we need not to use it in the proof of the refinement.

2.2 A solution
Theorem 2.1 The abstract program below is a solution for the problem specified
by (S)-(6), i.e., a solution for the problem of the computation of the values of an
associative function.

*o : < = [? . . »] * (» ') . * (» ') ~ / K 1.0

' f (c gs(i, *(»)), gs{{i - «(»)), fc(t')) 3>), 2 * t(t), k(i) + 1,
if (i-2* t(i) + 1 > 1) A (k(i - t(i')) > Jfc(»))

/(< gs(i, k{i)), ga(i - t{i), k(i - t(t))) »),
2*t(t),fc(i) + l,

if (t - t(t') > 1) A (» - 2 * t(i) + 1 < 1)
A (M » - i (f)) = r i o g (f - t (0) i)

.-=[?..»! «"(*• *(*))»/ (*(•) = riog(Ol)
}

where nj is used for the abbreviation of n statements. Each statement is in-
stantiated from the general form by substituting the dummy variable i by a concrete
value.

90 Zoltán Horváth

Proof:
(3): Every statement of the program decreases the variant function by 1 or does

not cause state transition. If the program is not in one of its fixed points, then there
exists an t € [l..n] and a corresponding conditional assignment, which assignment
increases the value of k(t), or there exists an t for which k(i) = [log(t)] and the
value of g(i) is different from the value of ga(i, ([log(t)])).

(4): using the definition of the fixpointg:

Vt e [I..n] (*(i) = [log(t)l) - g(i) = g.{i, k(i)) A (7)
((i - 2 * t(i) + 1 < 1) V (*(i - t (0) < fc(0)) A (8)

(i - t(i) < l)V (» - 2 - t(i) + 1 > 1) V (*(i - t (0) * riog(i - (t(.'))D) (9)

We apply mathematical induction on t to prove: Vt g Jl..n] : (£(») = Jlog(t)]).
Base case: t = 1. iVom (5) and ap(a0, T) follows that (mI) = [logflj]). Inductive
hypothesis: Vj < :(k(j) -Jlog(y) l) . Since i(t) > 1, (¿(¿-i(i))\ f [log(. '- (i(.))])
contradicts the hypothesis. This means (9) can be simplified to (» — tii) < 1) V (t —
2»t(t) + 1 > 1). If (t ' -2*i(») + l > 1), then k{x — t(i)) < Jfc(t') else (8) does not hold.
Using the inductive hypothesis and t(i) > 1 we get k(i — t(%)) = [log(t — i(i))],
i.e., (logii — t(»))1 < k(i). The last statement contradicts the initial condition:
t - 2 * t(i) + 1 > 1)) => (i - t(t) - t(t) + 1 > 1) =• [log(»" - i(t"))] > ifc(t). This means
t' - 2 * t(i) + 1 < 1).
t - 2 * t(t) + 1 < 1) =>• (» - i(t) < 1), otherwise (9) does not hold. (» - t(i) <

1) => k(i) > [log(»)]. Using the invariant (5) we get: k(i) = [log(t)]. Based on (7)
: $(t) = <?s(»',fc(t)) = ga(i, [log(t')l).

(61: Since sp(30, t) implies t(i) = 1 and k(i) = 0, the t(t) = equality holds
initially. All the assignments change the value of k(i) and t(i) simultaneously.

(5): Since M»',0) = f (c a(t) ») , sp(s0,T) => gs(i,k(i)) = h(i,k(i)). Since Jt(t)
is initially 0, ap(s0, T) =• [H*) < ilog(t) |).

After calculating the weakest preconditions of the assingments it is sufficient to
show that

• (t" - 2 * tii) + 1 > 1) A (A:(t - «(»)) ^ Jtmi and VJfc : ifc < Jfc(t) : gs(i, k) = h(i, k)
implies the equality for *;(»') + 1, i.e., /(«C ga(i,k(i)),ga(t — t(t),fc(t)) ») =
h{i,k(i) + 1) and k(i) + 1 < [log(t)*],

(« - 2 * i(t") + 1 > 1) A (t(t) > 1) =• (»" - t(t) > 1) =• Jfc < log(t - 1) < log(t') <

In the first case fc(t') < A;(t) implies gs(i,k[i)) = h(i,k(i)) and (if» — t(»)) > Jbit))
implies gs(i — t(t), k(i)) — h(i — £(t), A:(t)). In the second case k(t) < k(i) implies
ga(i, k(i]) = h(i,kli)) and k(l-t(i)) = flog(.-t(t))l implies ga(i-t(i), (flog(t)]) =
h(t — i(t), ([log(t)])). In both of the cases the application of the Lemma 2.1 leads
to the statement.
(end of proof.)

Parallel asynchronous computation of the values of an associative function 91

Let us suppose the abstract program is implemented on a parallel computer
containing O(n) processors. If the left side of an assignment refers to an array com-
ponent indexed by i, then the assignment is mapped to the ith (logical) processor.
Easy to see, that the program reaches one of its fixed point in at most Oflog(n)]
state transforming steps. The logical processors may work asynchronously.

2.3 Transformation of the program

The program corresponds neither to the rule of fine-grain atomicity [l](2.4) nor to
the shared variable schema [2]. To ensure effective asynchronous computation we
have to transform the program by introducing new variables and using the method
of substitution of a function by a variable for the function log [7].

Let us use the auxiliary arrays gst(i) = ga(t — t(i),k(i)), kt(i) = k(i — t(t)),
gatk(i) = gs(t — t(i),kt(i)), if the values are necessary and known by the ith
logical processor and the value of kt(i) is big enough to determine the next (i.e.
the (£(») + l)th) value of the tth column of the matrix gs (10). Let us introduce
the auxiliary boolean variables ktf(i), g3tf(i),gstkf(i) to administrate the usage
of the auxiliary arrays. The tth component of the auxiliary arrays is local in respect
of the tth processor.

Every assignment of the transformed program will refer to at most one nonlocal
variable.

2.3.1 The refinement of the specification

We extend the specification (3)-(6) with the following invariants:

V i e [l . . n] : (fci(t) < k(i - t(i)) A

ktf[i) — (Jfci(i) > Jt(i) V kt(i) = l(i - i (i)))) (10)
V i e [1 . . »] : (gstf{i) -» ktf{i) A (i - 2 • t(i) + 1 > 1)

A<7si(i) = gs(i — t(i), k(i))) (H)
V i e [l . .n] : (gstkf(i) -* ktf(i) A (i - t(i) > 1) A (i - 2 * t(i) + 1 < 1) A

9 s i * (t) = gs[i - t(i), fct(i)) = gs{i - t(i), k[i - t(i)))) (12)

V i e [l . . n] : [l o g (i) l = / (i) (13)

92 Zoltán Horváth

2.S.2 The transformed program

ao : i=I? n]9s(i,0),t{x),k{i)tl{i),ktfii),g8tkf{i),gstfli),kt{i) ~
/ (< * ») , 1,0, [log(t)], |,0

s : { h ? . . h : = k { i ~i(t))'* A (t " " < (t)) - 1

.=[? »!*'/(») -=T,if "•*«/(»') A (» - t(0) > 1 A (kt(i) > &(t)v
to(0 = l (i - « (i)))

<=[?..»| 9°tf(i) := gs(x - *(»), *(.)), T,
if ktf(i) A (»' - 2 * t(t) + 1 > 1) A (Jfct(») > Jfc(t)) A -igstf(i)

<=[?.«] 9*tk{i), gstkf{i) := gs{i - t{i), kt(»)), T,
if ktf[i) A (»' - t[i) > 1) A (t - 2 * i(t) + 1 < 1)

A(fci(t) = J(i - t(i))) A ->gstkf(i)

i=|?..»j»'M(*) + l),Hi),k(i),ktf{i),gstf(i),gstkf(i),kt{i) :=

' f (< p (t , k (i)) , gst(i) 2 *t(i),k(t) +1 ,1 ,1 ,1 ,0
if gstf(i)

f(Cgs(i,k(i)), g3tk(i) ») , 2 *t(i),k(i) + 1,1,4,4,0
if gstkf(i)

i=°n]9(i)-=9s(i,k{i)), if k(x) = l(t)
}

Proof: The invariants (10)-(13) are easy to prove by the calculation of the
weakest preconditions and sp(so, T)- Using the invariants f 10)-(13) we can state that
the assignments changing the variables mentioned in (3),(5)-(6) are equivalent of
the original assignments. This means the specification properties (3),(5)-(6) remain
valid for the transformed program too. To prove the fixpont property (4) it will
be sufficient to show: if the transformed program reaches one of its fixed points
then the original program is in one of its fixed points too and the conditions (7)-(9)
hold.D

3 Discussion
The program is easy to implement on synchronous, asynchronous and on distributed
architectures, such as for hypercubes [18] or T9000 transputer networks, where im-
plementation of 0([log(n)|) communication channels is supported by the concepts
of logical links.

A solution is developed in [14] for pipeline architectures.
The introduced relational model provides effective tools for the stepwise devel-

opment of a parallel solution as illustrated by the chosen example. The theorem 2.1

Parallel asynchronous computation of the values of an associative function 93

may be called a programming theorem [6]. With its help we can solve a class of clas-
sical problems. For example parallel addition, comparison of ascending sequences
[2], etc. are easy to formalize by the help of associative functions.

References
[1] Andrews, G.R.: Concurrent Programming, Principles Practice, Ben-

jamin/Cummings, 1991.
[2] Chandy, K.M.. Misra, J.: Parallel program design: a foundation, Addison-

Wesley, 1988, (1989).
[3] Dijkstra, E.W.: A Discipline of Programming, Prentice-Hall, 1976.
[4] Dijksta, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics,

Springer-Verlag, 1989.
[5] Emerson, E.A., Srinivasan, J.: Branching Time Temporal Logic, in Linear

Time, Branching Time and Partial Order in Logics an Models for Concurrency,
LNCS S54. Springer-Verlag 1989, 123-172.

[6] Fóthi Á.: Introduction into Programming (Bevezetés a programozáshoz), in
Hungarian, ELTE TTK, Budapest, 1983.

[7] Fóthi Á.: verbal communications
[8] Fóthi Á.: A Mathematical Approach to Programming, Annales Uni. Sci. Bu-

dapest. de R. Eötvös Nom. Sectio Computatorica, Tom. EX. (1988), 105-114.
[9] Fóthi Á., Horváth Z.: The Weakest Precondition and the Theorem of the Spec-

ification, in Proceedings of the Second Symposium on Programming Languages
and Software Tools, Pirkkala, Finland, August 21-23,1991, Eds.: Kai Koskimies
and Kari-Jouko Raiha, Uni. of Tampere, Dep. of Comp. Sci. Report A-1991-5,
August, 1991, 39-47.

[10] Horváth Z.: Fundamental relation operations in the mathematical models of
programming, Annalés Uni. Sci. Budapest, de R. Eötvös Nom. Sectio Compu-
tatorica, Tom. X. (1990), 277-298.

[11] Horváth Z.: The Weakest Precondition and the the Specification of Parallel
Programs, in Proceedings of the Third Symposium on Programming Languages
and Software Tools, Kaariku, Estonia, August 21-23, 1993, 24-33.

[12] Horváth Z., Kozma L.: Parallel Programming Methodology, to appear in Pro-
ceedings of the Workshop on Parallel Processing, Technology and Applications,
Technical University Budapest, February 10-11, 1994.

[13] Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Pro-
gram - a Relational Model, in Proceedings of the Fourth Symposium on Pro-
gramming Languages and Software Tools, Visegrád, Hungary, June 9-10, 1995,
165-189.

[14] Loyens, L.D.J.C., van de Vorst, J.G.G.: Two Small Parallel Programming
Exercises, Science of Computer Programming Vol. 15(1990), 159-169.

[15] Morris, J., M.: Temporal Predicate Transformers and Fair Termination, Acta
• Informática, Vol. 26, 287-313, 1990.

[16] Nyéky-Gaizler J., Konczné-Nagy M., Fóthi Á., Harangozó É.: Demonstration
of a problem solving method, Acta Cybernetica 12 (1995) 71-82.

94 Zoltán Horváth

[17] Park, D.: 0|n the semantics of fair parallelism, in LNCS 86, 504-526, Springer
1980.

[18] Quinn, M., J.: Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, Inc., 1987.

[19] Varga L.: Programok analízise is szintézise, Akadémiai Kiadó, Budapest, 1981.

Received, July, 1994

