
Acta Cybernetica, Vol. 11, No. 4, Szeged, 1994

A Pumping Lemma
for Output Languages

of Attributed Tree Transducers

A. Kuhnemann* H. Vogler*

Abstract

An attributed tree transducer is a formal model for studying prop-
erties of attribute grammars. In this paper we introduce and prove a
pumping lemma for output languages of noncircular, producing, and
visiting attributed tree transducers. We apply this pumping lemma to
gain two results: (1) there is no noncircular, producing, and visiting
attributed tree transducer which computes the set of all monadic trees
with exponential height as output and (2) there is a hierarchy of noncir-
cular, producing, and visiting attributed tree transducers with respect
to their number of attributes.

1 Introduction
In formal language theory we are often confronted with the task to decide, whether
a given language £ is an element of a class L of languages, where t usually is
defined by a class of grammars or translation schemes. If £ is an element of
then we have to specify a grammar or a translation scheme which generates L. If
L is not an element of then sometimes we can use necessary conditions which
every language in £. has to fulfill. With the help of these conditions we can try
to deduce a contradiction to the assumption that £ is an element of L. Pumping
lemmata are such necessary conditions which have been proven to be very useful
tools.

Pumping lemmata have been invented for different kinds of languages, for ex-
ample string languages, graph and hypergraph languages, picture languages, and
tree transducer languages.

'Institut für Softwaretechnik I, Fakultät Informatik, Technische Universität Dresden,
D-01062 Dresden, Germany, e-mail: {akl5, hv3}@irz.inf.tu-dresden.de

262 A. Kiihnem&nn and H. Vogler

In the case of string languages we can observe the following evolution of pumping
lemmata: Scheinberg has used in [Sch60] a proof technique which can be seen as a
predecessor of the well known pumping lemma for context-free languages of Bar-
Hillel, Perles, and Shamir [BPS61]. The structure of the latter pumping lemma has
served as pattern for most of the existing pumping lemmata in the literature and
therefore it seems to be the root of the research about pumping lemmata. Since
it also has influenced our pumping lemma, we present here a short version of the
lemma's central statement and we recall itB proof idea:

For every context-free grammar G there is a natural number no, called the
pumping index of G, such that for every string z which is an element of the language
L(G) generated by G and which has at-least the length nc , the following holds.
There is a decomposition z = uvwxy, such that v or 2 is not the empty string and
such that for every natural number j, the pumped string uv3 wx} y is an element of
L(G).

The proof can be sketched as follows: We choose a sufficiently long string z of
L[G), such that its derivation tree e has the following property: e is high enough,
such that it has a path p, on which two different nodes x\ and xi are labeled by
the same nonterminal symbol. Assuming that xi is closer to the root of e than xj ,
we can define the following tree e: Roughly speaking, the tree S is that part of e
which has zi as root and from which the subtree rooting at x2 is pruned. Since
xi and xi have the same label, we can construct for every natural number j a new
derivation tree, by repeating 2 j times. Taking the yield of these derivation trees,
we obtain new elements of L(G).

As stated above, the pumping lemma of Bar-Hillel, Perles, and Shamir is only
a necessary condition for the context-freeness of a string language. Thus there
exist non-context-free languages which fulfill the requirements of the pumping
lemma. In the sequel more and more stronger pumping lemmata for context-free
string languages have been invented. Most of them, however, represent no sufficient
condition for context-freeness. For example, in the Ogden-Lemma (cf. [Ogd68])
we can designate distinguished positions in the pumped string. This allows us to
concentrate on those substrings, in which pumping is effective. Bader and Moura
have developed in [BM82] a stronger version, the Generalized Ogden-Lemma, where
additionally positions in the pumped string can be excluded. In the paper of Bader
and Moura it is also shown that there is no stronger version of the Generalized
Ogden-Lemma which exactly characterizes the context-free string languages.

Wise has introduced in [Wis76] his Strong Pumping Lemma which is a necessary
and sufficient condition for context-free string languages. The central idea of this
lemma is to pump sentential forms of a grammar for a context-free language L
instead of pumping terminal strings of L. The Strong Pumping Lemma of Wise
represents another method to prove that a certain language is not context-free by
assuming that it is context-free and by applying the lemma. In contrast to the
other pumping lemmata stated above, this application guarantees the existence
of a contradiction, because the Strong Pumping Lemma characterizes the class of
context-free languages. Clearly, it depends on the skill of the researcher, whether
he can construct this contradiction, yes or no.

A pumping lemma for output languages of attributed tree transducers 263

There also exist pumping lemmata for subclasses of the class of context-free
languages: Boonyavatana and Slutzki have invented pumping lemmata for linear
context- -free and nonterminal bounded string languages in [BS86a] and [BS86b], re-
spectively. Yu has developed in [Yu89] a pumping lemma for deterministic context-
free languages. Ehrenfeucht, Parikh, and Rosenberg have introduced in [EPR81]
the Block Pumping Lemma as characterisation of regular string languages.

There are also pumping lemmata in the area of context- free graph and hy-
pergraph languages: Kreowski (cf. [Kre79]) and Habel (cf. [Hab89]) have invented
pumping lemmata for edge-replacement and hyperedge-replacement languages, re-
spectively. These pumping lemmata require a certain size of the pumped graphs.
In comparison with them, the Maximum Path Length Pumping Lemma for edge-
replacement languages of Kuske (cf. [Kus91,Kus93]) needs a certain length of a
path in the pumped graphs.

Another kind of language paradigm are the picture languages. Hinz has devel-
oped in [Hin90] pumping lemmata for certain subclasses of picture languages.

First Aho and Ullman have inspected pumping lemmata for output languages
of translation schemes in [AU71], namely for generalized syntax directed trans-
lations. Perrault and Ésik have introduced in [Per76] and [Ési80], respectively,
pumping lemmata for (nondeterministic) top-down tree transducers (cf. [Rou70,
Tha70,Eng75]). The results of Ésik also appear in the book of Gécseg and Steinby
(cf. [GS83]). Engelfriet, Rosenberg, and Slutzki have presented in [ERS80] a pump-
ing lemma for deterministic top-down tree-to-string transducers which has a struc-
ture that is closely related to the pumping lemma for context-free string languages.
The proof of this lemma had a big influence on the development of the pumping
lemma for attributed tree transducers which we present in this paper.

The concept of attributed tree transducer has been invented by Fülöp in [FÜ181];
it is a formal model for studying properties of attribute grammars introduced by
Knuth in [Knu68]. Attributed tree transducers are abstractions of attribute gram-
mars in the sense that they take trees over an arbitrary ranked alphabet of input
symbols rather than derivation trees as argument, and that the values of the at-
tributes are also trees over a ranked alphabet of output symbols.

Like in attribute grammars, the set of attributes is partitioned into the set of
synthesized and inherited attributes which are associated to the input symbols and
which compute their values in a bottom-up manner and in a top-down manner,
respectively. In contrast to attribute grammars, to every input symbol the whole
set of attributes is associated; this means that all attributes are available at any
node of any input tree. Roughly speaking, computing the value of a synthesized at-
tribute occurrence of a node x of an input tree, the values of the inherited attribute
occurrences of x and of the synthesized attribute occurrences of its sons (if they
exist) may be used and, computing the value of an inherited attribute occurrence
of x, the values of the inherited attribute occurrences of its father (if it exists) and
of the synthesized attribute occurrences of x and of its brothers may be used. This
refers to the usual Bochmann Normal Form of attribute grammars [Boc76].

In this paper we consider only total deterministic attributed tree transducers:
For every node x of an input tree which is labeled by a particular input symbol

264 A. Kiihnem&nn and H. Vogler

and for every synthesized attribute a, the computation of the attribute occurrence
of a at x is fixed by exactly one rule. Similarly, for every node x which is labeled
by a particular input symbol and for every inherited attribute i, the computation
of the attribute occurrence of i at the j'-th son of x is fixed by exactly one rule.

As in attribute grammars, these dependencies can induce circularities among the
attribute occurrences of an input tree. We restrict the attributed tree transducers
to be noncircular and we designate a synthesized attribute as initial attribute.
Thus we designate an initial attribute occurrence at the root of every input tree
of which the value will be the output tree. Then every attributed tree transducer
M computes a total function from input trees to output trees. This function is
called the tree transformation of M. The output language of an attributed tree
transducer M is defined as the range of the tree transformation of M.

As stated at the beginning of the introduction, pumping lemmata can help us
to prove that a certain language is not an element of a class of languages. But
not only pumping lemmata have been used to solve such a kind of problem: Fülöp
and Vágvölgyi have shown in [FV91] by means of a direct proof that a particular
tree transformation (which is induced by a bottom-up tree transducer; cf. [Eng75])
cannot be computed by an attributed tree transducer. Maybe the proof of Fülöp
and Vágvölgyi can be generalized to a proof of a kind of pumping lemma. But we
do not follow here this line of generalization and return to the development of a
pumping lemma for a particular class of attributed tree transducers.

We restrict our pumping lemma to special attributed tree transducers, namely
producing and visiting (and noncircular) attributed tree transducers. An attributed
tree transducer is producing, if every rule application delivers at least one new
output symbol. An attributed tree transducer is visiting, if for every input tree
and for every node x of it, the value of at least one attribute occurrence of x is
needed to compute the value of the initial synthesized attribute occurrence at the
root.

The main idea of our pumping lemma for output languages of producing and
visiting attributed tree transducers is adopted from the proof of the pumping lemma
for context-free string languages that was outlined at the beginning of this intro-
duction. In the case of context-free string languages we have to inspect a derivation
tree of a sufficiently long string to deduce new pumped strings. Here we have to
consider input trees belonging to a sufficiently large output tree to obtain new
pumped output trees: For every producing and visiting attributed tree transducer
M, a natural number km, called the pumping index of M, can be constructed. If
we choose an output tree t from the output language of M which has at least r&Af
nodes, then every input tree e which can be transformed into t has the following
property: e is high enough, such that it has a path p, on which two different nodes
Zi and X2 can be found, which have the same set of attribute occurrences that are
needed to calculate the initial attribute occurrence at the root of e. Assuming that
xi is closer to the root of e than xq, we can define the following tree e: Roughly
speaking, the tree S is that part of e which has xi as root and from which the
subtree rooting at x2 is pruned. Since the two nodes are compatible with respect
to the needed attribute occurrences, we can construct new input trees by repeat-

A pumping lemma for output languages of attributed tree transducers 265

ing e arbitrarily many times. Translating these input trees by M, we obtain new
elements of the output language of M.

The proof is based on the observation that the decomposition of the input tree
e induces a decomposition of the output tree t into output patterns and that these
patterns are used to construct the new output trees. Thus the pumping process
itself can be described by using only the output patterns. Therefore the applications
of the pumping lemma are completely independend of the underlying input trees.

In this paper we apply our pumping lemma to prove the following two results:

• There is no noncircular, producing, and visiting attributed tree transducer
which computes the set of all monadic trees with exponential height as output.

• There is a hierarchy of noncircular, producing, and visiting attributed tree
transducers with respect to their number of attributes.

This paper is divided into five sections, from which this one is the first. In
Section 2 we fix all the notions and notations, especially about attributed tree
transducers, which are necessary for the remaining sections. Section 3 contains the
pumping lemma together with its proof. In Section 4 we show the two applications
of the pumping lemma. Finally, in Section 5 the reader can find a short summary
and a presentation of further research topics.

2 Preliminaries
In this section we collect the notations, notions, and definitions which are used
throughout this paper. Most of the definitions • are taken from [KV94], some of
them with a slight modification.

2.1 General notations

We denote the set of natural numbers (including 0) by IV. For every m 6 JV, the
set { 1 , . . . , m} is denoted by [m], thus [0] denotes the empty set 0. The empty word
is denoted by e. For an arbitrary set S, the cardinality of 5 is denoted by card(S)
and the set of all subsets of 5 is denoted by P (5). If S is a subset of JV, then
max(S) denotes the maximum of S; max(0) is defined as 0. A relation / C Ax B
is a partial function, if for every (a, by) € / and (a,6a) £ / , the elements bi and 6a
are equal. Such a partial function is denoted by / : A * B.

If A is an alphabet, then A* denotes the set of words over A. For a string
v and two lists u i , . . . , u „ and « ! , . . . , « „ of strings such that no pair u< and uy
overlaps in v, we abbreviate by v[ui/vi, ..., un/vn] the string which is obtained
from v by replacing every occurrence of u,- in v by The resulting string is also
denoted by v[ui/v<; t £ [n]]. |p| denotes the length of a string p over an alphabet
which should be known from the context. If Pi and P2 are two sets of strings, then
Pi • P2 := {P1P21 Pi e Pi, p2 e p2}•

266 A. Kiihnem&nn and H. Vogler

Let ^ be a binary relation on some set T. Then, =»* and =>-+ denote the
transitive, reflexive closure of => and the transitive closure of =>, respectively. Let
ne IN-{0}. If tj G T for every j G [n+1] and if t}- => t y + 1 for every j G [n], then
the sequence ti i j . . . => tn+i is called a derivation. If only the first element
¿1 and the last element tn+i of a derivation are important, we also use the notation
t\ =>+ t n + i . Note that there can exist more than one derivation ti =>+ tn+i- If
t =>* t' for t,feT and if there is no t" G T such that t' => t", then t' is called a
normal form of t with respect to =>. In general t can have either no or one or more
than one normal form. If the normal form of t exists and if it is unique, then it
is denoted by n/(=>,t). The relation => is confluent, if for every t, ij, £2 G T with
t =>* ti and t =>* t3, there is an t' 6 T such that ti =>* t' and t2 t'. It is
noetherian or terminating, if there is no infinite derivation of =>. If => is noetherian
and confluent, then for every t G T, the normal form of t exists and it is unique.

2.2 Ranked alphabets, trees, and tree transformations

A ranked alphabet is a pair (E, ranks) where E is a finite set and ranks '• E —* ^
is a mapping which associates with every symbol a natural number called the rank
of the symbol. If a G E with ranks (cr) = n, and E is clear from the context, then
we also write cr'n) and rank(a) = n. If the rank function is clear from the context,
then it is dropped from the notation. The set of elements with rank n is denoted
by E.

For a ranked alphabet E, the set of trees over E, denoted by T(E), is the
smallest subset T C (E U { (,) , , })* such that for every a G with n > 0 and
ti> • • • 1 tn 6 T, the string . . . , tn) G T. For a symbol o G we simply write
a instead of <r().

The following functions are defined inductively on the structure of trees in T(E)
(here, the induction base is a special case of the induction step):

• height: T(E) —• N delivers the height of a tree t G T(E).
If t = <r(ti , . . . ,t„) with j G E W , n > 0, and tu...,tn G T(E), then
height[o(ti,... ,tn)) = 1 + maz{{height{ti) \ i G [n]}).

• size^' '• T(E) —• If delivers the size of a tree t G T(E) with respect to a
subset E' C E.
If t = <r(ti , . . . ,tn) with o GE(") , n > 0, and tu...,tns T(Z), then
aizcEi(<r(ti,..., t„)) = 1 + E,-6[„] a»«eE '(i,), if a G E',
sizes-(<r{ti,..., t„)) = s»zeE<(ti), if a $ E'.
If E' = E, then we abbreviate sizes1 by size.

• paths : T(E) —• P(N*) delivers the set of paths of a tree t G T(E).
If t = o{h tn) with a GE(") , n > 0 , and tu...,tn G T(E), then
paths',... , t„)) = {e } U {p | p = ip',i e [n],p' G pat/isfc)}-

A pumping lemma for output languages of attributed tree transducers 267

• label : T(E) x IN* • E delivers the label of the node of a tree t e T(E)
reached by a path p G paths(t).
If t = a{ti,...,tn) with a G E<"), n > 0, and h , . . . , t„ G T{E), then
label(a(ti,..., tn),p) = <r, if p = e,
label(<r(ti,..., tn),p) = label(ti,p'), if p = tp' for some i G |n].

• subtree : T(E) X H* • T{E) delivers the subtree of a tree t G T(E) reached
by a path p € paths(t).
Ut = a(tlt...,tn) with a G E<n>, n > 0, and t l f . . . , t„ 6 T (E) , then
suft tree^t ! , . . . , « ») ,^) = ff(ti,...,tn)i >f P =
su6iree(a(tj t»), p) = su6ir«e(tj,p')) if p = ip' for some » G [n].

• repl : T(E) x JV* x T(E) ^ T(E) deliver» the tree obtained from a tree
t € T(E) 6y replacing the subtree reached by a path p € pat/i£(t), another
tree t' e T{E).
If t = <T(ii, . . . , in) with a e E*"!, n > 0, and t 1 (. . . , i „ € r (E) , then
rep/(t7(t l l . . . I i „) ,p,t ') = t', if p = «,
rep/Jtrftj,..., tn),p, t) = <r(i l l . . .)rep/(t t)p ,) ?),..., tn), if p = tp' for some
ie\n].
In the following we use the more convenient notation t\p *— t'] instead of
repl{t,p,f).

For every tree t € T(E) and for every path p S paths(t), the path p determines
exactly one node of t. This node will be denoted by node(t,p).

Let E be a ranked alphabet, t € T(E), and let U be another ranked alphabet
with rank(u) = 0 for every u € U and with U n E = 0. A tree t' e T(E U U) is
called a pattern in t £ T(E), if there is a symbol v ^ E with rank(v) = 0, there is
a tree t" 6 T(E U {u}) , and for every u e U there is a tree tu e T(E), such that
t = t"[v/f[ufta ; « G CTJl-

A tree transformation is a total function r : T(E) —• T(A) where E and A are
ranked alphabets.

2.3 Attributed Tree Transducers
In this subsection we define the syntax of so called st-tree transducers and the
derivation relations which are induced by them. In [Gie88] si-tree transducers are
called full attributed tree transducers. Though si-tree transducers are an extension
of attributed tree transducers in the sense of [Ful8l], we also use simply the notion
attributed tree transducer for an at-tree transducer. If we restrict the transducers
to be noncircular, then their derivation relations are confluent and noetherian, and
every noncircular transducer computes a tree transformation.

A system of attributes is the first component in the definition of an attributed
tree transducer M. We specify a ranked input alphabet E. Then, intuitively,
M takes an argument e where e is a tree over E, called input tree, on which the
evaluation of attribute values is performed. An output tree is built up over a ranked
alphabet A of working symbols. The derivations of M will start with an initial

268 A. Kiihnem&nn and H. Vogler

synthesized attribute and with an extra marker root on top of the input tree
where root is a new symbol of rank 1. If e is an input tree, then in anology to [KV94]
we call the tree e = root(e) the control tree, because it controls the derivation of the
transducer (cf. Figure 1). The role of the marker root is explained after defining
the derivation relation. Of course, the kernel of the definition of an attributed tree
transducer is the finite set of rewrite rules. The possible right-hand sides of rules
are fixed at the end of the definition.

Figure 1: The input tree e and the control tree e.

We mention already here that, similarly to top-down tree transducers, we des-
ignate the argument position of every attribute to contain the control tree e. Addi-
tionally, in attributed tree transducers the control tree e is associated with a path
through e. Actually, in the argument of an attribute, only a path through e will
occur, the control tree itself will parameterize the derivation relation (cf. Definition
2.6).

Definition 2.1 An si-tree transducer is a tuple (A, A , E, s,„, root, R) where

• A = (A, A,, Aj) is a system of attributes, where

— A is a ranked alphabet of attributes; for every a g A, rank a (a) = 1.

— A, C A and Ai C A are the disjoint sets of synthesized attributes and
inherited attributes, respectively, with A = A, U Ai.

• A is the ranked alphabet of working symbols (or: output symbols) with
A l~l A = 0.

• E is the ranked alphabet of input symbols with A f~l E = 0.

• Sjn G A, is the initial attribute.

• root is a symbol of rank 1, called the root marker, where root A U A U E.

A pumping lemma for output languages of attributed tree transducers 269

• R = R„ is a finite set of rules, defined by Conditions 1. and 2.
a 6 E U {root}

1. The set Rr0ot contains exactly one rule of the form

«m(«) P

with p G RHS(A„t, A, root).
For every i & Ai, the set Rroot contains exactly one rule of the form

»(si) ^ P

with pG RHS(A,,9,A,root).
2. For every a G E'fc) with k > 0 and for every a € As, the set R„ contains

exactly one rule of the form

«(*) P

with p £ RHS{At, Ait A,<t).
For every a G E' f c ' with k > 0, for every t 6 Aj and for every j G [&],
the set R„ contains exactly one rule of the form

i(zj) — p

with p 6 RHS(A,,Ai,A,<r).

For every G, C A,, G,- C Ai, and a € E U {root} with rank(a) = k > 0, the
set of a-right-hand sides over G,, Gi and A , denoted by RHS(G,,Gi, A , a),
is the smallest subset RHS of (G . U G i U A U [Jfc] U {z, (,) , , })* such that the
following three conditions hold:

(i) For every S € A M with r > 0, and pi,...,pr € RHS, the tree
6{Pl,...,pT)eRHS.

(ii) For every s € G„ j € [k], the tree s(zj) G RHS.
(iii) For every t G Git the tree i{z) G RHS. •

For an st-tree transducer M = (>1, A, E, Sin,root, R), we fix the following notions
and notations.

• The set E U {root} is denoted by E + .

• In the rules of R, the symbol z is called path variable.

• For every a G E '* ' , the set of inside attribute occurrences of a, denoted by
tn((r), is the set {s(*) | s G A,} U {i[zj) \ i G G [k]}. The set of
inside attribute occurrences of root, denoted by in(root), is the set {s,„(z)} U
{ » (z l) | t G Ai}. The set of outside attribute occurrences of a, denoted by
out[<x), is the set {»(«) 11 G Ai) U {s(zj) \ s G A,, j G [A;]}. The set of outside
attribute occurrences of root, denoted by out(root), is the set (a(z l) | s G A , } .
The set of attribute occurrences of a G E +) denoted by att[a), is the set
tn(<r) U out(<r).

270 A. Kiihnem&nn and H. Vogler

• For a G A, a G E ^ and »7 G {zj \ j G [Jfe] U { e } } , we call a rule of R„ with
the left-hand side a(ri) an (a, i/,a)-rule. The right-hand side of this rule is
denoted by rhs[a,r},(T). We note that only outside attribute occurrences of
a appear in r/is(a, rj, <r) and that for every a(t]) G in(cr), there is exactly one
(a, ri, cr)-rule in R.

Example 2.2 We define the at-tree transducer Mi = (A, A, E, a, root, R) with:

E = {<,(') , a<°)>,

A = {A, A,,Ai) with A = A, = {a}, and Ai = {»} , and
R = Rroot U Ra U Ra is the following set of rules:

Rroot = {•(«) B(s(z 1)), (1)
i(zl) E } (2)

R* = {•(•) — r(a(zl) ,a(z2)) , (3)
t(zl) m*))> (4)
i(z2) *(»•(«)) } (5)

Ra = {•(») B(i(z)) } (6)

The s*-tree transducer Mi takes a binary tree e over the ranked alphabet E =
{a(2) ,a(°) } as argument and it delivers a tree t which has the same structure as e,
but in which every leaf node n is substituted by an encoding of the reverse path
from the root of t to n. The encoding of a reverse path is a monadic tree over the
ranked alphabet {B^, L^, RW, E(0)}, where the symbol I, (and R) represent the
left son (and the right son, respectively) of a node and the symbol B (and E) is the
first symbol (and the last symbol, respectively) of each path encoding (cf. Figure
2). •

root[e) : root
1

t : B |

a ,T
/ \ • \

a a T B
1 / \ / \

B
1

a a B 1 B R
| 1

L I R
1

E
1
L

|
L

1
E E

Figure 2: The control tree e and the calculated output tree t.

A pumping lemma for output languages of attributed tree transducers 271

Observation 2.S

1. Top-down tree transducers [Rou70,Tha70,Eng75] are st-tree transducers with-
out inherited attributes.

2. Attributed tree transducers [Ful8l] are st-tree transducers in which, for every
inherited attribute t, the right-hand side of the (t, z l , root)-rule is a tree
over A. In accordance to [Gie88] st-tree transducers are full attributed tree
transducers. But in the sequel we also use simply the notion attributed tree
transducer. •

Before working out the definition of the derivation relation, we first introduce a
uniform classification scheme for subclasses of st-tree transducers which are induced
by the number of attributes.

Def init ion 2.4

• Let k, € IV — {0 } and ki e IV. An s ^ j t ^ .) -tree transducer M is an st -
tree transducer with at most k, synthesized attributes and with at most ki
inherited attributes.

• An s-tree transducer is an «(fc.jtjoptree transducer for some k, e IN — {0 } ,
i.e., an st-tree transducer without inherited attributes. •

In the next definition we inductively describe the set of all sentential forms of
attributed tree transducers. For a given control tree e = root(e) with e 6 T{E),
a sentential form is a tree over attributes, working symbols, and paths through e.
Moreover, the argument of an attribute is always a path through e and vice versa
a path may only occur in the argument of an attribute.

Definit ion 2.5 Let M = (A, A , E, Sin, root, R) be an st-tree transducer with sys-
tem A = (A , A , , A i) of attributes. Moreover, let e € {root(e) | e S T (E) } and let
A ' be a ranked alphabet with A C A ' . The set of (A, sin,paths(e), A')-sentential
forms, denoted by SF(A,Sin,paths(e),A'), is defined inductively as follows where
we abbreviate SF(A, Sin, paths(e), A ') by SF.

(i) For every 6 e A'(r) with r > 0 and tu..., tT 6 SF, the tree S(ti,. ..,tr) e
SF.

(ii) For every a € A and p € paths(e) with p ^ e, the tree o(p) £ SF.

(iii) The tree «¿„(e) € SF. •

Notice that the tree e does not occur in sentential forms. It is only needed to define
the set of paths of e.

For an attributed tree transducer M = (A, A , E, Sin, root, R) with system A =
(A,A,,Ai) of attributes and for a tree e € {rooi(e) | e e T(E) } , the set of
attribute occurrences of e, denoted by att(e), is the set {¿¿„(s)} U (a(p) | a 6 A,

272 A. Kiihnem&nn and H. Vogler

p G patha(e),p ^ e}. If e = root(e) for a particular tree e G T(E), then we define
att(e) = att(e) - {a i n (e)} .

Let e' G T (£+ U {tu}) with exactly one occurrence of a symbol w £ E+ be a
pattern in a control tree e G (root(e) | e G T(E)} , such that e '= au6tree(e[p'<—iw],p)
holds for some paths p, p' £ patha(e). The set of inside attribute occurrences of e'
with respect to e is the set ((s(p) | a € A , } U { i (p ') | i G -4,}) Datt(e). The set
of outaide attribute occurrences of e' with respect to e is the set ({t(p) | t G A , }
U{a(p') | a € A , }) n att(e). (The intersection with att(e) is necessary to handle
the case p = e.) If the underlying control tree e is clear from the context, then we
simply use the notions inside and outside attribute occurrences of e'.

Now we describe the derivation relation of an attributed tree transducer M with
respect to a control tree e. For later purposes, we restrict the derivation relation
to work only on particular parts of e parameterizing the derivation relation with a
subset P C patha(e).

Definition 2.6 Let M = (A, A, E, Sjn, root, R) be an st-tree transducer with sys-
tem A = (A, A„ Ai) of attributes. Let e € {root(e) \ e € T (£) } and P C patha[e).
The derivation relation of M with respect to e and P, denoted by =>•jii.e.pi is a
binary relation on SF(A, sinipaths(e), A) defined as follows:
For every tlt t2 G SF[A, ain,patha(e), A) , tx =>M,i,p h, iff

• there is a t' € SF(A,3in,patha(e), A U {u}) in which the O-ary symbol
u ^ A U A occurs exactly once,

• there is an attribute a G A,

• there is a path p G patha(e),

such that 11 = t'[u/a(p)] and if one of the following two conditions holds:

1. • a is a synthesized attribute,

• p G P and label(e, p) = a for some a G E ^ with k > 0,
• there is a rule a(z) —• p in Ra, and
. t3 = t'[u/p[z/p]].

2. • o is an inherited attribute,

• P = P'j f°r some p' G P, label(e,p')
and j G \k],

• there is a rule a(zj) —» p in Ra, and

• ta = t'{ulp[z/p'}}.

= o for some a G El,. ' with A: > 1,

•
Note that in case 2. the path p itself needs not to be in P. This is important for the
later construction in the pumping lemma. If M or ? are known from the context,
we drop the corresponding indices from =>. If P = paths(ê), then we drop P.

A pumping lemma for output languages of attributed tree transducers 273

Before presenting an example derivation we have to explain the special role of
the marker root. It allows us to handle the calculation of the values of inherited
attribute occurrences at the root of an input tree e like all the other attribute
occurrences of t. Taking the control tree root(e), we can specify the value of an
inherited attribute occurrence at the root of e by a rule in Rroot- In particular,
the inherited attribute occurrences at the root of t may depend on the synthesized
attribute occurrences at the root of e. This mechanism has also been used in
[KV94]. It is more general than the solution presented in [Ful8l], where special
trees in T{ A) are used to specify the values of the inherited attribute occurrences
at the root of e.

Example 2.7 Let Mi be the attributed tree transducer defined in Example 2.2
and let e — root(<T(a(a,ot),a)) be-the control tree. We abbreviate =>Aii,i,patht(e)
by =>. The number of the appUed rule is indicated as a subscript. The control tree
and the calculated output tree are also shown in Figure 2.

=>(!) £ (« (1))
=•(3) B (r (s (l l) , s(12)))
=>(3) 5 {T (r (s (l l l) , s (112)) , « (12)))
=>(6) B(T(T(B(i(111)), s(112)), ¿(12)))
=•(4) jB (T (r (f l (L (i (l i))) , . { 112)) - l i (»)))
=>(4) B{T{T{B{L(L{i(l)))), «(112)), »(12)))
=•(•„ B(T(T(B(L(L(E))), s(112)), s(12)))

B(T(T(B(L(L(E))), B(R(L{E)))), B(R(E)))) Q

2.4 Noncircular attributed tree transducers
Since an attributed tree transducer can be circular (in the same sense as an at-
tribute grammar), we can conclude that, in general, the derivation relations of
attributed tree transducers are not noetherian (cf., e.g., [Ems9l] for an example of
a circular attributed tree transducer.) However, noncircular attributed tree trans-
ducers induce noetherian derivation relations. The notion of circularity is taken
from [Ful8l]:

Definit ion 2.8 Let M = (X, A, E,
Sin, root, R) be an at—tree transducer with sys-

tem A = (A,A,,Ai) of attributes.
1. M is circular if

• there is an e S {root(e) | e € T{E)}

• there is an o(p) € SF(A, Sin,patha(e), A) with a € A and p € paths(e),

• there is a t £ SF(A, Sin,patha(e), A U {u }) in which the O-ary symbol
u ^ AU A occurs exactly once,

274 A. Kiihnem&nn and H. Vogler

such that o(p) ё t[u/a(p)].

2. M is noncircular if it is not circular. •

For the definition of the tree transformation computed by an attributed tree trans-
ducer we use the following result (cf. Theorem 3.17 of |KV94]).

Lemma 2.8 Let M = (А, Д, E, з<П1 root, R) be an at-tree transducer. If M is
noncircular, then for every ё £ {root(e) \ e € T (£) } , the relation =>m,i is confluent
and noetherian. •

Since the derivation relations of noncircular attributed tree transducers are con-
fluent and noetherian, every sentential form has & unique normal form. This is
the basis for the definition of the tree transformation which is computed by an
attributed tree transducer.

Definition 2.10 Let M = (А, Д , Е i s»m root, R) be a noncircular si— tree trans-
ducer. The tree transformation computed by M, denoted by т(М), is the total
function of type Г(Е) — • T(A) defined as follows. For every e £ T(E),

r(Ai)(e) = n/(=>-M , r o o t(e),e i n(e)). D

In the rest of this paper, we always mean noncircular attributed tree transducers
when we talk about attributed tree transducers.

For a given control tree e, for a given derivation «¿„(г) t (abbreviated by d),
where t = nf[=>t, «¿„(e)), and for a given path p in e we define the set attset(d, p)
of those attributes a, for which there are attribute occurrences a(p) in a sentential
form during the derivation d. This concept is the same as the concept of state-set
described in [ERS80], however, we use another way of definition.

Definition 2.11 Let M = (А, Д, E, Sin,root, R) be an at-tree transducer with
system A = (А, of attributes. Let ё € {root(e) \ e £ T (£) } . Let d be the
derivation a,n(e) = to =>г • • • =>i = «/(=>g, а<„(е)) with n > 1 derivation
steps, and let p € paths(e). Then we define the attribute-set of d and p, denoted
by attset(d,p), by

n
attset'[tj, p) where

У=о

attset' : SF(A, 3in,pathsft), Д) x paths (i) —• P{A) is defined as follows:
For every 6 £ Д(Г), r > 0, h,..., tr € SF(A, sin,paths(e), A) , p £ paths{e),

tr),p) = Uy=i<»««i'(ty.P)-
For every a(p') £ ott(S), p € paths(e), if p = p', then

attset'(a(p'),p) = {o}.
For every a(p') € att(e), p £ paths(e), if p ф p', then

o«aet'(a(p'),p) = 0 . D

A pumping lemma for output languages of attributed tree transducers 275

Example 2.12 Let Mi be the attributed tree transducer defined in Example 2.2
and let e = root(a) be the control tree.
Let d = (a(e) =»? S (a (l)) =>i B(B{i{l))) =>« B(B{E))) be a derivation.
Then attaet[d,e) = attaet'(s(e),e) = {a}
and attaet{d, 1) = a«aet ' (B(a(l)) , 1) U ottaet ' (5(B(t(l))) , 1) = {a , t } hold. •

In fact, the attribute-set of a path does not depend on the chosen derivation.

L e m m a 2.IS Let M = (A, A , E, root, R) be an at-tree transducer. Let dj
and da be two derivations S{n(e) =>£ n/(=>?, «»n(«)) for some e € {root(e) \ t 6
T(E) } . Then, for every path p € paths(e), the sets attset(di,p) and attset(d2,p)
are equal. •

Definit ion 2.14 Let M = (A, A , E, a,„, root, R) be an at-tree transducer. Let
e € {root(e) | e € T(E)} and let p € paths(e). The attribute-set of e and p,
denoted by attaet(e,p), is the set attset(d,p) for some derivation d = (a tn(s) =>i
nf{=>i,sin(e))). •

2.5 Producing and visiting attributed tree transducers
The pumping lemma in the next section is only valid for special kinds of attributed
tree transducers. In the following definition we introduce the concepts of producing
(every rule application produces at least one new output symbol), and visiting
(every node of a control tree is visited by at least one attribute) tree transducers.

Definit ion 2.15 Let M = (A, A , E,a<„,root, R) be an at-tree transducer. M is

• producing, if, for every rule A —• p in R, the size of p with respect to A is at
least 1, i.e., atze^(p) > 1,

• visiting, if, for every control tree e € {root(e) | e € T {E) } and for every
p € paths(e), the attribute-set of e and p is not empty, i.e., attset(e,p) ^ 0.

•

In the rest of this paper we always mean producing and visiting (and noncircular)
attributed tree transducers, when we talk about attributed tree transducers. We
denote the classea of tree transformations computed by (noncircular, producing, and
visiting) at-tree transducers, sffc. jt '^)- tree transducers, and a-tree transducers by
SIT, 5 (fct)/(fct.)T, and ST, respectively.

2.6 Output languages of attributed tree transducers
The pumping lemma which we introduce in the next section, deals with output lan-
guages of tree transformations of attributed tree transducers. The output language
of a tree transformation r is defined as the range of r.

276 A. Kiihnem&nn and H. Vogler

Definition 2.16 Let r : T{E) —• T(A) be a tree transformation. The output
language of r, denoted by Lout(i') is defined as follows:

Loutir) = { t e T(A) | there is an e 6 T{E) such that r(e) = t}. •

If r(M) is a tree transformation computed by an attributed tree transducer M,
we simply write Lmt(M) instead of L(mt(r(M)) and we simply call Lout(M) the
output language of M instead of the output language of the tree transformation
computed by M.

We denote the classes of output languages of (noncircular, producing, and vis-
iting) ¿«-tree transducers, «(^»(fc.j-tree transducers, and «-tree transducers by
SITm, S(fc.)/(fci)rou<, and STMt, respectively.

If we want to prove that a certain tree transformation r is not an element of the
class SIT, then the output language 2/ou<(r) can be very useful. It Would suffice
to show with the help of the pumping lemma presented in the next section that
Louti*) $ SIToat. Thus, since £<>ut(r) is not the range of an at-tree transducer, r
cannot be the tree transformation computed by an si-tree transducer.

For the sake of convenience, we now omit the parantheses for arguments of
monadic output symbols in the rest of the paper; the parantheses for arguments of
attributes remain.

Example 2.17 Let Mx be the attributed tree transducer defined in Example 2.2
and let d be the derivation of Example 2.7.

Thus, in the following we write rule (1) of M\ in the form s(z) —* B s{z 1). Note
that there are still parantheses in the attribute occurrence « (s i) . The notation
s(z) —* T(s(zl),s(z2)) of rule (3) is left unchanged, because T is a binary output
symbol.

In anology we write the last but one sentential form of d that was shown in
Example 2.7 as BT(T(B LLE, «(112)), «(12)). •

3 Pumping lemma for attributed tree transduc-
ers

Before presenting the pumping lemma for «¿-tree transducers and working out
the proof formally, we want to illustrate the central idea and show an example.
Although the pumping lemma only deals with output trees and not with the control
trees corresponding to them via a tree transformation, the control trees play an
important part.

Let M be an attributed tree transducer. If we choose a sufficiently large output
tree t, then every control tree e = root(e) with r(M)(e) = t is high enough, such
that it has a path p, on which two different nodes x\ and x? can be found such
that (cf. Figure 3)

• there exist strings pi, pa, and ps such that |Pa| > 0 and p = PiPaPs,

A pumping lemma for output languages of attributed tree transducers 277

• xi and X2 can be reached from the root by pi and P1P2, respectively, i.e.,
xi = nodc(e,pi) and = node(c,pip2), and

• the attribute—sets attset(e, pi) and attaet(e, P1P2) are equal.

These two nodes define a decomposition of e into three input patterns e', e", and
c'". Intuitively,

• e' is the tree e without the subtree which has x j as root.

• e" is the tree which has Xi as root without the subtree which has Xj as root.

• e'" is the tree which has x2 as root.

Figure 3: Control tree e with input patterns and induced output patterns.

This decomposition of the control tree e induces a decomposition of the output
tree t into a certain output pattern t, certain output patterns t, and t, for every
synthesized attribute s, and certain output patterns and U for every inherited
attribute t. Roughly speaking, these patterns correspond to normal forms of certain
attribute occurrences of the patterns e', e", and e'". More precisely,

• The tree t corresponds to the normal form of Si„(e) that is calculated only
on the nodes of e'.

• For every synthesized attribute s in the attribute-set of the two relevant
nodes xi and X2, the tree t, (and t,) corresponds to the normal form of a(pi)
(and «(pipa)» respectively) that is calculated only on the nodes of e" (and
e'", respectively).

278 A. Kühnem Ann und H. Vogler

• For every inherited attribute » in the attribute- -set of the two relevant nodes
x3 and xi, the tree t,- (and t,) corresponds to the normal form of »(P1P2)
(and t'(pi), respectively) that is calculated only on the nodes of e" (and e',
respectively).

In Figure 3 these output patterns are indicated; the root of every output pattern
is represented by an arrow. The reader should not be misleaded by the cycles
among the pieces of the final output tree: we consider noncircular attributed tree
transducers and, only for the sake of simplicity of the figure, we show only one
inherited attribute and one synthesized attribute; thus, dependencies are folded
and suggest cycles which are not there.

If we construct new control trees by repeating the pattern e" arbitrarily often,
then we can get new output trees by translating the new control trees. All of them
are by definition elements of ¿ ^ (M) . The output patterns t, and t,- must be
used for every repetition of e" to obtain the new output tree. Figure 4 shows the
situation in which e" is repeated twice.

Figure 4: Control tree with two repetitions of e" and output patterns.

In the pumping lemma we use a recursive function tree' which walks through
the patterns of the control tree and builds up the output using the output patterns

A pumping lemma for output languages of attributed tree transducers 279

defined above.
Note that for the pumping process it is not necessary that the nodes x\ and

are labeled by the same symbol, in contrast to the pumping lemma for context-
free languages (cf. for example [BPS61]). This is due to the fact that we only deal
with ranked alphabets rather than heterogeneous signatures; thus only the rank of
the symbols is important when building up trees.

We show the input patterns, the output patterns and the pumping process in
the following example.

Example S . l Let Mi be the st-tree transducer defined in Example 2.2. For sim-
plicity we repeat the rules of Mi , omitting superfluous paranthesis:

Rroot = { < («) Bs{z 1),

•'(«I) — E }
R* = W«) T{s(zl),a(z2)),

•'(»I) — Li(z),
i(z2) — Ri(z) }

Ra = {<(«) — Bi(z) }
Although the pumping lemma only guarantees to work with an output tree t

with size(t) > riMj for a certain natural number (which is called the pumping
index of Mi), it often also works for smaller output trees. Nevertheless, the pump-
ing index is needed in the proof of the pumping lemma. In this example we have
nif[= 21 8 . The reader can check this after having read Definition 3.2.

Figure 5: Control tree e with right-hand sides of rules.

280 A. Kiihnem&nn and H. Vogler

Here we take the smaller tree t = nf(=>i, at f l(e)), where e = root(cr(a, a))
is the control tree. In Figure 5 the control tree e is shown by dotted lines, where
additionally.the right-hand sides of.those rules are incorporated which are necessary
to compute the values of the attribute occurrences of e.

Now we consider the two nodes node(e, l) and node(e, 11) of the control tree e
which can be reached from the root of e by paths 1 and 11. Note that a = label(e, 1),
a = label(e, 11), and attset(e, l) = attset(e, 11) = {a,t } . In this case we have chosen
the path p = 11 with its subpaths Pi = 1, Ps = 1, and ps = e. In Figure 6 we show
three patterns in e with the nodes reached by the paths e, 1, and 11, respectively,
as roots. Again the right-hand sides of rules are incorporated into the figure.

Figure 6: Input patterns e', e" and e'" with right-hand sides of rules.

For later purposes, in Figure 7 we also show the control tree e and the patterns
e', e", and e'" framing those parts of the patterns which only consist of input
symbols. In fact, we have e — e'[tu/e"[u>/e"']].

With these preparations we can obtain the patterns in the output tree t as
follows: Roughly speaking, for each of the patterns e\ e", and e'", we calculate the
values of the inside attribute occurrences as function in the values of the outside
attribute occurrences. Therefore we can use the dependencies among the attribute
occurrences presented in Figure 6, where the outside attribute occurrences and the
inside attribute occurrences are depicted as non-filled cycles and non- filled boxes,

\

A pumping lemma for output languages of attributed tree transducers 281

e: root e' : (root) e":

<t w to
/ \ a a

Figure 7: Control tree e and its decomposition.

respectively, whereas the other attribute occurrences are depicted as filled cycles.
More precisely, we calculate

• the values t and t,- of the inside attribute occurrences s(e) and t (l) of e',
respectively, as function in the value of the outside attribute occurrence s(l)
of e',

• the values t, and t,- of the inside attribute occurrences s(l) and »(11) of e",
respectively, as function in the values of the outside attribute occurrences
a (l l) and t'(l) of e",

• and the value t, of the inside attribute occurrence ¿(11) of e'" as function in
the value of the outside attribute occurrence t (l l) of e'",

and replace the synthesized attribute occurrences ¿(1) and «(11) by the symbol s
with rank 0 and the inherited attribute occurrences t (l) and t (l l) by the symbol
t with rank 0. For the sake of understanding we choose exactly the attributes as
names for the new symbols. Based on the rank, the reader can retrieve whether
symbols or attributes are concerned at a time. The values of the output patterns
are as follows:

»/(=>*, {.},*(*)) [«(1)/«] = Bs,
= nf(=>it[t),i{l)Ml)/s} = E,

. = n / (= > M l , 1 2 } , « (l)) [a (l l) / 5 , t(l)/t] = T{s,BRi),
i = » / (= * M l l i a } l i (l l)) [« (l l) / i , t (l) / t] = Li,
. = »/(=•«,{11}. «(H))['(ll)/*') = Bi.

In Figure 8 we show the output tree t and the output patterns defined above.
For later purposes we also frame the parts of the patterns which only consist of
output symbols.

282 A. Kuhnemann aad H. Vogler

Figure 8: Output tree t and output patterns.

Now we show the pumping process in the cases in which

(i) the pattern e" is dropped (r = 0),

(ii) the pattern e" occurs once (r = 1), and

(iii) the pattern e" occurs twice (r = 2).

Thus we have the control tree

(i) e0 = « > / « " '] , if r = 0,

(ii) e = h = e'[u>/e"[ty/e'"]], if r = 1, and

(iii) ?2 = e>/e"[u;/e"[u;/e'"]]], if r = 2.

For every 0 < r < 2, the normal form nf(=>ir, «¿„(e)) is denoted by tree(r). It can
also be calculated using the above defined patterns of t as follows:

We start with the pattern t = Bs that corresponds to the attribute occurrence
s(e), and replace the symbol s by the function call tree'(s. r, 1). Roughly speaking,
the recursive function tree' moves through the different patterns of er and it con-
structs the output using the output patterns. Every function call of tree' delivers
one output pattern, in which the symbols s and t are replaced by new function calls
of tree'.

The function tree' has three parameters. The first parameter is one of the
symbols s or ». It indicates, whether we have to use one of the patterns t, or tt

(in case of the symbol a), or one of the patterns t,- or t,- (in case of the symbol ti).
The other two parameters are natural numbers. The second parameter r indicates
the number of repetitions of e" in the control tree er. It is constant during the
calculation of a certain output tree. The third parameter I indicates the level of
the input pattern, where tree' currently works. 1 = 0 means the pattern e',1 < I < r
means the /-th repetition of the pattern e", and I = r + 1 means the pattern e'".

If 1 < I < r, then tree' uses the pattern t, = T(s,BRi) (or t,- = Li); this
pattern corresponds to the normal form which is calculated only on the nodes of
the pattern e" starting with the attribute occurrence s (l) (or »(11), respectively).

A pumping lemma for output languages of attributed tree transducers 283

If / = r + 1 , then tree' uses the pattern t, = St; this pattern corresponds to the
normal form which is calculated only on the nodes of the pattern e'" starting with
the attribute occurrence «(11).

If I = 0, then tree' uses the pattern t< = E\ this pattern corresponds to the
normal form which is calculated only on the nodes of the pattern e' starting with
the attribute occurrence t (l) .

If / is the current level of the function tree', then every occurrence of the symbol
s (or t) in the produced output pattern is replaced by a function call tree'js, r,l+l)
(or tree'(x, r? I — l) , respectively), because tree' has to move one level down (or up,
respectively) in er.

tree(O)
B tree'is. 0.11
B B tree'U, 0.0)
B B E

tree(1) .
B tree'(s. 1.1)
B Ti tree'is, 1,2), B R tree'U, 1. 0))
BTiB tree'U, \,\).B R E)
B T(B L tree'U A, 0). B R E)
BT(B L E,B R E)

treej2)
B tree'is,2.1)
B T(tree'{s,2,2), B R. tree'U. 2.0))
B T(T(tre£(s, 2,3),

B R tree'U,2,1)). B RE)
B T(T(B tree'U, 2.21.

B R L tree'U, 2,0)1. B R E)
B T(T(B L tree'U. 2.1).

B R L E),B R E)
B T(T(B L L tree'U, 2.0).

B R L E),B R E)
B T(T(B L L E,B R L E),B R E)

Figure 9: Calculations of tree(r) for 0 < r < 2 and decompositions of er and tree(r).

284 A. Kiihnem&nn and H. Vogler

* In Figure 9 we show besides the calculations of the output trees tree(O), tree(l),
and tree(2), their decompositions into the output patterns. Every output pattern
is labeled with the level 0 < I < r +1 of the input pattern which causes it. We also
show the control trees, corresponding to the output trees, and their decompositions
into input patterns which are labeled with their level. •
As stated in the last example, the pumping process only guarantees to work for
output trees which are large enough. This requirement is satisfied, if the size of the
output tree is at least the pumping index of the given attributed tree transducer.
Recall that we only consider noncircular, producing, and visiting attributed tree
transducers.

Definition S.2 Let M = (A, A, E, Sin, root, iZ) be an st-tree transducer with k,
synthesized and ki inherited attributes. We define

cM = max{sizeA(p) | (A p) € ¿2}
(maximum number of attribute occurrences in right-hand sides),

Im = maxfaize&lp) | (A —• p) 6 R}
(maximum number of output symbols in right-hand sides),

mw = max{rank(a) \ a G E}
(maximum rank of input symbols),

and the pumping index km of M as:

a*< -(2fc* — i)
nM = l + lM- (c m) j where n'M = ^ (mM)}.

y=o y=o n

In the proof of the pumping lemma we need the fact that the subtree e of a control
tree root(e) has at least some particular height; the desired height is
(cf. the proof of Theorem 3.4 for an argumentation on this number). If, for an
attributed tree transducer M and for a derivation s,„(e) ^¡^«(e) t> the size of t is
at least the pumping index n « , then e has the desired height.

Lemma S.S Let M = (A, A, E, Sin, root, R) be an st-tree transducer with k, syn-
thesized attributes, ki inherited attributes, and with pumping index n ^ . Let
teL^M).

If size(t) > mm, then for every e 6 T(E) such that t = n / (^ r o o t (e) , 3,„(e)), the
height height(e) > 2ki • (2fe* - l) + 2.

Proo f . Consider t € Lout(M) with size(t) > n^. We examine a control tree
e = root(e) with a certain derivation s,„(c) t. We abbreviate this derivation
by d and the number of derivation steps of d by length(d). The proof consists of
a sequence of five implications. First, we list these implications and afterwards we
give some explanations.

A pumping lemma for output languages of attributed tree transducers 285

(k.+ki)n'M
(1) If size{t) > nM = 1 + lM • £ (cM)>\

3=0
(fc.+fc.) n'u

then length(d) > 1 + £ (cM)>.
j=o

(2) If length(d) > 1 + £ {'m)3 , then card(att{e)) > 2 + (k, + Jfc,) • n'M.
i=o

(3) If card(att(e)) > 2 + (Jfc. + Jfc<) • n'M, then card(att(e)) > 1 + (k, + Jfc,) • n'M.
(4) If card(att(e)) > 1 + (Jfc, + Jfc,) • n'u, then size(e) > 1 -f n'M.

(5) I f s i z e (e) > l + n'M = l + 2 E ^("m) 3 ' ,
i=o

then height[e) > 2ki • (2fc* - 1) + 2.

(1) Since Ijrf is the maximum number of output symbols in the right-hand sides
of the rules of M, [cm)3 rule applications can produce at most
Ijhi • (cw)J output symbols. Hence, since size(t) > 1 +

lM • Ei=o+ f c ,) ' " i /(< :w)y . it needs at least 1 + E ^ J o ^ ' r u l e appli-
cations to generate t.

(2) Since every attribute occurrence can call at most cm other attribute occur-
rences in one derivation step, 1 + (k, + fc,) • n'M different attribute occurrences
of e can cause at most X^t/o^' ' " " (cm } 3 rule applications during the whole
derivation d. To understand this fact, we can construct the calling tree of
d with attribute occurrences of e as nodes: the root of this tree is labeled
3<n(e); every node of the tree labeled a(p) has as many sons as there are
attribute occurrences in t' with a(p) t'\ the sons are labeled by the dif-
ferent attribute occurrences. It is easy to observe that the length length(d)
of the derivation d is equal to the size of the calling tree. Under the assump-
tion that there are at most 1 + (k, + • n'M different attribute occurrences
of e, the height of the calling tree is at most 1 + (k, + ki) • n'M, because
M is noncircular. Thus its size is at most E)=o u(cm)3- Hence, since
length{d) > 1 + Ej=o+fc ') n " we have at least 2+ (fc„ + fci)- different
attribute occurrences of e.

(3) At the root of e we only have the attribute occurrence s«n(e), thus there exist
at least 1 + (A:, + Â) • n'M attribute occurrences of e.

(4) Since M has k, + ki attributes, an input tree e with n'M nodes can only
have (k, + ki) • n'M attribute occurrences. Hence, since card(att(e)) > 1+
(kt + ki) • n'M, we must have aize(e) > 1 + n'M.

(5) Since m u is the maximal rank of the input symbols, an input tree with height
2fc> . (2*' — 1) + 1 can only have the size E^==o2 Hence, since

286 A. Kiihnem&nn and H. Vogler

atze(e) > 1 + n'u = 1 + we must have height(e) >
2k* • (2*' - 1) + 2. •

T h e o r e m 3.4 (Pumping Lemma)
Let M= (A, A, E, Sin, root, R) be an si-tree transducer with system A = (A,A,,Ai)
of attributes and pumping index n^.
For every t £ Lout[M) with size[t) > nu

• there exist three ranked alphabets

- (U,,ranku,) with U, C A,, card[U,) > 1, and ranko.(s) = 0 for every
a € U„

- (Ui,ranku4) with J7< C A» and rankui (») = 0 for every t £ 17*, and

- U = U. U Ui,

• there exists t £ T(A U Ut) - T{A) with size±(t) > 1,

• for every t £ I/,-, there exists a tree t; £ T (A U U,)with atze^t ,) > 1,

• for every a £ t/,, there exists a tree t, £ T(AU U) with 1 < size&(t,) < hm,

• for every t € Ui, there exists a tree ti £ T (A U U) with 1 < size&(t,) < n\f,

• for every a £ Ut, there exists a tree t, £ T(AU [/,•) with 1 < size&(it) < nu,

with

• for every s E U,, the symbol a occurs in t or there is an »' £ Ui such that a A occurs m tii,

• for every a £ UB, there is an a' £ U, such that a occurs in t,< or there is an
»' £ Ui such that s occurs in i,-',

• for every t £ Ui, there is an a' £ U, such that t occurs in t,< or there is an
»' £ Ui such that i occurs in £*>,

• for every t £ Ui, there is an a' £ U, such that i occurs in t,>,

such that t = tree(l) and for every r > 0, the tree tree(r) £ Lout{M). The function

tree : IN —• T{A)

is for every r > 0 defined by tree(r) = t \s/tree'(s. r, 1) ; a £ 17,], where the partial
function

A pumping lemma for output languages of attributed tree transducers 287

tree' :U x N x N • T(A) is defined as follows:
For every s e U, and r > 0, if I e [r],

tree'ia. r, I) = t, \a'/tree'{a'. r, I + l) ; a' &U„ i'/tree'(i'. r, I - 1) ; i' & t/,].
For every a e U, and r > 0, if / = r + 1,

tree'ia, r, I) = t.[i'/tree'(i\ r, I - 1) ; »' 6 17»].
For every t € Ui and r > 0, if Z e [r],

tree'ii. r, 0 = U\a'/tree'{a'. r, I + 1) ; a' 6 U„ i'l tree'ii'. r, I - 1) ; i' e U{}.
For every » e Ui and r > 0, if I = 0,

tree'ii, r, /) = U\a'/tree'(a'. r, I + 1) ; a' e £/.].

Proof . Let M = (A, A, E, a,n, root, R) be an at-tree transducer with system A =
(A, A,, Ai) of attributes, k, synthesized attributes, and ki inherited attributes.

Consider t S Lqux^M) with aize(t) > nm. By Lemma 3.3 we know that,
for every control tree e = root(e) with a,n(e) =>t t, the condition height(e) >
2fc. . (2fc. - 1) + 2 holds.

We choose a control tree e = root(e), a derivation d = («¿„(e) =>? t), and a
path p with maximal length from the root of e to a leaf of e. Then we know that
|p| > 2ki • (2fc* - 1) + 2 > 2ki • (2fc* - 1). Note that here it would have been sufficient
to have |p| > 2*' • (2fc* — 1) + 1, but later in the proof of the size conditions for
the output patterns we again make use of the pumping index nm to avoid the
definition of a new constant. Otherwise we would have had another formulation of
the pumping lemma with two constants (like in [BPS61], there the constants are
called p and q).

Since there are exactly 2ki possibilities to choose an arbitrary subset of the ki
inherited attributes and since there are exactly 2k' — 1 possibilities to choose an
arbitrary, nonempty subset of the k, synthesized attributes, we have that

card({attaet(e,p') | p' ^ e, and p' is a prefix of p}) < 2ki • (2fc' - 1).

Since |p| > 2k' • (2fc* — 1), there must exist strings Pi e, pa ^ e and p3 with
P = P1P2P3, such that

attaet(e,pi) = attaet(e,pip2).

We choose pi, ps, and P3 such that IP2P3I is minimal. This means that we take
the first repetition of attset(e,p'), where p' is a prefix of p, beginning from the leaf
at p. Then we know that |p2P31 < 2k' • (2fc* — 1), because otherwise there is another
repetition of attaet in that part of p between node(e, pi) and node(e, piP2P3)i in
contradiction to IP2P3I being minimal.

We define the subsets U, C A, and Ui C A,-, such that

U, = attaet(e,pi) n A, and Ui = attaet(e,pi) fl A,-.

In fact, card{U,) > 1, because M is visiting and thus every symbol of the control
tree must be visited by a synthesized attribute.

Let to £ E+ with ronJfc(tw) = 0. We define trees e' € T(E+ U {w}) and e" €
T{Eu{ti/}), where both, e' and e", have exactly one occurrence of w, and e'" € T(E)
with the help of pi, P2 and P3 as follows:

288 A. Kiihnem&nn and H. Vogler

e' = e[pi u>]
e" = subtree(e\pip2 *—u>], Pi)
e"' = aubtree(e, pipa)

Then the representation e = e'[w/e"[u;/e'"]] holds. The reader can find these
patterns of e and the paths leading to them in Figure 3.

In the sequel we need the sets Pi, P2, and P3 of paths, which lead from the root
of e to the nodes in the three parts e', e", and e'", respectively:

Pi = patha{e') - {pi}
P2 = {{pi}p°ths{e"))-{pip2}
Pa = {PlPa} • patha(e"')

Note that the path pi leading to the root of e" is excluded from Pi and that the
path P1P2 leading to the root of e'" is excluded from P2.

Now we calculate, roughly speaking, the values of the inside attribute occur-
rences of the patterns e', e", and e'" as functions in the values of the outside
attribute occurrences of the same patterns in order to gain the desired output pat-
terns that are needed for the pumping process. Therefore we restrict the derivation
relation of M to the sets Pi, P2) and P3, respectively, as it is defined in Definition
2.6.

For the definition of the output patterns, we use symbols from the ranked al-
phabets (U„ranku,) and (Ui,rankui) with ranku.(s) = 0 for every a 6 U,, with
ranki/i (*) = 0 for every t € 17,-, and with U = U, U 17,-. We choose exactly the at-
tributes as names for the symbols, to emphasize their strong connection, although
they have different ranks. It is easy to decide from the context in which the names
occur, whether symbols or attributes are concerned at a time.

Now we can define (cf. Figure 3):

I = nf{=>g,Pl, «¿„(eJMpi)/«' ; a' S U,\.
For every a &U„

t. = nf{=>i,Pi, s(pi))[s ' (pip2)/i ' ; e U„ i'(pi)/i' •; »' € U{] and
t. = n f l ^ P , , 3(PlP2))[*'(PlP2)/»'! »' € Ui].

For every t 6 Ui,
U = n/(^e-,p3)t(p1p2))[s'(p1p2)/a' ; a' € U„ i'(pi)/i' ; i' € U{) and
ti = nf{^Pl,i(pi))\a'(pi)la'a'&U,\.

Note that, by the definition of =>i,p,, the inherited attribute occurrences *'(pi) can-
not be evaluated and thus may occur in nf{=>gtpJt s(pi)) and «/(=>•?,Pa)*(pip2))-
The same holds for =>•?,/>, and the inherited attribute occurrences t'(pip2) that may
occur in «/(=•?,P,,«(pipa))-

By this definition, every pattern has the type, which is required by the pumping
lemma. We only have to check that t $ T(A). Again the reason is that every
symbol of the control tree must be visited by synthesized attributes. Thus, one
of the synthesized attribute occurrences a(Pi) must be called directly from a,n(e)

A pumping lemma for output languages of attributed tree transducers 289

via a sequence of attribute occurrences of e'. Otherwise the derivation would never
reach e".

Now we prove the sise conditions for the patterns:

(a) a ize^t) > 1:
We have atze&(i) > 1, because pi jt e and thus there must be at least one
rule application to calculate nf(^g,Pn «»»(*)) ^ a,„(e). Note that M is
producing.

(b) For every t € U{, aize^(ti) > 1:
We have stze&(ti) > 1, because n/(=>g,Pn*(pi)) can only consist of output
symbols and attribute occurrences «'(pi) and thus cannot be equal to »(pi).
Again there is at least one rule application to calculate the normal form.

(c) For every a € Ut, 1 < sxze&(t,) < nw.
We have aize&(t,) > 1, because p2 ^ e and thus there must be at least one
rule application to calculate «/(=•?,/>,, a(px)) ^ a(pi). We have aize&(t,) <
n M , because the calculation of nf{^g tp1 ,a{pi)) only takes place on the part
e" of the control tree. Since p is a longest path in e, its subpath p2p3 with
|p3p3| < 2ki • (2fc* — 1) is a longest path of e"[u;/e"'] and thus e" can have
no path with a length greater than 2ki • (2fc* - 1). Then height{e") < 2ki •
(2** — 1) + 1 and (with a reverse argumentation to fix height(e) in the proof of
Lemma 3.3 we get at*e(e") < = n'u> w e have less than 1+
(fc, + k{) n'u attribute occurrences of e", we have less than (cm)3

rule applications to generate t, and thus aizc&(tt) < "(cm)' <
nM-

(d) For every t 6 C/j, 1 < aize&(ti) < n^:
We have a»ze^(tt) > 1, because p2 ji e and thus there must be at least
one rule application to calculate n/(=>i,Pi>«(piP2)) / »(pips)- The proof for
aize&(ti) < ixm is analogous to that in (c).

(e) For every a e Ut, 1 < size&(t,) < nu-
We have aize&(tt) > 1, because n/(=>-g,/>,ia(piP2)) can only consist of out-
put symbols and attribute occurrences t'(pip2) and thus cannot be equal to
a(pip2). Again there is at least one rule application to calculate the normal
form. We have aize^{tt) < tiM, because the calculation of nf(=>g<pl, a(pip2))
only takes place on the part e"' of the control tree. Since p is a longest path
in e, its subpath ps with |ps | < |p2p3| < 2ki • (2fc* — l) is a longest path of e'".
Now we can apply the same argumentation as in (c).

In the next step we have to check, whether the symbols a €.XJ, and t € 17« occur at
least once in the desired patterns of t. We show the proof only for the occurrences
of a 6 U, in the tree t or in a tree for some t' € 17«. The other cases can be
treated analogous. The proof works by contradiction:

290 A. Kiihnem&nn and H. Vogler

If there is an a G U, such that a does not occur in t and not in t,< for every
»' G £/,, then, by the definition of the patterns of t, the attribute occurrence a(pi)
does not occur in f»/(=>2,Pn«»«(«)) and not in nf(=>i,px,i'(pi)) for every »' G i/,.
But the calculation of these normal forms are the only parts of the derivation d, in
which the attribute occurrence a(pi) can be introduced into the derivation. Thus
s(pi) cannot occur in d, in contradiction to a € attaet(d,pi) = attaet{e,pi).

The last item of this proof is to show that t = tree{ 1) and that for every r > 0,
the property tree (r) € LMt (A/) holds.

We abbreviate the control tree, which is built up by repeating r > 0 times the
pattern e", by er:

er=e'lw/e"lw/...e"lw/e"']...]]

r times r times
Thus, in particular, e = i\.

First we have to verify the following Statements (la) and (lb) concerning the
function tree':

(la) For every a€U„ r > 0, 1 < / < r + 1, tree'{a. r, I) = nf(=>ir, a(pap2 - 1)).
(lb) For every t 6 Uit r > 0, 0 < I < r, tree'{i,r, I) = nf{=>ir,x(plpl:t)).

Since M is noncircular, there must exist an order in which, for every r > 0, the
attribute occurrences of the set {a(pxp3) | a € U,,0 < I < r } U {»(pipa) | * G Ui,
0 < I < r) can be evaluated. This order induces an order 6 on the set {tree'(ar r, /) |
a G U„ l < / < r + l } U {tree'(x. r,l) \ i G Uit 0 < / < r } of function calls and thus
it is guaranteed that the recursive function tree' is well defined.

If, for example, the evaluation of tree'{a. r. I) forces us to evaluate tree'(a', r.
1 + 1), then, for every 1 < I < r, the attribute occurrence «'(pipi,) has to appear
earlier than the attribute occurrence «(pip!, -1) in an order of the above attribute
occurrences. But this is guaranteed, because in this case t, must contain a symbol
a' (compare the definition of tree' in Theorem 3.4) and by the definition of t„ we
must have an attribute occurrence a'fpipa) in nf{=>gtpJ,a{pi)). Hence, a'(pip2)
must be evaluated before a(pi) and thus, for every 1 < I < r, a'(pipl2) must be
evaluated before a(pipj_ 1) .

Now we take an arbitrary such order 6 of function calls which can be considered
as a string of length (r + 1) • card[U). Then we can prove the Statements (la) and
(lb) by finite (mathematical) induction on v with 1 < v < (r + 1) • card(U), i.e., v
is a position in this string. Depending on the function call at position i/, we have to
prove either the statement tree'{a. r. I) = nf(=>zT, «(pipij -1)) (if the i/-th function
call is tree'{a, r, /)) or the statement trce'(i. r. 1) = nf{=>ir,i{pipl3)) (if the i/-th
function call is tree'(iT r, /)). If we want to prove the statement for the function call
at position v in 6, then we can use the induction hypothesis which says that, for
every function call at position 1/ with 1 < v ' < u, the corresponding statement
holds.
Case (a): The function call at position v is tree'{a. r, ¿) with a G U„ r > 0, and
l<l < r+1. Thus we have to prove the statement tree'(a, r, /) = n/(=>er, «(pip!, - 1)) .
There are two cases:

A pumping lemma for output languages of attributed tree transducers 291

Case I: 1 <l<r

tree'(s. r, /)
= t,\s /tree {s'. r, I + 1) ; a' € U,, i'/tree'W. r, I - 1) ; i' £ Ui]

(Definition of tree')
= t.la'/nfi^a'fati)) ; s' £ U„ » 7 » / (= * « r . » > i P L ~ 1)) ! »' 6 H

(Induction Hypothesis for function
calls with positions less than u)

= nf(=>ir,t,[a'/«^(pipa) ; s' £ U„ »'/»'(PiPa -1) ! *' e Ui])
= nf(=>ir,a(pip2 x)) (Calculation on the /-th occurrence of e")

Case II: f = r + 1

tree'(a. r, r + 1)
= t,[i'/tree'(i'. r, r) ; t' £ Ui] (Definition of tree')
= t,[»'/nf(=>ir ,»'(pipjj)) ; »' £ Ui\ (Induction Hypothesis for function

calls with positions less than i/)
= » / (= • « „ t . [» 'A ' (p ip5) ; » ' e t ; .])
= nf(=>iT, s(pipa)) (Calculation on e'")

Case (b): The function call at position v is tree'(i.r,I) with t 6 Ui, r > 0, and
0 < I < r. Thus we have to prove the statement tree'(iTrTl) = w/(=>e,i»(piPa))-
There are two cases:
Case I: 1 < I < r

tree'(i, r, I)
= t.-ja'/tree'(a', r, I + 1) ; a' £ U„ i'/tree'{i'. r, I - 1) ; »' £ t/,]

(Definition of tree')
= ti[a'/nf(=>ir,a'(pipl2)) ; 6 U„ i'/nf^i'fap'f1)) ; t' £ U{\

(Induction Hypothesis for function
calls with positions less than v)

= nf{^ir,ti[a'/a'(p1pl3) ; £ U„ i'/i'fap'f1) ; i ' £ Ui})
= n/(=»g r ,t(piP2)) (Calculation on the Z—th occurrence of e")

Case II: I = 0

tree'(i, r. 0)
= U[a'/tree'(a'f r, l) ; s' £ U,\ (Definition of tree')
= t , [s ' / n i s'(pi)) ; a' € 17»] (Induction Hypothesis for function

calls with positions less than v)
= » / (^ ^ [• ' / • ' (p i) ; « ' e ^ D

= w/(^-? r ,t(pi)) (Calculation on e')

Then we can prove for every r > 0 the equation tree(r) = nf(=>gr, 3,n(e)):

292 A. Kiihnem&nn and H. Vogler

tree(r)
= t [s/tree'(a, r, 1) ; a 6 Ut\ (Definition of tree)
= */(=>?,j>, , «m(e))[a(pi)/« ; « 6 Ut][a/trecL{a, r, 1) ; a € U.)

(Definition of t)
= nf{=>itPl, ai„(e))[s(pi)/treei(«,»-.l) ; a € U0]
= f»/(=>?,p,,«,n(e))[a(pi)/«/(=»2 r ,s(Pi)) \ a eUa\ (Statement (la))
= »/(=•?„/ ' , ,s.n(e))[a(pi)/»»/(=>« r ,a(Pi)) ; « 6 U.\ (Subterm e ' in er

unchanged)
= nf{=>ir,ain{e))

This equation has the two desired consequences that finish the proof of the pumping
lemma:

o tree(l) = a in(e)) = n/(=>g,a in(e)) = t.

o For every r > 0, tree(r) = n/(=>-gr,s,„(e)) € LMt(M),
because r(M)(e'r) = tree(r) where eT = root[e'r). •

We want to conclude this section with an observation concerning the requirements
of the attributed tree transducers to be producing and visiting.

If we had dropped the "producing-condition", then the pumping process itself
would not have been affected. But it would have been impossible to prove that the
output patterns consist of at least one output symbol. In the- next section we shall
see that the applications of the pumping lemma demonstrated there, are no more
feasible without this size-condition.;

If we had dropped the " visiting-^condition", then the proof of the pumping
lemma itself Would have been impossible. Since for the control tree e and for
every subpath p' of the chosen path p, dttaet(e,p') 0 cannot be guaranteed, the
following construction is no more feasible.

4 Applications

Our pumping lemma is usable for the output language of every noncircular, pro-
ducing, and visiting attributed tree transducer. But, if we take output languages
which are constructed over an arbitrary output alphabet, then the application of
the pumping lemma is very difficult. Hence we apply our pumping lemma only to
output languages with monadic trees.

The following Theorem 4.1 is a specialized version of our pumping lemma for
the case of monadic output languages. Observation 4.2 makes a statement about
the number of occurrences of the output patterns in the trees tree(0) and tree(l) in
the case of monadic output languages. We use this theorem and this observation
in the following proofs.

A pumping lemma for output languages of attributed tree transducers 293

4.1 Pumping lemma for monadic output languages
In order to simplify the study of this paper we state here a complete monadic
version of the pumping lemma instead of giving only the additional conditions.

Theorem 4 .1 Let M = (A, A, root, R) be an ¿«-tree transducer with sys-
tem A = (A, A, ,Ai) of attributes, pumping index n ^ , and A = A ' 1 ' U A*0 ' .
For every t € Lout(M) with size(t) > nu

• there exist three ranked alphabets

- (U,,ranku.) with U, C A,, card(U,) > 1, and ranku,[8) = 0 for every
sEU„

- (Ui, rankui) with Ui C A, and rank^ (») = 0 for every * E 17,-, and
-U = U.\jUit

- with card[U.) = card(Ui) or card(U,) = card(Ui) + 1,

• there exist u E U, and t e T(A*1 ' U {u}> with size±(t) > 1,

• for every t € Uiy there exist u E U U. and t, E T(&W U {u})
with size&(ii) > 1,

• for every a E U„ there exist u E U and t, E T(AW U {u})
with 1 < size&(t,) < nu,

• for every » e 17», there exist uEU and t, E T(A(1) U {u})
with 1 < a»zeA(t») < " m ,

• for every a E U„ there exist u 6 A^0' U [/,• and t, 6 T(A^ U {u})
with 1 < size & (t,) < nu,

such that

• exactly one tree of the set {tf 11 6 Ui) U {t, | a E U,} is of type T(A), such
that
if card{U,) = card(Ui), then there is exactly one i E Ui such that t, E T(A),
if card(Ut) = card(Ui) + 1, then there is exactly one a EU, such that t, E
T(A),

• for every a E U „ the symbol a occurs in exactly one tree of the set

• for every a EU t , the symbol a occurs in exactly one tree of the set
{t,, | a' 6 U.}\J {t<(| »"' E Ui},

• for every t E Ui, the symbol t occurs in exactly one tree of the set
{t., | a' E U,}U {t<. | € Ui},

• for every tEUi , the symbol i occurs in exactly one tree of the set
I € U.},

294 A. Kiihnem&nn and H. Vogler

such that t = trce(l) and for every r > 0, the tree tree(r) G L01tt{M). The function

tree-. IN —• T(A)

is for every r > 0 defined by tree(r) = t [a/tree'(a, r, 1) ; a G (/,], where the partial
function

tree' :U x JV x J\T • T(A) is defined as follows:
For every s € U, and r > 0, if I G [r],

tree'[a. r, /) = t.[a'/tree'(a'. r, / + 1) ; a' € U„ i'/tree'{i'. r, I - 1) ; i' G U{\.
For every and r > 0, if / = r + 1,

tree'(a. r, i) = L[i'/tree'{%'. r, I - 1) ; »' e
For every » € 'U{ and r > 0, if I G [r],

tree'ti. r, I) = ti\a'/tree'(a'. r, I + 1) ; a' S £/., i'/tree'{i'. r, I - 1) ; »' e C/,].
For every »' G J/,- and r > 0, if / = 0,

tree'(i, r,l) - U[a'/tree'{ar, I + 1) ; a' e U,].

Proof . We only have to prove the additional conditions of the pumping lemma.
The proof is based on the proof of Theorem 3.4. Thus we make use of some notions
which were introduced there.

We first prove the correctness of the substitutions of "occurs in a tree" in Theo-
rem 3.4 by "occurs in exactly one tree". We show the proof only for the occurrence
of a in the tree t or in a tree t{>. The other cases can be treated analogous. The
proof works by contradiction:

Assume that there is an a e U, such that a occurs in at least two different trees of
the set {t}u{t,-- | i' 6 i/, } . Then, by the definition of the patterns of t, the attribute
occurrence a(pi) occurs in two different normal forms of rif(=>gtpl, a,„ (e)) and
« / (=»2 ,^ i *'(pi)) for »' € U{. The calculation of these normal forms correspond to
different parts of the derivation atn(e) t. Thus a(pi) occurs in two different
sentential forms of the derivation ajn(e) =>£ t. There must exist tltt2 G (A'1')"*"
with 3i„(e) tia(pi) ^-f titua(pi) t. Consequently, M is circular, which is
a contradiction. The conditions that

• there exist u G U, and t 6 U {u}) ,

• for every » G Uit there exist u G A<°> U U, and U G T{A*1) U {u}), and

• for every a G 17,, there exist u G U U{ and t, G T(A (1) U {u})

are direct consequences of the pumping lemma, because A is monadic.

• For every a e Ut, there exist u G U and t, G T (A (1) U {u}) and

• for every t G Uit there exist u G U and tt G T(A<1) U {u}) ,

because each of the card(U) symbols of U occurs in exactly one of the card(U)
trees of the set {t, \ a G U,} U {t< | » G £/<}, and because each of these trees can
contain at most one (and thus exactly one) of the symbols.

A pumping lemma for output languages of attributed tree transducers 295

We know that each of the card(Ui) symbols of U{ occurs in exactly one of
the card(Ut) trees of the set { i , | a S U,}, and that each of these trees can
contain at most one of the symbols. Thus we must have card(U,) > card(Ui).
We also know that each of the card(U,) symbols of U, occurs in exactly one of
the card{U{) + 1 trees of the set {t } U {t< | » € U,}, and that t contains exactly
one and each of the other trees can contain at most one of the symbols. Thus we
must have card{Ui) > card(U,) — 1. We can conclude that card(U,) = card(Ui) or
card(U,) = card(Ui) + 1 holds.

If card(U,) = card(Ui), then every tree t, contains exactly one of the symbols
of Ui and every tree t< except one of them contains exactly one of the symbols of
U,. Thus there is exactly one t e Ui with t* € T{A).

If card(Ut) = card(Ui) + l, then every tree U contains exactly one of the symbols
of U, and every tree t, except one of them contains exactly one of the symbols of
Ui. Thus there is exactly one s 6 U, with t, 6 T(A). •

Observation 4.2 Let M = (A, A , £ , Sin, root, R) be an at—tree transducer with
system A = (A , A „ A i) of attributes and A = A*1' U A^0'. Then in Theorem 4.1,

1. tree(0) is built up, using each of the trees of the set
{ t } U {£,• 11 € Ui} U {t, | a 6 U,} exactly once and

2. t = tree(l) is built up, using each of the trees of the set
{ t } U 11 6 I/,} U {t , | a € U,} U {t< 11 € Ui} U {t. | a 6 U,} exactly once.

Proof . Again we make use of some notions which were introduced in the proof of
Theorem 3.4.

(a) The tree t is used exactly once in iree(O) and tree(l), because t is introduced
calling the function tree' the first time and nowhere else.

(b) The argumentation for the statement that the trees of the set {t< |t 6 {/,•}
U {t, | a € 17»} are used at most once in tree(O) works as follows by contra-
diction:
W.l.o.g. we assume that a tree ti is used twice (or more than twice). Then the
calculation of »»/(^-^/^¿(px)) corresponds to different parts of the deriva-
tion 8j„(e) tree(O). Thus t(pi) occurs in different sentential forms of
the derivation 3{n(ff) tree(O). There must exist ti,Î2 € (A'1^)"*" with
8 in w = «̂0 ti*(pi) ^ i o ^ « (p i) =>-g0 tree(o). Consequently, M is circular,
which is a contradiction.

(c) The same argumentation can be applied for the proof of the statement that
the trees of the set {tf 11 € Ui} U {t . | a € U,} U {U \ i € U{} U {t , | a e 17,}
are used at most once in tree(l).

(d) The argumentation for the statement that the trees of the set {£< 11 € Ui)
U { t , | a € 17,} are used at least once in tree(O) works as follows by contra-
diction:

296 A. Kiihnem&nn and H. Vogler

By Theorem 4.1 we have card(U,) = card(Ui) or card(U,) = card(Ui) + 1.
We show the proof only for the case card(U,) = card(Ui). The other case can
be proved analogous.
We let k = card(U,) = card(Ui), U, = { « i , . . . , a*}, and 17,• = { » i , . . . , »* } .
Assume that not all of the desired output patterns occur in tree(O). The
number of used trees with t € i/,- and the number of used trees t, with
a e U , has to be equal, because the process of building up tree(0) starts with
t, it must end with the only tree t,- £ T(A) by Theorem 4.1, and the use of
trees ti with i E Ui and of trees t, with a & U, must alternate, as can be seen
observing the function tree'.

Thus we can assume that there is a kf G [Jk — 1], such that only the patterns
t{1,..., Uk,, t,lt... ,t,k, occur in tree(O) (possibly by renaming the trees). We
construct a circularity in cq with the remaining patterns Uk,+l, • • •, t«fc, t»k,+1,
...,t,k which can not be of type T(A), as follows:
Because of Theorem 4.1 and because the symbols a l f . . . , a*», » i , . . . , tV must
occur in the patterns which are used to construct tree(0), we know:

- For every j with k' +1 < j < k, the tree tij e T(A^ U {a f c . + i , . . . , a fc}),

- for every j with Jf + 1 < j < k, the tree ttj € U {»fc'+1 ik}),

- and every symbol a^'+i,. . . ,afc,tV+ii • • • >t* must occur in exactly one
tree of the set {t , i I + l

Thus, possibly by renaming the trees, there must exist k/' € [fc — A:'] with:

- For every j with Jfc' + 1 < j < fc' + Jfc", the tree t,y 6 U {ay}),

- for every j with k'+1 < j < k'+ k" -1, the tree tSj 6 T (A ' 1 ' U {t'y+i}),

- and i ,k l + k„ e r (A ^) U { u ' + i } } .

By the definition of the patterns in the proof of Theorem 3.4 we know that
these patterns correspond to normal forms of certain attribute occurrences
and we can construct a derivation on the control tree ?o as follows:

*V+x(pi)
=>to + ! ffc' + l(Pl)

We can conclude that M is circular, which is a contradiction. An example
situation which would be a consequence of the assumption that not all of the
desired output patterns occur in tree(O) is shown in Figure 10.

A pumping lemma for output languages of attributed tree transducers 297

Figure 10: Circularity in é0 with Jb = 3, Jfc' = 1 and k" = 2.

(e) The trees of the set {t, 11 € £/<} U {£, | s <= U,} U {t< | i G Ui) U {t , | s <= U,}
are used at least once in tree(l). because these patterns correspond to parts of
the derivation t = tree(l) by the definition of the output patterns
in the proof of Theorem 3.4. •

4.2 Arithmetic Proof
It is known from Lemma 4.1 of [FÜ181] that, if M is an attributed tree transducer
and if r(M)(e) = t for an input tree e and an output tree t, then there is a
constant c > 0 such that hcight[t) < c • size(e) holds. Thus, there cannot exist
an attributed tree transducer M, which calculates the tree transformation r (M) :
T U ^ 1) , ^ 0) }) — T ({ B W , E W }) with r(M)(-r"a) = B 2 * E for every n > 0. We
only mention here that there is a macro tree transducer (cf. Example 4.3 of [EV85])
which calculates this tree transformation.

If we do not restrict the input trees to be monadic trees, then the lemma of
Fülöp says nothing about whether an attributed tree transducer M ' exists com-
puting the tree transformation r(Af') : T(E) —• T ({ ő (1) , £<°)}) with Lout(M') =
{B2 E | n > 0}. Such a producing and visiting attributed tree transducer cannot
exist, because we can use our pumping lemma to prove that { B 2 E \ n > 0} ^
S I T ^ holds.

We call the following kind of proof arithmetic proof, because we use arithmetic
arguments while applying the pumping lemma.

Theorem 4.5 {B2'E \ n > 0} £ SITC

298 A. Hahnemann and H. Vogler

P r o o f . Assume that there is an st-tree transducer M = (A, A, E, s ,„ , root, R) with
system A = (A, A,, Ai) of attributes and LMt{M) = {B2 E \ n > 0} . By Theorem
4.1, for every t € ¿ o u t (^) with aize(t) ^ n^/, where ^ 1 is the pumping index
of M, certain properties hold. Consider t = B E; clearly, aize[t) > n\f.

According to Theorem 4.1 there exist U, Ç A, with card(Ut) > 1, 17,• Ç Ai,
a tree t, trees t,,t,- for every i € Ui, and trees t,,t, for every a 6 U, fulfilling the
conditions of Theorem 4.1, such that t = trcc(l).

t = tree(l) is built up, using each of the trees of thé set {£} U {U | » e Ui} U
{£, I a e u,} U{t< I » e Ui}u{t, I a 6 U,} exactly once, because of Observation 4.2.
tree(O) is built up, using each of the trees of the set { i } u { t j 11 e C/, } u { i , | a € U,}
exactly once, because of Observation 4.2.

Thus we can estimate aize(tree(0)) with the sise conditions of Theorem 4.1 as
follows:

atze(iree(0))

= aize(tree(l)) - E.eu. aizea (*.) ~ T,i€Ui aize± (*<)
> 2n" cardM+ l - { n u - l) (card{U,) + card{Ui)) [size^t.) < nM - 1,

aizeA(t,) < n M - l)
> 2n"cardM+l-{nu-l){card(A.) + card{Ai))
= 2ntd'card(A) + 1 - (n M - 1) • card(A)
> 2 n " car<,(i4) + 1 - (n M • card(A) - 1)
> 2niccard(A) j 2 n * i — 1
_ 2n»card(A)-1 + 1, and

aize (tree (0))
= a»ze(tree(l)) - s*ze^(t,) - v. aize^U)
< 2n» eardM + 1 - (card(U.) + card(Ui)) (s»'zeA(t.) > 1,

8ize±(ti) > 1)

Note that the requirement of M to be producing is necessary for this part of the
proof.

Thus 2n** c o r < i (j 4) -1 + l < aize[tree{0)) < 2n" card^ + l and therefore tree(O) £
L^M) = {B2*E | n > 0}, contradicting the assumption. •

4.3 Structural Proof
In contrast to the (easier) arithmetic proofs, we want to demonstrate here, how
structural properties of a certain output language can be used while applying the
pumping lemma for attributed tree transducers. We use the results of this subsec-
tion to present a hierarchy for attributed tree transducers with bounded number
of attributes.

L e m m a 4.4 For every k > 1, {{BDn)2k+1E \ n > 0} £ S^I^T^.

A pumping lemma for output languages of attributed tree transducers 299

Proof . Let k > 1. Assume that there is an i t - tree transducer M — (A, A, E, Sin,
root,R) with system A = (A, A,, Aj) of attributes, Lout (M) = {(BDn)2k+1E |
n > 0} and with k synthesized attributes and k inherited attributes. By Theorem
4.1, for every t G ¿^(M) with size(t) > nu, where n^r > 1 is the pumping
index of M, certain properties hold. Consider t = (BDn"(2k+1))2k+1E) clearly
size(t) >

According to Theorem 4.1 there exist U, C A, with card(U,) > 1, {/,• C A,-
with card(Ut) = card(U{) or card(U,) = card(Ui) + 1. Additionally, there exist
a pattern t, patterns ti,U for every i G Ui, and patterns t,,t, for every s G U,
fulfilling the conditions of Theorem 4.1, such that t = tree{ 1).

t = tree(l) is built up, using each of the patterns of the set {£} U {t* |t G C/,}
U {t, | a G C/,} U {t,- | i G Ui) U {t, | a G U,} exactly once, because of Observation
4.2. In the following, we simply identify these patterns with the sequence of their
output symbols from the root to the leaf by dropping the symbols a G U, and t G Ui.
This notation is slightly inaccurate, but easier to read. We let k\ = card(U,),
k2 = card(Ui), U, = { a i , . . . , a f c l}, and U{ = {t ' i , . . . ,»'*,}.
Case 1: ki = ¿3
In this case we can represent t as follows, where for every I G [¿1], t ' ' ' is a sequence
of patterns taken from the patterns t # 1 , . . . , t , k i t { k i , t M , . . . , t , k i :

t = tree(1) = t tW U, t<2> ti3 ... t<fc'> tiki

For every I G [fci], the tree t'1' is built up from at least one pattern. It is constructed
from at most 2ki + 1 patterns, if the other trees t'' ' are built up from exactly one
pattern, because each pattern can only be used once, according to Observation
4.2. Since for every j G [fcj], 1 < sizc&(ttj) < n^, 1 < atze^fi^.) < n^f, and
1 < 3ize&(tSj) < km, we know for every I G [fci]:

1 < a»ireA(t<')) < (2fcx + 1) • nM < (2k + 1) • nM

Thus every sequence t(') can overlap at most two parts of successive symbols D in
tree(l). The ki sequences together can overlap at most 2k\ < 2k parts of successive
symbols D in tree(l). Since there are 2A+1 parts of successive symbols D in tree(1),
there must exist one subsequence

b = BDnu(2k+1)B or b = BDnt4'(2k+1)E

of tree(l) which completely is a part of t or of a tree for some / G [A]̂.
We present an example situation with k = ki = 2 and with a subsequence

b = B D...D B in t^:

b

B D...... D B D...... D B D...... D B D...... D B D.... ..D E

i t<»> {,,

This subsequence b must appear in tree(O), because tree(0) is built up, using
each of the patterns t, t ^ , . . . , tik ,t,lt..., t,ki exactly once by Observation 4.2.

300 A. Hahnemann and H. Vogler

(It is not important for this proof that the relative positions of these patterns can
change from tree(1) to tree(O).)

The patterns t „ , , t«ki . . ,iikl do not appear in tree(0) any more. These
patterns can only contain symbols D and B, because size& (t ,- t) > 1 and thus the
last symbol E must be a part of t , t i .

If there is a symbol B in one of these patterns, then the number of symbols B
decreases and thus tree{0) £ {(BDn)2k+1E \ n > 0}, contradicting the assumption.

If these patterns only contain symbols D, then the number of symbols D de-
creases and the number of symbols B is constant. Thus we must have a block
6' = B D ...D B or b' = B D ...D E with less than n M • (2A; + 1) successive
symbols D. Since b and b' have a different number of successive symbols D, we
have tree(0) ^ {(BDn)2k+1E \ n > 0}, contradicting the assumption.

Note that the last steps of the above argumentation need the requirement of M
to be producing.
Case 2: ki = k2 + 1
In this case we can represent t as follows, where for every I £ [fci], t'1' is a sequence
of patterns taken from the 3k\ — 1 patterns t # 1 , . . . , t,ki, t , - , , . . . , Uk lttSli..., t,ki:

t = tree(1) = ttM th i(2) iit ...t(fct-D ¿,.ti i t(*i>

For every / € — 1], the tree i'1 ' is built up from at least one pattern, and t'*1 ' is
built up from at least two patterns. For every / £ [All-1], the tree № is constructed
from at most 2ki — 1 patterns, if the other trees t '1) with I' E [fci — l] are built up
from exactly one pattern and is built up from exactly two patterns, because
each pattern can only be used once, according to Observation 4.2. The tree t'*1 ' is
constructed from at most 2A;i patterns, if the other trees t' ' ' with V £ [k\ — 1] are
built up from exactly one pattern. Then we can apply the same argumentation as
in Case 1. •

Lemma 4.5 For every k > 1, {(BDn)2kE \ n > 0} £ S (k) / (k - i) ^ .

Proo f . The proof of this lemma is analogous to the proof of Lemma 4.4. •

The following lemma completes the requirements for the desired hierarchy of at-
tributed tree transducers.

Lemma 4.6
• For every Jfc > 1, { (B D n) 2 k E | n > 0} £ S^I^T^.

. For every k > 0, {(BDn)2k+1E | n > 0} £ S^I^T^.

Proo f . For every A; > 1 we define an st-tree transducer
, « i , root, R(2k)) with:

A = { B W , D W , E W } ,
S = { 7 (1) , a e » } ,
<»> = with A<2> = {Sl ik},

A pumping lemma for output languages of attributed tree transducers 301

A<2fc) = { a i , . . . , s k } , and A|2fc) = (iu.. . , »* } , and
RM = R™ U R?k) U Rl2k) with:

(2fc) _
H-root

(2 k)

= { • ! («) B a i (« l) } u

{•V(»i) BsH1(z\) | j € [* - l] } U

{»•*(»!) E }
= { * / (*) D s} (z\) | J € [4] } U

№) Di;(z)

= { - y W — Bi^z) l i e [A:]}

Ri,

R{ak)

For every k > 0 we define an st-tree transducer
M<2fc+1) = (^ 2 f c + 1) , A , E, si,root, i?(2fe+1)) with:

S = { 7 (i) I a (°) })
A(2k+1) = (A(»+1)Iil(»+»)|^M+Dj with A(„+1) = { f i ak+1)il>...,ik}>

Ai 2 f c + 1) = and A<2fc+1> = { t ! t f c}, and

p(2fc+l)
"•root = { « i M B S^zl)

gfik+l)
M» 1) — B a J + i (* l)

gfik+l)
= (* , (*) — D Sj(zl) | y e [f c + i] } u

o(2fc+l) ltd
{ » V M — DiAz) 1 ie[k\}

o(2fc+l) ltd = { * (*) — BiM 1 J e [fc]} u
{»fc+l(«) — • E }

Clearly, for every k > 1, ¿w(M<*>) = {(BDn)kE | n > 0} . Thus we can conclude
the statement of the lemma. •

From Lemma 4.4, Lemma 4.5, and Lemma 4.6 we gain the following hierarchy
for classes of output languages of st-tree transducers with bounded number of
attributes:

Theorem 4.T S(f c)/ (f c_1)T0«« C £(*)/(*) T^t C 5(f c + 1)/(f c)T0 t t t , for every fc > 1. •

This theorem can be transformed into the following theorem that presents a hierar-
chy for classes of tree transformations of «'-tree transducers with bounded number
of attributes (cf. also Figure 11):

Theorem 4.8 5 (f c) / (f c _ 1) T c S(k)I{k)T C 5 (f e + 1) / (f c) T, for every k > 1. •

302 A. Kiihnem&nn and H. Vogler

S{k)I(k)T

S(3) I(3)T

5 (2) / (2) r

S (i) 7 (i) r

S{k+i)I{k)T_

S{k)I(k-i)T'

s(3)/(2)r

S(2)I{i)T

S(i)J (0)T

Figure 11: Hierarchy of tree transformation classes.

5 Summary and further research topics
In this paper we have developed a pumping lemma for output languages of non-
circular, producing, and visiting attributed tree transducers. We have restricted
the applications of the pumping lemma to monadic output languages yielding two
results for attributed tree transducers. In particular,

• we have proved that the language { B 2 * E | n > 0} can be no output language
of a noncircular, producing, and visiting attributed tree transducer, using our
pumping lemma together with arithmetic properties of this language, and

• we have proved a hierarchy for noncircular, producing, and visiting attributed
tree transducers with bounded number of attributes, using our pumping
lemma together with structural properties of languages.

There are several further research topics in the area of pumping lemmata for at-
tributed tree transducers and other kinds of tree transducers:

• Are there non-monadic languages which can be proved not to be output lan-
guages of attributed tree transducers with the help of our pumping lemma in

A pumping lemma for output languages of attributed tree transducers 303

a justifiable expense? In the case of non-monadic languages the proofs be-
come very much harder, because the output patterns can no more be treated
like concatenated strings as in the proof of Lemma 4.4. The output patterns
are non-monadic trees which occur in a non- monadic output tree. The main
problem is to find a complete case analysis for all possibilities to construct an
output tree with output patterns. Then we have to derive a contradiction for
every case. Additionally we have the difficulty that output patterns can occur
more than once in an output tree tree(1), as can be seen in Figure 9. Thus
in the case of non- monadic output languages there is no helping observation
aa Observation 4.2.

• A similar pumping lemma as for attributed tree transducers can be developed
for macro tree transducers (cf. [EV85]). It will be introduced in another paper
which is in preparation (cf. [Küh94]). Is it possible to use this pumping lemma
in a proof that the difference set SIJT-SFT of subclasses of macro attributed
tree transducers is not empty, as it was conjectured in [KV94]?

• As next step it should be possible to construct a pumping lemma for macro
attributed tree transducers (cf. [KV94]) as combination of the lemmata for
attributed tree transducers and macro tree transducers. Then as special case
of it we have a pumping lemma for the class SIJT and perhaps it is possi-
ble to prove that the difference set SjT-SIjT is not empty, as it also was
conjectured in [KV94].

Acknowledgement
We would like to thank Zoltán Fülöp for carefully reading an earlier version of this
paper and for making useful suggestions on its contents.

References
[AU71] A.V. Aho and J.D. Ullman. Translations on a context free grammar.

Inform, and Control, 19:439-475, 1971.

[BM82] C. Bader and A. Moura. A generalization of Ogden's lemma. J. Assoc.
Comput. Mach., 29:404-407, 1982.

[Boc76] G. Bochmann. Semantic evaluation from left to right. Comm. Assoc.
Comput. Sci., 19:55-62, 1976.

[BPS61] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple
phrase structure grammars. Z. Phonetik. Sprach. Komm., 14:143-172,
1961.

[BS86a] R. Boonyavatana and G. Slutzki. A generalized Ogden's lemma for linear
context-free languages. Bulletin of the EATCS, 28:20-26, 1986.

[BS86b] R. Boonyavatana and G. Slutzki. Ogden's lemma for nonterminal bounded
languages. RAIRO, 20:457-471, 1986.

304 А. Kühnemann and H. Vogler

[Ems91] К. Emser-Loock. Integration von attributierten Grammatiken und
primitiv-rekuraiven Programmschemata. Master Thesis, RWTH Aachen,
1991.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations — a com-
parison. Math. Syst. Theory, 9:198-231, 1975.

[EPR81] A. Ehrenfeucht, R. Parikh, and G. Rosenberg. Pumping lemmas for reg-
ular sets. SIAMJ. Comput., 10:536-541, 1981.

[ERS80] J. Engelfriet, G. Rosenberg, and G. Slutzki. TVee transducers, L systems,
and two-way machines. J. Comput. Syst. Sei., 20:150-202, 1980.

[Ési80] Z. Ésik. Decidability results concerning tree transducers. Acta Cybernet-
ica, 5:1-20, 1980.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sei.,
31:71-145, 1985.

[FÜ181] Z. Fülöp. On attributed tree transducers. Acta Cybernetica, 5:261-279,
1981.

[FV91] Z. Fülöp and S. Vágvólgyi. Attributed tree transducers cannot induce all
deterministic bottom-up tree transformations, manuscript, to appear in
Information and Computation, 1991.

[Gie88] R. Giegerich. Composition and evaluation of attribute coupled grammars.
Acta Informática, 25:355-423, 1988.

[GS83] F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest,
1983.

[Hab89] A. Habel. Hyperedge replacement: grammars and languages. PhD thesis,
University of Bremen, 1989.

[Hin90] F. Hinz. Erzeugung von Bildsprachen durch Chomsky-Grammatiken —
Entscheidbarkeita- und Komplexitätsfragen. PhD thesis, RWTH Aachen,
1990.

[Knu68] D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory,
2:127-145, 1968.

[Kre79] H.-J. Kreowski. A pumping lemma for context-free graph languages. Led.
Not. Comp. Sei., 73:270-283, 1979.

[Küh94] A. Kühnemann. A pumping lemma for output languages of macro tree
transducers. Technical report, Technical University of Dresden, 1994. in
preparation.

[Kus9l] S. Kuske. Ein Pumping-Lemma für Kantenersetzungssprachen bezüglich
maximaler Weglänge. Master Thesis, University of Bremen, 1991.

A pumping lemma for output languages of attributed tree transducers 305

[Kus93] S. Kuske. A maximum path length pumping leirfma for edge-replacement
languages. In FCT'98, pages 342-351. Springer-Verlag, 1993. LNCS 710.

[KV94] A. Kühnemann and H. Vogler. Synthesized and inherited functions — a
new computational model for syntax-directed semantics. Acta Informá-
tica, 31:431-477, 1994.

[Ogd68] W. Ogden. A helpful result for proving inherent ambiguity. Math. Syst.
Theory, 2:191-194, 1968.

[Per76] C.R. Perrault. Intercalation lemmas for tree transducer languages. J.
Comput. Syst. Sci., 13:246-277, 1976.

[Rou70] W.C. Rounds. Mappings and grammars on trees. Math. Syst. Theory,
4:257-287, 1970.

[Sch60] S. Scheinberg. Note on the boolean properties of context free languages.
Inform, and Control, 3:372-375, 1960.

[Tha70] J.W. Thatcher. Generalized2 sequential machine maps. J. Comput. Syst.
Sci., 4:339-367, 1970..

[Wis76] D. S. Wise. A strong pumping lemma for context-free languages. Theoret.
Comp. Sci., 3:359-369, 1976.

[Yu89] S. Yu. A pumping lemmafor deterministic context-free languages. Inform.
Proc. Letters, 31:47-51, 1989.

Received March 26, 1994

