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Codes and infinite words* 

J. Devolder * M . Latteux* I. Litovsky* L. Staiger® 

Abstract 
Codes can be characterized by their way of acting on infinite words. Three 

kinds of characterizations are obtained. The first characterization is related to 
the uniqueness of the factorization of particular periodic words. The second 
characterization concerns the rational form of the factorizations of rational 
words. The third characteristic fact is the finiteness of the number of factor-
izations of the rational infinite words. A classification of codes based on the 
number of factorizations for different kinds of infinite words is set up. The 
obtained classes are compared with thé class of u-codes, the class of weakly 
prefix codes and the class of codes with finite deciphering delay. Complemen-
tary results are obtained in the rational case, for example a necessary and 
sufficient condition for a rational w-code to have a bounded deciphering delay 
is given. 

Risumé: La factorisation des mots infinis permet de caractériser les codes 
parmi les langages de mots finis. Les critères obtenus sont de trois types. 
Le premier critère est relatif à l'unicité de la factorisation de certains mots 
périodiques. Le second concerne la forme des factorisations des mots ra-
tionnels. Finalement, seuls les codes-nous assurent de la finitude du nombre 
de factorisations des mots rationnels. Les codes sont classifiés selon le nom-
bre de factorisations de certains types de mots infinis. Les classes obtenues 
sont étudiées et comparées avec les classes déjà définies de v-codes, de codes 
faiblement préfixes et de codes à délai borné. Des résultats complémentaires 
sont obtenus dans le cas rationnel, en particulier il est donné une condition 
nécessaire et suffisante pour qu'un tu-code rationnel soit à délai borné. 

Introduction 
Codes, which are defined as the bases of free submonoids of monoids of (finite) 
words [1] were initially introduced by Schützenberger [19] in 1955. Since then, the 
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study of some classes of codes, specially from the point of view of an easy decoding, 
has been very active. Here we study codes, and classes of codes from the particular 
point of wiew of decoding infinite words. In this respect, the interesting codes are 
those for which every infinite word has at most one factorisation: "We shall refer to 
these codes as w-codes. It was shown by Levenshtejn [121 that, for a finite code, any 
infinite word has at most one factorization iff this code nas a bounded deciphering 
delay. For infinite codes the situation is more complicated. It turns out that the 
class of w-codes (initially called ifi-codes by Staiger) properly contains the class of 
codes having a finite deciphering delay, which in one's turn properly contains the 
class of codes having a bounded deciphering delay [20]. The most interesting codes 
are codes with bounded deciphering delay, because they allow an easy decoding of 
finite and infinite words. We give at the end of this paper an interesting necessary 
and sufficient condition for a rational w-code to have a bounded deciphering delay. 

Although arbitrary codes may give several factorizations of infinite words, codes 
can be characterized by their way of acting on infinite words. This is the purpose 
of the first section. Indeed, a language C is a code if and only if, for every word v 
of C + , the periodic infinite word v" has a single factorization over C. Codes are 
also characterized by the form of the factorizations of ultimately periodic words, 
and also by the fact that the number of factorizations of an arbitrary ultimately 
periodic word is finite. As an application, it is shown that the usual notion of code 
with bounded deciphering delay coincide with the notion defined in [20]. 

So, codes and w-codes are characterized in terms of infinite words. It is obvious 
that a language C is a code if no infinite word has uncountably many factorizations 
over C. Having this fact in mind, we set up a classification of codes based on the 
number of factorisations for different kinds of infinite words. If C denotes a code, 
the kinds of infinite words that we consider are the following ones: periodic words 
of the form uw with u € C + , periodic words, ultimately periodic words and any 
infinite words. This leads to consider the class C of codes, the class II of 7r-codes, 
the class W of weakly prefix codes, the class I of w-codes ( I as "iflcode"). 

These classes are compared with each other, and also compared with the class 
13 of codes having a bounded deciphering delay, the class D of codes having a finite 
deciphering delay, the class V of circular codes (V as "very pure"), the class S 
of suffix codes. The results can be summarized by the following strict inclusions 
B c D c I c W c I I c C , V c W . S c I I , and by the next array which indicates 
the maximal number of factorizations according to the type of infinite words and 
the class of codes, when the alphabet is countable and has at least two elements. 
In this array, the stars « point out the characteristic properties, and oo denotes 
Card(iR) : a noncountable infinity of factorizations is possible. 

words u" uu uvu any 
( « 6 0 + ) 

languages 
w-codes 1 1 1 1* 
weakly prefix 1 1 U oo 
jr-codes 1 U finite oo 
codes U finite « finite « oo 

In the second section, we give characterizations for the classes W,IT and S and 
we prove the announced inclusions. Using the inclusions V C W , S C II and the 
composition of codes, one can easily construct w-codes, weakly prefix codes and 
«•-codes. The second section terminates by some examples which enable us to fulfill 
the array. 
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In the last section, we examine the modifications holding when C is a rational 
language. Every infinite word has then a finite bounded number of C-factorizations 
whenever C is a code. The notion of w-code coincides with the notion of weakly 
prefix code in the rational case. We give also a new interesting necessary and 
sufficient condition for a rational w-code to have a finite deciphering delay. This 
condition C" n C" Adh(C) = 0 can be easily checked. As expected, it is decidable 
whether a rational language belongs to any class B, I (i.e. W ) or II. 

Notations and basic definitions? 
In the following, we consider an alphabet (finite or not) ¿4, the set A" (resp. Aw) 
of all finite (resp. infinite) words over the set A+ which denotes the language 
A* — e, where e is the empty word. The length of a word u is denoted by |u|. The 
symbol < (resp <) denotes the relation between words "is a (resp. strict) prefix 
of". The left quotient of a word u by a word v is denoted by v - 1 u . 

Two words x and x' are said to be conjugate if there exist u and v such that 
x = uv and x' = vu. A word z € is primitive if z = un implies n = 1. 

Given a language C C the submonoid generated by C is the language 
C" = { « i . . . ti„[n > 0, Vi € C, 1 < i < n} and Cu stands for the set of infinite 
words obtained by concatenation of an infinite sequence of words of 0 : 0 " = 
{voui"2 • ••!"» G C,i > 0}. A C-factorization of a word v S C" is a sequence of 
words of C : (t>!,..., t)„) such that v = Ui...w„. A C-factorization of a word 
v S Cu is a sequence of words of C : (vo) f i i f2i • • •) s u ch that v = t>o«it>2 

An infinite word w is said to be ultimately periodic if there finite words u and v 
such that w = uv". It is said to be periodic if u can be chosen equal to e. 

Given a language C C we shall often consider a bijection <p between an 
alphabet X and the language C. This mapping can be extended to X° as a mor-
phism <p : X" —* C". This morphism is said to be a coding morphism for C (even if 
it is not injective). The mapping <p can also be extended to X" (p(zqZi ...) is the 
word <p(za)<ptzi)...). These extension agree with the composition of functions of 
words of X" (resp. X " ) and the set of C-factorizations of words of C4 (resp Cw). 
Thus a C-factorization of u € C* (resp : u € Cu) will be represented by an element 
of X" (resp: Xu). 

Definitions: Let C be a language C A+. 
- C is a code if and only if Vu, v € C uC" n vC* ^ 0 => u = v 
- C is a prefix code if and only if Vu, w € C u < v u = v 
- C is an w-code if and only if Vu, v e C uCw n vC" ^ 0 => u = v [20]. 

These definitions can be expressed in terms of morphisms. Let <p be any coding 
morphism for O. 

- C is a code if and only if <p : X* —* C" is injective. 
- C is an w-code if and only if <p : X" —» C" is injective. 
Recall that w-codes are codes and that prefix codes are u-codes. Using coding 

morphisms, it is easily seen that a composition theorem holds for codes [l] and op-
codes. Namely, let C be a language C X+ and <p : X* —* A* be a coding morphism 
for a language D = <p[X) C A+, if C and D are codes (resp: w-codes), <p(C) is a 
code (resp: w-code). 
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1 Characterizations of codes 
In this section, three kinds of characterisations for codes are obtained: the first 
kind concerns the words which hâve only one C-factorization, thè second is related 
to the form of the C-factorizations of ultimately periodic words, the last give a 
bound for the number of C-factorùsations of a given ultimately periodic word. 

We define now some notations and give some lemmata used in the proof of the 
main theorem. Let <p : X' —• C" be a coding morphism for C. 

Lemma 1.1 If C C A+ is a code, for every word v € A+, there exists at most one 
primitive word z € X+ such that <p(z) € u . 

Proof . If <p(z) = n" and <p[z') = vm,<p(zm) = <p(z,n). Thus zm = z'n ( <p 
injective) and then m = n and z = z' if z and z' are primitive words. • 

Lemma 1.2 If yz" s Xw is a C-factorization of uvw (where v is assumed to be a 
primitive word), <p[z) is a power of a conjugate of v. 

Lemma 1.3 Let us consider x € Xu such that <p(x) is ultimately periodic. There 
exist y,z 6 X", t € Xu such that x = yzt, and <p(x) = <p(y)<p(z)w. 

Proof . Let x be the C-factorization: tti, tt 2 , . . . , t ip , . . . of an ultimately periodic 
word uv". Since v is of finite length there exist », j, k, m such that k < m, u i . . . it* = 
uvxw and t»i . . . u m = uvi+3w where w is a prefix of v. The word v' = w~1v3w 
belongs to C + and uvu = « i ... UfcV'w. • 

Lemma 1.4 If C C A+ is a code, for every word v € C+, the word vw has only 
one C-factorization. 

Proof . Let us consider v € ' C + : v = ViV2... vn with V{ e C such that vu has two 
distinct C-factorisations: vu = (t>i«2 . . . vn)w = uiu2 . . . up . . . (where Vs u,- e C). 
Without loss of generality we may assume that ^ Ui. As in the proof of lemma 
1.3, there exist i,j, k, m such that k < m, « i . . . u* = v*w and u i . . . um = vt+Jtu 
where to is a prefix of v. Then the word v%+}w = u i . . . um = (« j ... vn)3 U\ ... tifc 
has two distinct C-factorizations. C is not a code. • 

Lemma 1.5 Consider C C such that every word of the form wu with w 6 C+ 

has exactly one C-factorization. For all words u, v 6 A+, every C-factorization of 
the word uv" is ultimately periodic. 

Proof . Let us consider a C-factorization x of the word uvu G Cw. FVom lemma 1.3, 
there exist y,z € X*,t Ç. Xw, v' e C + such that x = yzt,<p(z) = v',p(t) = v'u. By 
hypothesis, the word v'w has a single C-factorization. Since <p(zu) = v'u = <p(t), 
we have t = zu and then x is ultimately periodic. • 

Lemma 1.6 Let C be a code C A+. Consider words u and v of A+. The set of 
C-factorizations of uv" is finite. 

Proof . Let us consider uv" G C". Assume that v is primitive. Denote by V = 
{v, |i £ 1} the set of conjugates v,- of v such that v* f~lC+ / 0. Since C is a code, we 
can denote by z,- the primitive word such that y?(z,-) £ vf and rij the corresponding 
power of Vi : <p{zi) = vj". We consider the equivalence relation on V: 

Vi ~ Vj O 2,- and Zj are conjugate. 
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Since <p(zi) and <p(z,) are conjugate, it is clear that n̂  = ny whenever ~ tiy. 
Let f be the set of C-factorizations of uuw. We shaU prove that Card(.F) < En,-, 

where only one n,- by ~ class is taken. 
. Since C is a code, from lemma 1.5, every C-factorization of uvu is ultimately 

periodic, hence of the form yz" with z primitive; from lemma 1.2, there exists a 
conjugate t>< of v such that <p(z) & Then the set F of C-factorizations of tiv" 
satisfies F = U ( f n i ' z " ) . Since X*z? = X*z" when Zi and z, are conjugate, the 
previous union has only N terms, where N denotes the number of classes of 

It remains to prove that Card(.F fl X*z") < n*. Consider y'z",y"z" and 
yz? g F, such that |*>(y)| = inf{|p(u)||tug' € F). Since ^ ( y M ^ ) " = 
<p[y')p(zi)u, <p(zi) S v* and Vi is primitive, one has <p(y') = <p(y)v? for some 
h'. One has also <p(y") = <p(y)vI" for some h". If h' = fcn< + h", <p(y"z?) = 
<p{y)vi "+kni = = <P(y')- Since C is a code y"zf = y' and then y"zf = y'zf. 
The number of elements of F D X* z" is then at most the number n,- of integers 
modulo n,-. • 

The following theorems give the characterization of codes. For convenience, 
theorem 1.7 gives the characterizations related to periodic words ant theorem 1.8 
gives those related to ultimately periodic words. 

Theorem 1.7 LetC be a language C A+. The following assertions are equivalent: 

1. C is a code, 

2. for every u 6 C + , u" has a single C-factorization, 

S. every C-factorization of each periodic infinite word is ultimately periodic, 

4. each periodic infinite word has a finite number of C-factorizations. 

Theorem 1.8 LetC be a language C A+. The following assertions are equivalent: 

1 C is a code, 

8' every C-factorization of each ultimately periodic infinite word is ultimately pe-
riodic, 

4' each ultimately periodic infinite word has a finite number of C-factorizations. 

Proo f . 1 =>• 2 : lemma 1.4; 2 3': lemma 1.5; 1 => 4': lemma 1.6; 3' => 
з,4' =>• 4: clear; 3 => 1 and 4 => 1: If C is not a code, there exists a word u 
which has two distinct C-factorizations. There exist y and z G X+,y ^ z, such 
that <p(y) = <p(z) = u. Without loss of generality, one can assume that the first 
letters of y and z are different, then a bijection ^ between {0 ,1 } and {y, z} gives a 
bijective morphism ¥ : {0,1}W —* {y, z}u and the elements of [y, z}u are distinct 
C-factorizations of uu. The word u belongs to C + and uw has a non-countable set 
of C-factorizations; hence also a non-countable number of non-ultimately periodic 
C-factorisations. • 

Remarks: 
- FVom lemma 1.3, in the property 4', one can replace: "each ultimately periodic 

infinite word" by "each ultimately periodic infinite word of the form uvu with 
и , « 6 C + " . 
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- A periodic infinite word can have a nonperiodic C-factorization even if C is 
a (prefix) code. For example: if C = {a, i>a}, the C-factorization of (ab)u is not 
periodic. 

Property 3' of codes has been used to give characteristic properties of precircular 
codes [7]. The characterizations 3 and 3' can be used to prove composition theorems 
for weakly prefix codes and for jr-codes. As an application of property 2, it can be 
easily seen that a code C is always minimal in the family of w-generators of C " (i.e. 
languages R such that Ru = C" ) . We give here another application of property 2. 

Application: 

In [20] the following notion of delay of decipherability was introduced: a lan-
guage C C i4+ is said to have a finite delay of decipherability if 

Vv 6 C 3m(u) > 0 vCm^Au nC" cvC". 

Remark: A languagerwith a finite delay of decipherability in this sense is not 
necessarily a code, as it can be seen for C = {a ,a 2 } . The language C = {a 2 , a 3 ,6 } 
is another more complicated example (it is not a code but m(fc) = 0 and m(a2) = 
m(a3) = 1). 

Some authors use another notion of finite deciphering delay [l], [5], which is in 
fact a notion of bounded deciphering delay [10]. Here, we say that: 

- a language C C is said to have a finite deciphering delay if 

V v e C 3m(v) > 0 Vv' € C (vCm^Au n v'C" ^ 0 => v = v') 

or equivalently if 

Vv 6 C 3m(v) > 0 Vv'eC (vCm^A* n v'C* ^ 0 => v = v') 

A language which has a finite deciphering delay is a code [1] and clearly has 
a finite delay of decipherability in the sense of [20]. Thus the notion of finite 
deciphering delay is stronger than the notion defined by Staiger. We shall see that 
these notions coincide for codes. 

Proposit ion 1.9 Every code which has a finite delay of decipherability is an op-
code. 

Proof . Consider v,v' G C such that w C D v'C' ^ 0. For n > max(m(u), m(w')) 
and tv E vC" fl v 'C" , there exist u, u' € C " such that vu and v'u' are prefixes of 
to. If vu is a prefix of v'u', ( vV ) w 6 vCm(u)yiw n C " , thus (v'u')w € vC u . Since 
v'u' 6 C + , from characterization 2, v = v'. Hence C is an w-code. • 

Proposit ion 1.10 Every code which has a finite delay of decipherability has a 
finite deciphering delay. 

Proof . Let v and » ' e C and assume that vC m h a * C W C is not empty. Consider 
w e vC m ( °U* Dv'C*. The word wvu belongs to vCmWAwnCu and then belongs 
to vCw and to v'C", from the previous proposition we obtain that v = v'. 

• 
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Remarks: 
- In a same way, a code satisfying: 3w> > 0 Vv € C v C ^ ' U « n C" C VCu 

is a code with a bounded deciphering delay, that is to say: 

3m > OVv e CVv' G C{vCmA* D v'C* ? 0 =>> v = v'). 

- The two notions of finite and bounded delay do not coincide in general, al-
though they are equivalent in the regular case [20]. 

- The notions of w-code and code with a (finite or bounded} deciphering delay 
coincide in the case of finite codes [12] [5]; these classes do not coincide when regular 
codes are considered [20] . We give in section 3 a necessary and sufficient condition 
for a rational u>-code to have a finite deciphering delay. 

2 Study of some special codes - examples. 
Weakly prefix codes were defined by Capocelli [5]: 

Definition: A code C C A+ is a weakly prefix code if and only if 

Vu, v,w £ A* (to, tou, uv, vu G C* => u G C*). 

Notice that this definition is equivalent to the next: 
A language C C A+ is a weakly prefix code if and only if C is the base of a 

monoid M satisfying the condition: 

Vu, v, w G A* (to, tou, uv, vu 6 M ^ u 6 M). 

Proof. It is sufficient to prove that a monoid M which satisfies the required 
condition is stable [1]. & the words w,wu,uv'lv' belong to M, the words 
w,wu,uv'w,v'wu belong also to M. Let v = v'w. The words w,wu,uv,vu be-
long to M and then u belong to M, M is stable. • 

Clearly, prefix codes are weakly prefix codes. 
Let us recall some definitions. A language C C A+ is a circular code [11] [l] if 

and only if 

Vn,p > OVuo,..., Un-i, w 0 , . . . , Vp-i G CVt G A*Ws G A+ such that vo = ts 

(uo . . . u„_ i = . . . Vp-it => n = p t = e and V» u,- = «,•). 

A monoid M C A* is a very pure monoid if and only if 

Vu, u G A* (uv, vu G M =>• u,v G M). 

It is known that a language C is a circular code if and only if C is the base of a 
very pure monoid [16]. 

Clearly, the class V of circular codes is an interesting subclass of the class W 
of weakly prefix codes. But the inclusion V C W is strict: for example, {ab, 6a} is 
a (weakly) prefix code but is not a circular code. 

The next proposition characterizes weakly prefix codes in terms of infinite words. 
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Theorem 2.1 Let C be a language C A+. The following assertions are equivalent: 

1. C is a weakly prefix code 

2. for every u, v € C + uvu has a single C-factorization 

S. each ultimately periodic infinite word has at most one C-factorization. 

Proof . 1 =>• 2 : Notice that, since C is a code, any C-factorization of an ultimately 
periodic word is ultimately periodic. Assume now that uvw = u'v u and u, u', v, v' G 
C+, |u| < |u'|. If the two C-factorisations are distinct, we can assume that u = 
u i . . . u№ and u' = t i j . . . u^ with ux jt u'j. If u' = uui where w S C,C is not a 
code. Then suppose that u' = uw where w & C°. Taking appropriate powers of 
v and v', we can assume that |v| = |ti'| > |to|. Then v = ww' and v' = w'w for 
some word w'. We have u, uw, ww', w'w 6 C* but w £ C°, a contradiction with C 
weakly prfix. 

2 =>• 1 : If C is not weakly prefix, there exist u,v,w such that u ^ 
C",w,wu,uv,vu € C". Hence w(uv)u has two distinct C-factorizations. 

3 =>• 2 : Clear. 2 =>• 3 : Clear from lemma 1.3. • 
As a consequence we obtain: 

Corollary 2.2 u-codes are weakly prefix codes. 

The converse is not true in general. Let C = { a i } U {a6"o6 , l+1|n > 1}. This 
example presents a weakly prefix (circular) code C which is not an w-code, but 
such that every proper subset of C is an w-code. This shows a difference between 
w-codes and weakly prefix codes since a language C is clearly a weakly prefix code 
iff every finite subset of C is a weakly prefix code. This example shows also that 
V and W are not included in the class I of w-codes; I is neither included in V 
(consider the prefix code {ab, ba}). 

Now, we study a type of codes which take place between codes and weakly prefix 
codes. Indeed, such a type of codes exists. Erom theorem 1.7, if C is a code, for 
every u e C+ uw has a single C-factorization. But it is not possible to replace 
C+a by "u € j4+*. This observation was already made by Karhumaki in connection 
with theorem 3.3 of [10], however the example given there, {ab,aba,baba} is not 
a code. By contrast, the language C = {a, aaba, abaaba} is a code and the word 
(ao6)w has two C=factorizations. 

In theorem 2.1, it is not possible to replace "ultimately periodic* by "periodic": 
a language C may no longer be a weakly prefix code even if every periodic infinite 
word has at most one C-factorisation. For example, let C = {ab, aba, fca2}. The 
word ab(aba)u = aba{ba2)u is the only word which has at least two C-factorizations 
beginning by two different words. Thus every periodic word has at most one C-
factorisation. Note that C is a suffix code. 

Thus theorem 1.7 and 2.1 do not study uniqueness of the factorization of periodic 
words. Then it is natural to try to characterize codes which factorize infinite 
periodic words in a single manner. For sake of convenience these codes are called 
K-codes here. Note that the three-element codes which are not «"-codes have been 
studied by Karhumaki and called periodic codes [10]. 

Definition: A language C C is said to be a ?r-code if each periodic infinite 
word has at most one C-factorization. 

Theorem 1.7 ensures that a 7-code is a code. We have seen an example showing 
that the converse is false. As for weakly prefix codes, a technical characterization 
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of «--codes can be obtained. One can prove that a code C C A+ is a jr-code if and 
only if C satisfies the property: 

(P) Vu,v,w,P g A* such that wuvu < f)u and |u| > |/9|, one has: 

w, wu, uv, vueC* =>• u e C*. 

Proof . Let u,v,w,P such that wuvu < > |/?| and w,wu,uv,vu € C*. We 
can assume f) primitive, then u has a single interpretation over P : there exist a 
single i > 0, a single suffix of P : P', a single prefix of p : p" such that u = 
Then uv = p'p'pp'-1 and wu = p"~^ppip" for some j. Hence Pu = ^(ut;)" = 
wu(vu)u. Since C is a «--code, the word p" h as at most one C-factorization 
therefore u € C*. 

Conversely, let p " be a periodic word having two distinct C-factorisations: 
(toi, tug,...) and (ttfj, w'f,. . .). We can assume that ti^ jt w^. Denote P" = u i o j . . . 
where tij = p for each ». 

We can consider (when exists) pi such that twi... u>Pi-i < Ui . . . u<_i < 
u>i...wPi < u i . . . There exist a word a and infinitely many « such that 
u>i . . . wPi = «i...u,-_iOt. In the sequel, m and n denote such indices p,-. In a same 
way, there exist a word a ' and infinitely many t such that there exists qi satisfying 
Wi . . . togi_i < Ui . . . u,-_i < Wi . . . wqi < Ui.. .Ui and w[ ... w'q. = U i . . . u ,_ ia . 
In the sequel, m' and n' denote such indices qi. 

Let us choose m, m', n, n' such that u>i... wm < ... w'm, < wi... wn < 
w^... w'n,. Let w = wi... wm, wu = u>J... w'm,, tvuy = t^i . . . iun, wuyz = 
w'1...w'n,. The choice of m' can be done such that |u| > \P\. We have: 
uy = p'p 6 C + and yz = p"p S C + , where P' and P" are conjugate with p. Let 
t> = y{uy)q~l\uv 6 C+ and vu = (yzY, then vu e C + . The words w,wu,uv,vu 
belong to C*, therefore u belongs to C*, which gives a contradiction with " C is a 
code" since jt w[. • 

In this characterisation, the condition " C is a code" cannot be suppressed. For 
example, let C = {ba,b,abc,bc}. The monoid C* is not free and the condition (P ) 
is satisfied. 

fVom theorem 2.1, it is clear that weakly prefix codes are jr-codes. Surprisingly, 
the family of «--codes contains a well-known subfamily: the family S of suffix codes. 
This fact is obtained as a consequence of the next interesting characterization of 
suffix codes. 

Proposition 2.3 A language C C A+ is a suffix code if and only if every C-
factorization of a periodic infinite word is periodic. 

Proof . If C is not a suffix code, there exist v' € A+,u, v e C such that v = v'u. 
The word uvu is periodic and has a non periodic C-factorization. 

Conversely, consider a suffix code C, <p : X* —+ C* a coding morphism for C and 
P a primitive word such that p" € C " . Consider a C-factorization of fiw. From 
lemma 1.2 and theorem 1.7, this factorization can be written yzu and there exists a 
conjugate of p : P' such that <p(z) = p n for some n. Since Pw = op u, <p(y) = op k 

for some k. Then <p(y) is a suffix of [Pn) + , and since C is a suffix code, y is a 
suffix of z+. Hence the considered factorization is periodic. • 

In these conditions, Pu = v" for some v in C + and from theorem 1.7, the 
C-factorisation of P" is unique. So we have: 

Corollary 2 .4 Suffix codes are it-codes. 
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Remarks : 
- The inclusion S C II is strict: the ir-code {a, ba} is a not a suffix code. 
- A code with a finite left deciphering delay (even delay l ) is not always a 

ir-code. 
For example: the word (afce)" has two C-factorisations when C = 

{a, ab,cab,bca). 
- § is not included in W : {e, ca, aba, ba2} is a suffix code which is not weakly 

prefix. 
As an application of theorems 1.8 and 2.1, a composition property for weakly 

prefix codes and ir-codes can be obtained: 

Propos i t ion 2.5 Let C be a language C X+ and <p : X" —» A" be a coding 
morphism for a language D = <p[X) C A+. If C and D are weakly prefix codes, 
<p(C) is a weakly prefix code. If C is a weakly prefix code and D a ir-code, <p(C) is 
a ir-code. 

Remark : In proposition 2.5, for <p(C) to be a ir-code, the request property "C 
weakly prefix code" cannot be replaced by the other one " C jr-code". For example, 
C = (c, ca, aba, taa} is a tr-code but not a weakly prefix code (the word c(aba)u has 
two C-factorisations). Let p(a) = ac,<p(b) = b,ip(c) = c. The code D = {ac,b,c} 
is prefix but <p(C) = {c, cac, acoac, bacac) is not a ir-code since the word (cacba)u 

has two C-factorisations. 
In the following, we give some examples of 7-codes and weakly prefix codes for 

which there exists a word u>o which has infinitely many factorisations. The set of 
factorisations of wq may be countable or not countable. The last example allows 
us to fulfill the array given in the introduction. 

Example 2.1 Let Cx = {aba2b2a3b3... an6"on + 1|n > l } , C 2 = {6Po«6"|0 < p < 
9} and consider C = C\ U Cj. The language C is a suffix code and thus a ir-code, 
but C is not a weakly prefix code since for example, the word o6o263o363(o464)u 

has two C-factorizations 
The word w0 = aba2b2 ...anbnan+1bn+1... has a countable infinity of C-

factorizations and every word has a countable (finite or not) number of C-
factorizations. 

Example 2.2 Let A = {a,b},C = {tia6n||u| = n,n > 0, |u|a = 0 or 1} f]u|a 
denotes the number of occurrences of a in u). Clearly C is a suffix code thus a 
ir-code. Since the word w = 6a6.6o6.(64o64.6o6)w = bab2ab*.(bab.b3ab4)u has two 
C-factorizations, C is not a weakly prefix code. We shall see that there exists a 
word Wo which has a noncountable infinity of C-factorizations. 

Let wQ be the word: ab,0abl1... abln... where i0 = 0, »x = 1, t n + 3 = ¿ „ + 1 + 1 „ + 1 
for every n > 0. Let us prove that, for every factorisation of wo : wo = uv, the 
word v has at least two C-factorizations. In fact, v € x(v)Cu fl y(v)C" for two 
different words: x(v) and y(v) of C. Let v = b'°abinabin+1... with 0 < j0 < 
» „ _ ! . Then v = b^ab^.b^^ab3'1 b}hab}h.... where jh+i = in+h ~ jh and jh 

satisfies 0 < jh < in+h for every h > 0; let us set x(u) = bj0abj0. The word v 
has also the other C-factorisation: v = b3°abinabk0.bklabkl bkhabkh.... where 

- Jo + *» + 1> kh+i — in+i+hkh ^h satisfies 0 < k^ < »n+i+h for every 
h > 0; let us set y(u) = b3°abinabk0. We have: « 6 x(v)Cu n y{v)Cu. 

Then an injective mapping 6 form {0, l } w into the set of C-factorizations of wo 
can be defined next way: let ^ = G { 0 , 1 } W , S(/3) = (zn )n where z0 = z(iu0) 
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if fa = 0 and zo = y(to0) if Po = 1, 
Zn = y((z 0 2l . . . Z n - i ) - 1 ^ ) if Pn = 1. 
factorizations. 

= z((zbzi ...z„_i)-1tu0) if Pn = 0 and 
So wo has a noncountable infinity of C-

• 

Example 2.S Let A = {u,-|t > 0} and C = CiUC2 where C\ = {uottxu2 . . . u2.|t > 
0} and C 2 = {u2'3j+i • • • U2'3J+1 l*i J > 0} . Since the mapping: (», j ) 2*3' 
is injective. it can be shown that C is a weakly prefix code. Every word has a 
countable (finite or not) number of C-factorizations and there exists a word which 
has a countable infinity of C-factorizations. Indeed the word wo = U0U1U2 ... u„ ... 
has a countable infinity of C-factorizations since the C-factorizations of wo are of 
the form: (tio ...u2.)(u2i+i...«2'3)(u2'3+i • • • Ua^1) • • • («a'si+i • • • «a'a^») ... for 
some i > 0. • 

Example 2 .4 Let A - {ui| > 1 } , C = {u„ . . . u 2 „ - i | n > 1} U { u „ . , .u2„|n > l } . 
We show that C is a weakly prefix code such that there exists a word which has a 
noncountable infinity of C-factorizations. 

Let to0 = u i u 2 . . . u„ As in example 2.2, it can be easily verified that w0 has 
a noncountable infinity of C-factorizations. Let to be a word which has two C-
factorizations S and 8' beginning by two different words. Then 8 and 6' begin 
by u n . . . u 2 n _ 1 and u n . . . u 2 n for some n. The second words of 8 and 8 ' are 
«2n • • • «4n - i or u 2 „ . . . u 4 n and U2„+1... or u 2 „ + i . . . U4„+2 . In every case 
they overlap. Then, by induction, it can be shown that w = ( u i . . . u n _ i ) - 1 t oo and 
then w is not ultimately periodic. Thus C is a weakly prefix code. • 

Using the composition proposition 2.5 and the previous examples, it is easy to 
construct over a finite alphabet examples of codes having the same properties. Let 
B = {a, 6} and <p : A —• B+ defined by: p(ui) = axb. The language D = p(A) is a 
prefix code. 

Example 2.5 Let C be the code defined in example 2.S. the language C = <p(C) 
is a weakly prefix code over a finite alphabet satisfying: 

- every word has a countable (finite or not) number of C'-factorizations 
- infinitely many words have a countable infinity of C'-factorizations. 

Example 2.6 Let C be the code defined in example £.4 the language C' = <p(C) 
is a weakly prefix code over a finite alphabet and there exists a word: y>(tOo) which 
has a noncountable infinity of C'-factorizations. 

3 The rational case 
When a language C is rational, one can consider an automaton flo = (Qo, <7o> I f ) 
with a finite set of states Q01 & single initial state go and a single final state gp, 
which recognizes C and such that no edge comes to go and no edge goes from qp. 
The automaton flo can be chosen trim (i.e. for every state q there exist a path 
from qo to q and a path from q to and unambiquous (i.e. the words of C have a 
single acceptance path). The automaton fl = (Q, qo, go) obtained by identification 
of go and qp recognizes C*. If C is a code, the automaton fl is unambiguous [1]. 
This automaton looked as a Buchi automaton recognizes C". 
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Theorem S. l Let C be a rational language C A+. The following conditions are 
equivalent: 

1. C is a code 

2. every infinite word has a finite number of C-factorizations 

S. there exists p such that every infinite word has at most p C-factorizations. 

Proof . 3 => 2 : clear. 2 => 1 : This comes from theorem 1.7. 1 =>• 3 : Let C be a 
rational code and fi = (Q, ?o> 9o) an unambiguous automaton for C" constructed 
as said before. Consider w € Cu and t > 1. We call cut of (u>, t) every sequence 
( n i , . . . , n p - i ) such that there exists np satisfying: 

(i) no = 0 < ni < . . . < n p _i < t < np,p > 2 and wfnj- i , n,-[e C for 
i = 1 ,...,p. (Here, and in the sequel, the factor WiW{+1 . . . u;y_i of a word to is 
denoted by w[t,y[). 

At first, we show that, for every t, (to, t) has at most Card(Q) cuts. 
Let us consider ( n i , . . . , np) and (n' j , . . . , n'k) such that (i) is satisfied. Denote 

by q (resp. q') the state reached after reading u>[0, t\ in the single successful path 
of tu[0, np[ (resp. to[0, nj.[). If q = q', to[0, np[ has a second successful path: 
path related to w [ 0 , u n t i l t, path related to to[0, np[ after. Then p = k and 
( n i , . . . , n p _ i ) = (fi ' j , . . . , n p - 1 ) since H is unambiguous. 

Thus (w,t) has at most Card(Q) cuts. Then to has at most Card(Q) C-
factorisations. • 

Remark: An infinite word which has several C-factorizations is not necessarily 
ultimately periodic: the word: o62c63(c263)c63(c263)2 . . . c63(c263)"c63(c263) , , + 1 . . . 
has two C-factorizations when C = {a,ab,bcb2,bc2b'2,b2cb,b2c2b}. 

A set of infinite words over an alphabet A is said to be rational if it is a finite 
union of sets RiS" where Ri and Si are rational subsets of A". It was proved that 
the rational sets of infinite words are the languages which can be recognized by 
a finite Buchi-automaton [4l. The set of rational subsets of Aw is closed by finite 
union, finite intersection ana complement [4]. For details, one can see [18]. 

Proposit ion 3.2 Let C be a rational language C A+. The set of infinite words 
which have several C-factorizations is rational. 

Proo f . If C is rational, the semi-congruence defined by: 

u ~ v O ts_1C = v~1C 

is of finite index. Let us denote by [u] the class of a word u. The set D of infinite 
words which have several C-factorizations can be written: 

d= u c . H . i c - n a u r ^ - M j c « ) . 
M c c 

So D is rational. • 

Remarks: 
- The set of infinite words which have several C-factorizations is countable when 

the code C has three elements [10]. It can be noncountable when the code C has 
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more that three elements. For example, let C = (afc, aba, bab2, b2ab2a}. Every word 
of ofea(62o62o + bab2ab)u has a noncountable infinity of C-factorizations. 

- It can be proved from proposition 3.2 that, if C is a rational language, C is 
an u>-code if and only if all its finite subsets are w-codes. This property does not 
hold for nonr&tional languages as it can be seen for C = {ab} U {a6"o6n+1Jn > 0}. 

- From proposition 3.2, we obtain the next statement which is a result of Staiger 
[20]. This statement agrees with the fact that a rational w-language is specified by 
the set of ultimately periodic words contained in it [4]. 

Corollary 8.S Any rational weakly prefix code is an u-code. 

Since it can be checked whether the rational set of infinite words which have sev-
eral C-factorisations is empty or contains a periodic word, we have the following 
corollary. 

Corollary S.4 One can decide whether a rational language is a ir-code (resp. a 
weakly prefix code, or equivalently an u-code). 

The membership problem for the studied classes of codes is decidable in the rational 
case. Indeed the result is well known for codes [l], and has been proved for codes 
with bounded deciphering delay by Cori [6]. This latter result is also a consequence 
of the next result of Capocelli, and can be also deduced from proposition 3.7. 

Capocelli [5] gave a necessary and sufficient condition for a rational weakly 
prefix code (or w-code) C to have a bounded deciphering delay. That is: 

3p > 0Vu € A^uCTA* n C ^ 0 =• C+u n C + = 0. 

We give here another condition which obviously is satisfied when the code is finite. 
In this condition we need the notion of adherence [3]. An infinite word to belongs 
to Adh(C), the adherence of a language C of finite words, if every left factor of to 
is a left factor of a word of C. 

Lemma 8.5 Let us consider a language C C A+. 

1. if C is a code having a finite deciphering delay, C is an u-code and 
Cu nC".Adh(C) = 0. 

B. ifC is a rational u-code such that C" nC* .Adh(C) = 0, then C has a bounded 
deciphering delay. 

Proof . 

1. If C is not an w-code C cannot be a code having finite deciphering delay 
(proposition 1.9). Thus, let C be an w-code for which there is some to G 
Cu n C*.Adh(C). Without loss of generality, we may assume that w = 
U1U3U3... = w'iUg... «J,«/ where € C for every %,w' 6 Adh(C) and 
«4 «1 or p = 0. Since 10' € Adh(C), for every d > 1 there exists v € C 
such that u i . . . ts<j < tî  u'2 ... u'pv where u'x / lii or p = 0. Thus C has not 
the deciphering delay (d— l) . 

2. Let C be a rational language and 0 = (Q, qo, 90) an unambiguous automaton 
for C° constructed as said before. Let a be the number of states. Assume that 
C has not he delay d. There exist n > 0, tto,. . . , u^, u'0,..., e C,z e A* 
such that u 0 . . .u^z = u'0 .. ,u'n and u[, ^ uq. 
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There exists a path of label Uq . .. u'n from go to go- Within this path, we 
denote by q}- the state reached after reading u o « i . . . uy. There exist j and 
j' > j such that g, = g'y (we denote q = q}). Then we denote: y = 
«o.. .tiy = « { , . . . u ^ . j i ' with J < u'm,x = ui+1.:.u'J;x'xx" = u'm...u'm+h, 
with x" suffix of u'm+h,u'}+i---ud* = «"um+h+x h = °> f o r e v e r y 
n, x ' i n i " e C and then yxu g C*.Adh(C) n C " . If h > 1, yxu has two distinct C-
factorinations: « o , . . . , uy(uy+i « y ) " and u { „ . . . , u ^ , (u 'm , . . . , u ' m + h _ l t « ) " 
where « = - l u m)> 'bus C n o t a n w-code. • 

Lemma 3.5 can be used to derive a new proof of a result in [20]. To this end, 
we consider Au as a topological space defined by the set of open subsets: E C Aw 

is opén iff E = WAu for some W C A". The closed subsets (t'.e. the complements 
of open subsets) are the languages of the form Adh(W) for some W C A" [21j. We 
need here the next classes of the Borel hierarchy. A F„-set is a countable union of 
closed subsets and a G^-set is a countable intersection of open subsets. 

Corollary 3.0 When C is a code with a finite deciphering delay, the language Cw 

is a Gg-set. 

Proof . Since Adh(C4) = C " U C t . Adh(C) [13], when Cu n C. AdhiC) = 0 the 
set Cu is the difference of the closed set: Adh^C") and the F„-set: C".Adh(C), 
hence C" is a Gg-set. • 
Remark: The tempting assumption "C" = n C A " " is true for the codes C having 
a bounded deciphering delay [20] but no longer true for the codes C having a finite 
(but not bounded) deciphering aelay (cf. example 3 of [20]). 

We can summarize: 

Theorem 3.7 Let C be a rational language C A+. The following conditions are 
equivalent: 

- C is a code with a bounded deciphering delay 
- C is a code with a finite deciphering delay 
- C is an w-code satisfying Cu n C . M ( C ) - 0. 
- C is a weakly prefix code satisfying C" n C" .Adh(C) = 0. 

We have already seen that there exist w-codes without finite deciphering delay. 
The other condition: " Cs.Adh(C) n C" = 0" is neither sufficient. For example, 
the finite code {a, ab, bb} is not an w-code. Unfortunately proposition 3.7 is false 
whén C is not rational. For example, let C = {a6ncnd|n > 0} U {a} U 6*c. Since 
Adh(C) = V U abu, the w-code C satisfies Cu n C*.Adh(C) = 0, but the word a 
has no finite deciphering delay. 

In the aim to be complete, let us now observe the finite case. The finite case 
is almost similar to the rational case. However proposition 3.7, as the result of 
Levenshtejn [12] and Capocelli [5], show that, in the finite case, the notion of w-code 
and the notion of code with bounded deciphering delay coincide. This fact is also 
a result of Blanchard [2] which uses another notion of factorization ("découpage"). 

Nevertheless there are a lot of modifications when one considers two-element 
codes. Indeed, if {u, « } is a code, {u,u} is also an w-code [10]. Since the examples 
given in this paper are chosen with three elements when it is possible, the obtained 
or recalled results can be recapitulated in the following proposition where Aj^ (resp. 
Ajf , Ag , A<g) denotes the class of rational (resp. finite, two-element, three-element) 
languages belonging to a given class of languages A . 
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Proposition S.8 One has the following strict inclusions and equalities: 

B c D c I c W c I l c C 

moreover B ^ = Dj^ and = Wj^ for rational sets, B p = D p = Ip = W p 
for finite sets and B j = D j = 1« = W « for three element sets, and finally 
B j = D j = I2 = W j = IIj = C2 for two element sets. 
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