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On the Complexity of Dynamic Tests for Logic 
Functions 

V.A.Vardanian* 

Abstract 

A generalization of the concept of dynamic test is proposed for detecting 
logic and parametric faults at input / output terminals of logic networks 
realizing k— valued logic functions (k > 2). Upper and lower bounds on the 
complexity (i.e., length) of minimal dynamic tests are obtained for various 
classes of logic functions. 

1 Introduction 
In dynamic testing of combinational logic networks (see [1,2]) the fault-free and 
faulty circuits are distinguished if they have different dynamic (i.e., time varying) 
behaviors (output level variations) under the same input stimulation by a transition 
signal. It should be noted (see [1-3]) that there are statically undetectable logic 
faults, as well as parametric faults (e.g., inadmissible variations of the magnitude 
of time delays), which may become detectable only in dynamic testing. In [3l 
a notion of dynamic test was introduced for input/output terminals (I/O faults) 
of combinational networks since in many cases faults are more likely to occur at 
the input/output terminals rather than inside. The dynamic test [3,4] is defined 
to be a set of input patterns sensitizing the output of the network with respect 
to simultaneous switching of every feasible subset of input variables. Evidently, 
the dynamic test for I /O faults does not depend on the internal structure of the 
network, but depends only on the function realized by the output. In [3-7] some 
classes of logic and parametric 17O faults are described to be detectable by dynamic 
tests, and the complexity (i.e., length) of minimal dynamic tests is investigated for 
various classes of logic functions. 

In this paper, a generalization of the notion of dynamic test called (dynamic) 
test of regularity, is proposed for k— valued logic functions, k > 2. As a result, 
the class of detectable I /O faults is considerably enlarged. A notion of stability 
dual to that of sensitivity is introduced, and the test of regularity is defined to be 
a set of input patterns that are sufficient to both sensitize and stabilize the logic 
function with respect to simultaneous switching of every feasible subset of input 
variables. Upper and lower bounds on the complexity of minimal tests of regularity 
are obtained for some classes of k-valued logic functions. 
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2 Notations and Definitions 
Let Ek = {0,1,..., k - 1}, k > 2, denote 

E£ = {a/a = (<*!,...,«„), a< € Ek,i = 17^}; 

Pk(n) = {f/f:£%~Ek}-, 

Gj(S) = {0/0 e ES, ^ / a,) - (j e / ) } 

where I C N n = {1,2,..., n}, / / 0, a € 
For k > 2,5 e E%,I = {» i , . . . , » , } C JV„,/ / 0, the set G / ( 5 ) n ^ 3 has only 

one element denoted in the sequel by 

S 1 = (oil, •••! a u - i i i <*»i+i> •••iQi»',-ii (*»',» oti.+i, an) 

where a = 1 — a,a £ E 2 . 

Definition 2.1 . The function f(xi,...,x„) € Pk(n) is sensitive (stable) at vector 
a £ E£ with respect to the subset of variables {x<t x , , } C { x i , . . . , x n } if there 
exists a vector P 6 such that f(a) jt f(f)) ( respectively , / ( a ) = 
/ (£ ) ) . The function / is sensitive (stable) with respect to {x<,,..., Xi,} if there exists 
a vector a e at which / is sensitive (stable) with respect to {x t l } . 

Definition 2.2. The function / € Pk(n) is said to be regular if it is both sensi-
tive and stable with respect to every nonempty subset of variables {x,-,,..., x<,} C 

*n}-
Denote by Rk(n) the set of all regular functions / € Pk(n). 
We shall say that almost all functions from a class f ( n ) C Pk(n) have a property 

R if the fraction of functions from F(n) with property R tends to 1 as n —• oo. 
It is easy to prove the following assertion. 

Lemma 2.1. Almost all functions / € Pk(n) are regular. 

Definition 2.8. The set of vectors T*(s,f) C ( respectively, T**(a, / ) C 
is called an s— test of sensitivity ( stability ) for f € Pfc(n), if for each sub-
set { » ! , . . . , t r } C Nn, 1 < r < s, the sensitivity {[stability! of / with respect 
to {x t l xt- } implies the existence of a vector a 6 T*(s,f) ( respectively, 
a e T**(s, / ) ) at which / is sensitive (stable) with respect to {x<,,..., x<r}. 

Definition 2.4. The set of vectors T(s, / ) C £ £ is called a ( dynamic ) s- test of 
regularity for the function / £ Pk(n), if it is both an s— test of sensitivity and an 
s— test of stability for / . 

For a = 1 (respectively a = n) the a— tests will be called single (complete) 
tests. The test To (a . / ) is called a minimal a - test for / , if |T0(a,/)| = t(a, / ) = 
min{|T(a, f)\/T(s, f) € Z(a, / ) } , where Z(a, / ) is the set of alia— tests of regularity 
for / , and \A\ denotes the cardinality of the set A. 

The main objective of this paper is to find bounds on the complexity measure 
t(a, / ) of minimal a— tests of regularity for logic functions / £ Pk(n),k > 2,1 < 
a < n. 
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3 The Complexity of Single Tests 
The set of functions P*(n) may be considered as a probability space with every 
element / £ P*(n) having the same probability expu(—kn). Denote by Hn the 
Hamming code in the n-cube ES. It is known (see [9]) that liTJ = exp2(n — 

A/ ^ 

[log2(n + l ) ] ) . The pair of vectors a,f} € Hn, a / /9, will be called a regular pair 
for the Boolean function / € P3(n) iff AT=i(/(S) ® /(5{<}) © f{P) ® / ( 0 { * } ) ) = 1 
where © is the modulo 2 sum. Obviously, if (a , 0 } is a regular pair for / e P2(n) 
then { a , P } is a single test of regularity for / . 

For every a, 0 e Hn, a / / € P2(n) define the following random variables 

« a w - i i if {a , f}} is a regular pair for / 
otherwise 

Obviously, f 2 ( / ) = ~ „ ~ ~( / ) determines the number of regular pairs 
for / g P2(n). 

From Definition 2.4 with fc > 3, s = 1, it follows that if for every «, 1 < » < n, 
the function / € Pfc (n) is both sensitive and stable at vector a € with respect 
to variable zt-, then { a } is a minimal single test of regularity for / . 

For every a € and / € Pk (n) define the following random variable 

if { a } is a single test for / 
otherwise 

Obviously, the random variable & ( / ) = (~(f) determines the number of 
single tests of regularity for / £ Pfc(n), k > 3. Now let us compute the expectations 
M£k(f) and dispersions D£k(f) for the random variables £k(f), k > 2. 
Lemma S. l 

- \ ¿ " (1 - ((* - l ) / * ) * " 1 - * - f c + 1 ) n if jfc > 3 

Lemma 3.2 . 

^ - ( ( l - i - M if A: = 2 
~ \ M & ( / ) + (d ( fc )n3 + c2(k)n - 1 )k~»(Mtk(f))* if k > 3 

where ci(k) and c2(k) depend only on k. 
Lemma 3.3. For almost all functions f £ Pk[n),k > 2,n oo, 

Proo f is based on the second - moment method (see, e.g., [8]). From Lem-
mas 3.1 and 3.2 it follows that M£k(f) oo, and D£k{f) = o( (M£ f c ( / ) ) 2 ) . 
Let < (̂n) —• oo, <f>[n) = o(s/M£k(f)), then according to Chebyshev's inequal-
ity (see [8]) the fraction of functions / € Pk[n) satisfying the inequality 
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|&(/) - Aif f c ( / )| < U(n\)~1Mik(f) tends to 1 as n oo. Consequently, by 
definition, £k(f) ~ Mfck[f) for almost all functions / 6 flt(n), n oo, fc > 2. 
Theorem S. l . For almost all functions / € P* (n) 

t ( L , J ) \ 1 if Jb > 3 

P r o o f for k > 3 follows immediately from Lemma 3.3. For k = 2 from Lemma 3.3 
it follows that t( 1, / ) < 2 for almost all functions / 6 Pajn). From Lemma 2.1 and 
Definition 2.4 with Jfc = 2, a = 1, it follows that t( l , / ) > 2 which completes the 
proof. 

4 Upper Bounds on the Complexity of s— Tests 
The set of vectors Q C will be called an (n,2s + l,r)— code if |Q| = r and 
p(a, p) > 2a + 1 for all a, p € Q, a jt P, where p(a, P), called the distance between 
a and fi, is the number of coordinates t, 1 < * < n, such that <*< ^ 
Lemma 4 .1 . Let Q C be an (n,2a + 1,r)— code,a >2,k>2 and ^(n) —• oo 
as n —• oo. If 

r _ / l w 2 E ; = I ( ? ) + ^ W J for k=2 
~ \ L(fc - l ) " 1 logfc^fc.!, n + *(»)J for A: > 3 

then for almost all functions / € Pfc(n) Q is an a— test of regularity. 
Proo f . Let I = {* i , . . . , » m } Q N n , 1 < m < a. Denote by $ * ( / ) ( respectively, 
i i f c ( / ) ) the number of functions / £ PK{N) that are not sensitive (stable] at each 
vector a e Q with respect to the subset of variables {z j , , . . . , i , m } . Then it is easy 
to compute 

* f c(J) = expk (kn - r(k - l ) m ) , ¥fc(J) = * f c" exp ( f c_1 ) /k(r(fc - l)m). 

Let PFC(n, Q) be the probability of an event that Q is an a— test of regularity for a 
random function from Pfc(n). Now it is easy to verify that if r satisfies the conditions 
of the lemma, then 

P f c ( n , Q ) > l - e x P f c ( - n £ ( * * ( / ) + ¥* ( / ) ) = 
/cw„,i<|/|<« 

=1 - E (•) (exp*(-»-(* - 1 ) * + « P ( f c - i ) / f c ( ' ( * - in) = i -
Denote by ffcfn, 2a + 1) a code in of maximal cardinality with a code distance 
2a + 1 . The following statement is a straight-forward generalization of a well-known 
result for k = 2 (see [9]). 
Lemma 4.2 . For all Jb > 2 

«=o ^ ' 
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Theorem 4.1 . For almost all functions / € /^(n) and n —» oo 

tla n~ialog2' tfa = 0(n) \nH(A) if a = [Anj,0 < A < 1/4 

where H(A) = - A log3 A - (1 - A) log2(l - A). 
Proof . Applying the well - known (see [10]) inequality 
127Lo (?) — * * P a ( n ^ ( m / n ) ) where m < n/2, and taking into account Lemma 4.2 
we obtain that if s = IAnJ,0 < A < 1/4,n —» oo and r satisfies the conditions of 
Lemma 4.1 for k = 2, then 

|F2(n, 2s + 1)| > exp2(n(l - H(2s/n))) > exp2(n(l - #(2A))) > r. 

Thus, if the conditions mentioned above are satisfied, then there can be constructed 
an (n, 2s +1 , r)— code which according to Lemma 4.1 will be an s-test of regularity 
for almost all functions / € P2(n). Hence, t(s, f) < r = [log2 (7) + ^(«JJi 
whence the proof follows directly. 
Theorem 4 .2 . For almost all functions / 6 Pfc(n), fc > 3, 

2 < a < [n(log2 k - l)/(21og3(A - l))J, n - oo, 

t(s, f)~(k - 1 ) _ 1 l og^ fc . j ) n. 

P r o o f is analogous to that of Theorem 4.1. 

5 Lower Bounds on the Complexity of s— Tests 
Let {»'i,.. . ,»r} C JVn,cy € Ek,j = ITr, 1 < r < n,k > 2. Denote by ^ ( t ' l , cx ; ...; 
tr, cr) the set of all vectors /? 6 with = cy, j = l ,r , called an (n — r) — 
dimensional subcube in ££ . The set of indices {ti , . . . ,«r} will be called the set of 
fixed indices of the subcube. Any two subcubes in will be called parallel if they 
have the same set of fixed indices. Obviously, any two parallel subcubes do not 
intersect, and j£J(t1 ,e1 ; . . . ;t r ,c r)| = 

The following statement is a straightforward generalisation of a lemma from 
[10]. 
Lemma 5 . 1 . For any set M C |Af| = m < n+1, fc > 2, there exists a family of 
(n —m+1)— dimensional parallel subcubes of cardinality with each subcube 
containing at most one vector from M. 

Let Tfc(m) be the probability of an event that a random function from Pt(n) 
has an s— test of regularity consisting of m vectors. 
Lemma 5.2 . For k > 2,m < n + 1 and n —• oo 

s \ 9 /»-m+l\ 

* ' 1=1 
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P r o o f . Denote by M(M) the set of functions / G Rk(n) having M as an a— test 
of regularity. Then, taking into account Lemma 2.1 , it is easy to verify that 

*fc(m) < exP f c ( - fc" ) £ |X(M)| + 0(1). 
hdCE£,\M\=m 

According to Lemma 5.1 there can be found a family of (n — m + l)— dimensional 
parallel subcubes of cardinality Jfcm_1 with each subcube containing at most one 
vector from M. Let {p\,}2, —¡jm-i} be the set of fixed indices corresponding to 
every subcube from the family. Denote N* = Nn \{ji,..., jm-i}- Let M*(M) be 
the set of functions / G ü t (n) having M as an a— test of regularity with respect to 
JV*, i.e., for every subset { í j , . . . , / „ } C N*, 1 < v < a, f is both sensitive and stable 
with respect to the set of variables { x j j , . . . , ! / , } . Obviously, M(M) C M*(M). 

It is easy to compute that 

|x*(M)|<n(«p*MA-in-«pfc-iMfc-in-i)1 ' jx 
«=1 

x e x P f c r - m é ( n - 7 + 1 ) ( ) f c - i n = 
»=1 * ' 

kk' JJ ( l _ ( * Z l ) m ( f c - D 4 _ j f c — ( f c - l ) y ' 
t=l 

Whence the proof of the lemma follows immediately. 
The proof of the following statement is obvious. 

L e m m a 5.3 . If Wfc(m) = o( l ) for k > 2, m = m(n) ,n —• oo, then for almost all 
functions / G Pfc(n) 

t(a,f) >m+ 1. 

T h e o r e m 5.1 . For n —• oo and almost all functions / G P2 (n) 

' (a — 1) log2 n if a = conat > 2 
3 l o g a ? if a = °(»)> a — oo 

t[a'11 nH{X)/{l + H(X)) if a = [AnJ, 0 < A < 1 /2 
. n/2 if a > n /2 

Proo f . From Lemma 5.2 with k = 2 we obtain 

* f c(m) < 2™ exp e (—2 - m + 1 £ ( " ~ 7 + ^ ) + ° ( 1 ) ' 
»=1 ' ' 

Putting 

[(a - 1) log2 n - log2 log2 n - r(n)J, 
r(n) = o(logn), r(n) - » o o if a = conat > 2 

mo = [a log2 j - 21og2 n + a log2 ( l - ± log2 if a = o(n), a -+ oo 
[ n # ( A ) / ( l + H[A)) - 3 log2 nj if a = [AnJ, 0 < A < 1/2 

„ [n/2 — v log2 nj, v = conat > 5 / 4 if a > n /2 
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it is easy to verify that ^ ( m o ) = o ( l ) ,n —• oo. Hence in view of Lemma 5.3 we 
obtain the assertion of the theorem. 
Corol lary 5.1 . If a = const > 2, n —• oo, then for almost all functions / G Pi{n), 

t(s, f) x logn. 

Corol lary 5.2 . If a = o( n), a —• oo, n —• oo, then for almost all functions 
/ e P2(n), 

t(a, / ) ~ s log3 j . 

Corol lary 5.3 . If a = [Anj,0 < A < 1/4,n —• oo, then for almost all functions 
/ e P 2 ( n ) , 

t(a, / ) x n. 
Corollaries 5.1-5.3 are obtained from Theorems 4.1 and 5.1. 

Theorem 5.2 . If a > 2, k > 3, n —• oo, then for almost all functions / € Pk(n), 

t(a, f)~(k - l ) - 2 log f c / ( f c_1 } n. 

Proo f . Prom Lemma 5.2 with k > 3 we obtain 
H < expe ( - ( n " 7 + f - ^ r ^ ) + 0(1). 

It is easy to verify that iTk(m) = o( l ) for m = [ (¿ — 1) 2 log fc/( fc_i) n — logfc logfc nj , 
n - t oo. Thus, in view bf Lemma 5.3, the theorem is proved. 
Corol lary 5 .4 . If k > 3,2 < a < [n ( l og 2 f c - l ) / ( 21og 2 ( f c - 1))J, n - » o o , then for 
almost all functions / € Pfc(n), 

t[s,f) x logn. 

P r o o f follows directly from Theorems 4.2 and 5.2 . 

6 Upper Bounds on the Complexity of Complete 
Tests 

For Boolean functions / e P2 in) denote u{(x) = f(x) ® / ( i 7 ) , I C Nn, I ji 0. Now 
let us describe an algorithm for constructing a complete test of regularity for an 
arbitrary function / 6 P3(n). 
A lgor i thm 6.1 . S tep 1. Choose an arbitrary vector Si € and put 

Ti(f) = {Z&, 

T1° = { / / / C A T n , / / 0 , w / ( a 1 ) = O } ; 
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T11 = {I/lCNn,I?t,wfI(S1) = l}. 

If Tj0 U Ti1 ^ 0 and there exists a subset J3 € Ti"- for some a e {0 ,1 } such that 
( î ) ^ a, then we pass to the next step, otherwisè the algorithm terminates. 
Step »(»' > 2). Choose a vector Si € such that Wj (Si) = <r, where U € 

V - i . ^ fx) 1). If 

11i/// e = *>l - l ^ è IT̂ IJ +1 
<7=0 <7=0 

then put 

3 i ( / ) = T<_ i ( / ) ( J {5< } ; 

7<0 = { / / / e T i ® l l « / ( S i ) = 0} ; 

V = { / / / € 7 ^ , ^ ( 5 . ) = ! } . 

otherwise 

£(/) = {of*/a € 2 i - i ( / ) } J J i 3 . - ' } ; 

Ti° = {IAIi/I € 7 ^ 1 ( / # (Si) = <7}; 

T<1 = { / A / , / / 6 T^^Si) = a), 

where A is the set-theoretical operation of symmetric difference. 
If T° (J Ti1 ^ 0 and there exists a subset /<+1 e 7J" for some a 6 { 0 , 1 } such 

that <jj j+i ( ï ) ^ cr, then we pass to Step »' + 1, otherwise the algorithm terminates. 
Finally, Algorithm 6.1 will determine a set Tm(f) of m > 1 vectors which, as 

we are going to prove below, is a complete test of regularity for / 6 /^ (n ) . 
We shall say that the subset / Ç Nn, I / 0, is a feasible fault of sensitivity 

(stability) for / 6 Psi» ) if W/ ( î ) ^ 0 (respectively, u { ( x ) ^ l ) , and the vector 
S 6 25J detects the fault of sensitivity (stability) I for / if w ' ( a ) = 1 (respectively, 
W i / ( a ) = 0 ) . 
Theorem 6.1 . For all functions / € P2(n), 

« ( » , / ) < • » + 1 . 

Proo f . Let m = m(f) be the number of steps performed by Algorithm 6.1 for 
/ . It is easy to see that for each », 1 < t < m, the vectors from Ti(f) do not 
detect the faults of sensitivity I 6 T{° and the faults of stability J € T^, and the 
total number of faults not detected by the vectors from TA}) is reduced more than 
twice after each step. Since the algorithm terminates iff Tm(f) detects all feasible 
faults of sensitivity and stability for / , then Tm(f) is a complete test of regularity 
for / . Consequently, t(n, f ) < |Tm(/)| = m. It is easy to prove by induction on 
», 1 < » < m, that \T?\ + I V | < 2 n + 1 - ' - 1. The conditions causing Algorithm 6.1 
to terminate imply 0 < |7^| + |7„J| < 2 n + 1 _ m - 1 whence the bound m < n + 1 is 
derived directly. 
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Corollary 6.1 . For almost all functions / G ¿^(n), 

n /2~t (n , / ) < n + 1 . 
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Proo f follows directly from Theorems 5.1 and 6.1. 
Let £*(«, / ) (respectively, t**(s, / ) ) be the complexity of a minimal s— test of 

sensitivity ( stability ) for / G Pfc(n). 
Lemma 6.1 [7]. For almost all functions / G Pk(n), k > 3, 

t*(n,f)<n. 

We will say that the function / 6 J^(n), fc > 3, is stable in i?2 if for every 
7 C Nn, 7 ^ 0 , there exists a vector S 6 .EJ detecting the fault of stability I for / 
in 25?, i.e. , / ( 5 ) = / ( a 1 ) , where a 1 is the sole vector from Gj (a) f\En. Denote 
by 9[f,I) the number of vectors a G detecting the fault of stability I for / . 
Lemma 6.2 . For almost all functions / G Pk[n), k > 3, the inequality ff(f, I) > 
12" " 1 holds for all I C Nn, I ± 0. 

Lemma 6.3 . Almost all functions / G P*(n),A; > 3, are stable in 
Lemma 6.4 . Almost all functions / € Pk(n),k > 3, take all k values from Ek at 
vectors from 
Proofs of Lemmas 6.2-6.4 are not difficult, so they are omitted. 

Now let us describe an algorithm for constructing a complete test of stability 
for almost all functions / € Pk(n),k > 3. To this end, each function / G Pk{n) is 
associated to a table J(f) with 2 rows, one for each vector from E%, and 2n — 1 
columns, one for each feasible fault of stability / C Nn, I ^ 0; At the intersection 
of the ith row and jth column corresponding to a 6 E% and I C Nn, respectively, 
there stands a 'l '( 'O') iff / ( 5 ) = / ( a 1 ) (respectively, / ( 5 ) ^ ¡(a1)). Let T0(f) = 0 
and J0(f) = J(f). 

Algorithm 6.2 . Step i ( t > 1 ) . Select a vector 2j G with the corresponding 
row in J i - i { f ) having the maximum number of l's, and put TAJ) = Ti-i(f) U{S,-}. 
Denote by X(f) the table obtained from by deleting all the columns having 
l's in the row corresponding to a^. If Ji(f) = 0 or Ji(f) has only O's , then the 
algorithm terminates, otherwise we pass to Step » + 1. 

Note that according to Lemma 6.3, for almost all functions / G Pfc(n) Algorithm 
6.2 terminates iff Jm[f) = 0 for some m > 1. Hence, the following assertion holds. 
Lemma 6.5 . For almost all functions / G Pk{n),k > 3, Algorithm 6.2 constructs 
a complete test of stability. 
Lemma 6.6 . For almost all functions f & Pk(n),k> 3, 

* * > , / ) < r»lo«a*/(afc-i)2l + l. 

Proof . Let f^ be the fraction of faults of stability I C Nn, I ^ 0, detected by 
vectors a i , . . . ,a r G E% which are selected after the rth step of Algorithm 6.2. 
Then, obviously, (1 — fir)(2n — 1) is the number of faults of stability remain-
ing still undetected , i.e., the number of nonempty subsets / C Nn such that 
/ (ay) ^ / ( S j ) for all j, 1 < j < r. From Lemmas 6.2 and 6.3 it follows that for 
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almost all functions / 6 Pfc(n) the total number of feasible faults of stability, de-
tectable by the remaining vectors from is not less than ¿ (1 — Mr)(2" — l ) 2 n _ 1 . 
Consequently, among the remaining vectors there can be found a vector detecting 
not less than ( l — /¿r)(2" — l)/(2Jb) faults of stability which are not detected by the 
first r selected vectors. Thus, we obtain 

<*« > + ¿(i - *) - ,(i - ¿ K + £ > ••• a 

»=0 

( since Lemma 6.4 implies ni > j > ) 

1 ' 1 i 1 r+1 

l i s E P - i s i - ' - c - H » • 
t = 0 

Thus, Hr > 1 - ( 1 - Putting ro = f l o g ! _ ^ < r»log2fc/(2ifc-l) 21» w e 

find out that after the choice of ro vectors there will still remain undetected not 
more than 

(1 - - 1) < (1 - ¿ ) r o ( 2 " - 1) < 1 

faults of stability. Taking into account Lemma 6.5, we obtain that for almost all 
functions / e Pfc(n) 

t**(n, / ) < ro + (1 - Mr„)(2n - 1) < r » k f c f c / ( a k - i ) 21 + 1-

T h e o r e m 6.2 . For almost all functions / S Pk{n),k > 3, 

t(n, / ) ~ n ( l + logafc/^fc.i) 2). 

P r o o f follows directly from Lemmas 6.1 and 6.6 . 
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