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A Universal Unification Algorithm Based on 
Unification-Driven Leftmost Outermost 

Narrowing 

Heinz Fafibender * * Heiko Vogler * 

Abstract 

We formalize a universal unification algorithm for the class of equational 
theories which is induced by the class of canonical, totally-defined, not strictly 
subunifiable term rewriting systems (for short: etn-tra). For a ctn-tra R and 
for two terms t and s, the algorithm computes a ground-complete set of 
(Ez, A)-unifiers of t and s, where Ez is the set of rewrite rules of R viewed 
as equations and A is the set of constructor symbols. The algorithm is based 
on the unification-driven leftmost outermost narrowing relation (for short: ulo 
narrowing relation) which is introduced in this paper. The ulo narrowing rela-
tion interleaves leftmost outermost narrowing steps with decomposition steps 
taken from the usual unification of terms. In its turn, every decomposition 
step involves a consistency check on constructor symbols combined with a 
particular form of the occur check. Since decomposition steps are performed 
as early as possible, some of the nonsuccessful derivations can be stopped 
earlier than in other universal unification algorithms for ctn-trs's. We give a 
proof that our algorithm really is a universal unification algorithm. 

1 Introduction 

The unification problem is to determine whether or not, for two given terms t and 
s, there exists a unifier <p of t and s, i.e., a substitution <p such that p(t) = ^>(s). 
It is well-known that the unification problem for first-order terms is decidable [27]. 

The problem of unification generalizes to the problem of ^-unification, if one 
considers the equality modulo a set E of equations, denoted by rather than 
the usual equality; =E is also called the equational theory induced by E. The 
E-unification problem is to determine whether or not, for two given terms t and s, 
there exists a substitution <p such that <p(t) =E <p(s)] then <p is called an ^-unifier of 
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t and s. Clearly, the decidability of the ¿-unification problem depends on the set E 
of equations. If, e.g., E is the empty set, then the ^-unification problem coincides 
with the unification problem and therefore it is decidable. As another example, 
if E consists of the algebraic laws of associativity and distributivity, then the E-
unification problem becomes undecidable; if the law of associativity is dropped, 
then it is not known whether the problem is decidable. Surveys about the problem 
of ¿^-unification can be found in [28,20,18]. 

For a class £ of equational theories, a universal unification algorithm for £ (for 
short: uu-algorithm for £) is a nondeterministic algorithm which takes as input an 
equational theory =E from the class £ and two terms t and s, and which computes a 
complete set of ¿-unifiers of i and a (for the definition of complete set of ¿-unifiers 
cf., e.g., [28]). In this paper, we will concentrate on uu-algorithms for classes of 
equational tneories which are induced by particular term rewriting systems (for 
short: trs's). A trs X. induces the equational theory = £ g , where E% is the set of 
rules of Z viewed as equations. 

Until now, a lot of research has been carried out to construct uu-algorithms for 
classes £ of equational theories which are induced by trs's. There exist approaches 
which are extensions of the unification algorithm in [23] (cf. [19,12,18]). In these 
approaches there are additional transformation rules which perform the application 
of equations. Other approaches to construct uu-algorithms are based on the con-
cept of narrowing [21]. More precisely, in every such investigation, a uu-algorithm 
is constructed for some particular class of trs's where the algorithm is based on 
a particular narrowing relation (plus some additional actions as, e.g., the usual 
unification of trees). Here we list some pairs (consisting of a class of trs's and a 
narrowing relation), for which uu-algorithms have been constructed. 

• canonical trs's and narrowing [10,16] 

• canonical trs's and basic narrowing [16,24] 

• left-linear, non-overlapping trs's and D-narrowing [29] 

• canonical, uniform trs's and leftmost outermost narrowing strategy [25] 

• canonical, totally-defined, not strictly subunifiable trs's and any narrowing 
strategy [3]. 

We note that a narrowing strategy is a narrowing relation in which the narrowing 
occurrence is fixed. We also recall that a trs is canonical, if it is confluent and 
noetherian. A trs is constructor-based, if its ranked alphabet ft is partitioned into 
sets F and A of function symbols and constructor symbols, respectively; moreover, 
the left-hand side of every rule is a linear term f(ti,..., t„) where / is a function 
symbol, ti,...,tn are terms over A U V where "V is the set of variables (cf. [30]). 
This particular structure of the left hand sides induces that every constructor term 
is irreducible. A trs is totally-defined, if it is constructor-based and every function 
symbol is completely defined over its domain or, equivalently: every normal form 
is a constructor term (cf., e.g., [3]). A trs which is not strictly subunifiable (cf. [3] 
and Subsection 3.1 of the present paper), satisfies a kind of local determinism, e.g., 
two rules cannot be applied at the same occurrence under the same substitution. 
In [25] totally-defined, not strictly subunifiable trs's are called uniform trs's. 

In all mentioned narrowing-based approaches, the narrowing derivation results 
into two terms t' and s'; then, it has to be checked whether t' and s' are unifiable. 
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In Jll] a uu-algorithm for totally-defined trs's is defined which interleaves unifi-
cation with the narrowing derivation. More precisely, he considers any innermost 
narrowing strategy and interleaves decomposition steps without any occur check. 
Since the decomposition steps are performed as early as possible, it is clear that 
this can lead to a more efficient computation of ¿?jj-unifiers. 

There exist some other narrowing relations as, e.g., lazy narrowing [26], outer 
narrowing [30] which were shown to be complete with respect to the unrestricted 
narrowing relation. It was not shown that & uu-algorithm which is based on one of 
the narrowing relations mentioned above, computes a complete set of ER-unifiers. 
However, for canonical trs's, this statement is clearly true (cf., e.g., [18] for a 
complete list of these narrowing relations). 

In this paper we construct a uu-algorithm for the class of equational theories 
which are induced by canonical, totally-defined, not strictly subunifiable trs's (for 
short: ctn-trs's). This algorithm shall serve as a source for efficient implementations 
of -unification on deterministic abstract machines. Thus, we formalize our uu-
algorithm in a way from which an operational approach can be derived easily. This 
is one of the reasons why we will introduce the uu-algorithm on the basis of a 
narrowing relation and not as a system of transition rules. The second reason for 
choosing the formalism of a narrowing relation is that we refine the uu-algorithm 
of [3] which, in its turn is based on a narrowing relation. The uu-algorithm in 
[3] improves the algorithm in [16] which is based on the unrestricted narrowing 
relation, by choosing an arbitrary narrowing strategy. For a particular narrowing 
strategy, our algorithm improves in its turn the uu-algorithm of [3] by following the 
idea of interleaving decomposition steps with the narrowing derivation as in [11]. 
However, we consider the leftmost outermost narrowing strategy and we implement 
a particular occur check. The relationships between the approaches of [16], [3], and 
[11], and our approach are illustrated in Figure 1. 

More precisely, our uu-algorithm is based on the so-called unification-driven 
leftmost outermost narrowing relation (for short: ulo narrowing relation) which is 
introduced in this paper. For a trs R, the ulo narrowing relation is denoted by 

In leftmost outermost narrowing is interleaved with the application of 
decomposition-rules (cf., e.g., [23]) which check the consistency of the root symbols 
of the terms to be unified. Moreover, the applicability of a decomposition-rule 
depends on a particular version of the occur check. Since decomposition-rules are 
applied as early as possible, the ulo narrowing relation is called 'unification-driven'. 

Actually, for a ctn-trs R with some set A of constructors and two terms t and 
s, our uu-algorithm computes a ground complete set of (Er, A)-unifiers of t and 
s. An (Er , A)-unifier of t and a is an Er-unifier in which all the images are terms 
over A U , where "V is the set of variables; in particular, this means that we do 
not consider unifiers of the form [zj/fit)] for some function symbol / . Roughly 
speaking, a set S of [ER , A)-uriifiers of t and a is ground complete, if, for every 
ground (Eji, A)-unifier <p of t and s (i.e., the images of <p do not contain variables), 
there is a f £ S which is more general than <p. This notion will be formalized in 
Section 3. 

Let us give an example at which we can illustrate the ulo narrowing relation. 
In Figure 2 a set Ri of rules of the ctn-trs Ri is shown where we assume to have 
a ranked alphabet = {s / i ' 2 ' , m i ' 1 ' } of function symbols and a ranked alphabet 
A j = { a ' 2 ' , a ' 0 ' } of constructor symbols. Intuitively, Ri defines two functions 
shovel and mirror with arity 2 and 1, respectively; mirror reflects terms over 
A at the vertical center line, and shovel accumulates in its second argument the 
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outermost narrowing innermost narrowing 

Figure 1: Relationship between some narrowing based approaches. 

mirror-image of the second subterm of its first argument. If we consider, e.g., the 
term i j = a (a (a ,S i ) , s 2 ) for some terms «i and a2 , then for an arbitrary term t2, 
ahovel(ti,t2) is the term a(m»rror(si),<7(mt'rror(s2),^2))-

sh{a,yi) 
sh(a(x i,i2),yi) 

rra'(a) 
mi{a{xx,x2)) 

yi 
sÄ(ii,tr(mt"(i2) ,yi)) 
a 
o[mi{x2),mi{x 1)) 

( 1 ) 

(2) 

(3) 
(4) 

Figure 2: Set of rules of the ctn-trs 

Now we consider the -unification problem, where the set of equations 
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is obtained from iii by simply considering the rules as equations. In particular, we 
want to compute an ¿^.-unifier for the terms ah(zi,a) and mi(a(z2, a)) in which 
z\ and z2 are free variables. Similar to Hullot in [16], we combine the two terms 
into one term equ{sh{zi, a), mi[<j(z2, a)) ) with a new binary symbol equ (which is 
called H in [16]). Next we enrich Ri by the set i i (A ) of decomposition-rules of A 
(cf. Figure 3). This enrichment yields the trs Zi. 

equ{ac,a) —» a (5) 
equ((T(xi,X2),(r(x3,xi)) -* <r(equ{xi,x3),equ(x2,xi)) (6) 

Figure 3: Set of decomposition-rules of A i . 

Then a derivation by ^j j - starting from equ(sh[zi, a) , mi(a(z2 , a)) ) may look 
as follows where we have attached to in every step the narrowing occurrence 
(in Dewey's notation), the applied rule, and the unifier as additional indices; 
denotes the empty substitution; A denotes the empty word. 

eqti(sh[zi, a),mi((r(z2, a) ) ) 
equ{sh[z3, o-(mt(z4), a) ) , mi[a(z2, a)) ) 
equ{a(mi(z4), a), mi[a{z2, a))) 
equ(cr(mi(z4), a),o-(mi(a), mi{z2))) 
o(equ(mi(zt), mt(a)), equ(a, mt(z2))) 
o(equ(a, mt(a)), equ(a, mi(z2))) 
cr(equ{a, a), equ{a, mt^))) 
<j(a,equ(a,mi(z2))) 
cr(a, equ(a, a)) 
cr(a, a) 

If we compose the unifiers which are involved in the narrowing steps, then we 
obtain the substitution <p = \z\/o[a, a), «2/«*]; in fact, <p is a ground [Ejtlt A i ) -
unifier of sh(zi,a) and mi(a(z2, a)) . Note that <p is not an -unifier, be-* 1 
cause the equational theory is generated by ¿¡Tr,. The narrowing step at * shows 
how the ulo narrowing relation deviates from the leftmost outermost narrowing 
relation. For the latter relation, 11 is the narrowing occurrence in the term 
equ(o(mi{zi),a),mi(a(z2,a))), and then the subterm »711(24) has to be narrowed. 
Note that, since is constructor-based, every normal form of the first argument 
Si = cr{mi(zi), a) of equ has the root label o. Thus, s'j is unifiable with a normal 
form s!j of the second argument = mi[cr[z2, (*)) of equ only if the constructors at 
the root of s'j and s'2 are identical. Because of reasons of efficiency, it is important 
to check this consistency as soon as possible. And since the root of Si is already 
a constructor symbol (i.e., «1 is evaluated in constructor head normal form), we 
narrow 32 at step * and try to get it also into head normal form. Actually, this 

* 
* * 

/V>£1,:L,(2),[*i/<T(zj,;t4)] 
u 

^£1,1,(1),[*,/«! u , , * 1.2,(4), u 
^ í i .A . íe ) , ? ! u 
^ i i . iMs) , ! * « / « ] u 
^^,12,(3) ,^, u 

*i,l,(5),»>» u 
^íj,22,(3),[*,/«] u 

«1,2, 5),?» 
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form is reached as the result of the application of rule (4). Then, at step **, the 
consistency of root symbols is checked by applying the decomposition-rule (6). 

This paper is organized in five sections where the second section contains prelim-
inaries. In Section 3 we recall the definitions of the leftmost outermost narrowing 
relation and o f ctn-trs's; we recall the uu-algorithm of |3]. In Section 4 we de-
fine the ulo narrowing relation and an algorithm of which we prove that it is a 
uu-algorithm, i.e., that it computes a ground complete set of [ER , A)-unifiers for 
the class of equational theories Eg which are characterized by ctn-trs's. Finally, 
Section 5 contains some concluding remarks and indicates further research topics. 

2 Preliminaries 
We recall and collect some notations, basic definitions, and terminology which will 
be used in the rest of the paper. We try to be in accordance with the notations in 
[14] and [2] as much its possible. 

2.1 General Notations 
We denote the set of nonnegative integers by IN. The empty set is denoted by 0. 
For j e IN, [;'] denotes the set i l , . . . . , / } ; thus [0] = 0. For a finite set A, P{A) is 
the set of subsets of A and card(A) denotes the cardinality of A. As usual for a set 
A, A* denotes the set U n eiNi 0 i 0 3 ••,a»» I e v e r y * G [n] : a; 6 A } that is called 
the set of words over A; A denotes the empty word. 

2.2 Ranked Alphabets, Variables, and Terms 
A pair (fi, ranfcn) is called ranked alphabet, if Q is an alphabet and ranfcn : ft — • 
IN is a total function. For / S ft, ranfcn ( / ) is called rank of f; maxrankil denotes 
the maximal image of ranfcn. The subset fl(m) of ft consists of all symbols of rank 
m (m > 0). Note that, for i ^ j, ft(') and ftO are disjoint. We can define a 
ranked alphabet (ft, ranfcn) either by enumerating the finitely many subsets n M 
that are not empty, or by giving a set of symbols that are indexed with their 
(unique) rank. For example, if ft = {a, b, c } and rankn : ft —• IN with 
rankn{a) = 0, rankn[b) = 2, and rankn{c) = 7, then we can describe (ft, ranfcn) 
either by ft<°) = {a } , ft(2> = {fc}, and ft<7> = { c } or by {a«0), 6<2),c(7>}. If the 
ranks of the symbols are clear from the context, then we drop the function ranka 
from the denotation of the ranked alphabet (ft, ranfcn) and simply write ft. 

In the rest of the paper we let V denote a fixed enumerable set. 
Its elements are called variables. In the following we use the notations 
X, ¿1, x2,..., y, yi, y2, • • •, Z, Zi, z2,.. • for variables. 

Let ft be a ranked alphabet and let S be an arbitrary set (in the sequel S will 
be instantiated by sets of variables). Then the set of terms over ft indexed by S, 
denoted by T(ft)(S), is defined inductively as follows: (i) 5 C T ,(ft)(5) and (ii) for 
every / 6 ftW with fc > 0 and f 1 ( . . . , tk e T(ft ) (5) : }{tu... ,tk) € T(ft ) (S) . The 
set T(ft)(0), denoted by T(ft), is called the set of ground terms over ft. 

For a term t g r(ft)CV), the set of occurrences of t, denoted by O(t), is a subset 
of IN* and it is defined inductively on the structure of t as follows: 
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(i) If t = x where x g V, then 0(t) = {A} , 

(ii) if t = f where / 6 then 0{t) = {A} , and 

(iii) if t = f(tlt...,tn) where / g n (n> and n > 0, and for every i g [nl : U £ 
r < n > ( n then 0 ( t ) = { A } u U i e W { * « | « 6 0 ( t i )> . 

The prefix order on 0(t) is denoted by < and the lexicographical order on 0(t) 
is denoted by < u x • The reflexive closures of < and <u x are denoted by < and 
<iex, respectively. Clearly, < C <i e x . Note that <i e x is a total order, whereas, in 
general, < is a partial order. The minimal element with respect to <i e x in a subset 
S of 0(t) is denoted by m m / « ( S ) . For a term t g T {n ) (V) and an occurrence u 
of t, t/u denotes the subterm of t at occurrence u, and t[u] denotes the label of t 
at occurrence u. We use V(i) to denote the set of variables occurring in f; that is, 
x g "V (t), if x g "V and there exists a u g 0(t) such that t/u — x. Finally, we define 
tju s] as the term t in which we have replaced the subterm at occurrence u by 
the term a. 

2.3 Algebras, Substitutions, and Congruences 

Let (Cl,rankn) be a ranked alphabet. An Cl-algebra is a pair (A, tni^), where A 
is a set and intA is a mapping such that intA(f) G A, if rankn(f) = 0, and 
intA(f) : An A, if rankn(f) — n. 

The H-algebra (T(n)(V) , tn£T ) , where for every f g fiW and for every ij g 
T (n ) (V) with t g [n] : intT(f){ti,...,tn) = f(ti,...,tn), is called the Q-term 
algebra. It is a free f]-algebra (cf. [15]). 

If (A,intA) and (B , intB) are two O-algebras, we say that h : A —• B is a 
homomorphism, if for every / g f l ' " ' with n > 0 and for every a,- g A with i g [n], 
we have 

h(intA (f){ai a n ) ) = intsf^fhfa!),..., h(an)). 

A mapping v : "V —» A is called an A-assignment. 
The property that every A-assignment can be extended in a unique way to a 

homomorphism from T(Q}(V) to A is called the universal property for the free 
il-algebras in [15]. We use v to denote both the A-assignment and its extension. 

A (V, CI)-substitution is a r(n)(V)-iissignment <p, where the set {x \ <p(x) ^ 
x, x g V } is finite. The set fx | <p(x) / i } is denoted by P(<p) and it is 
called the domain of <£>. If = {xi,...,xn}, then <p is represented by 
[x 1 /v5(x 1 ) , . . . , x„/^>(z„)]. If D(<p) = 0, then <p is denoted by <p$. We say that 
<p is ground, if for every x g D[<p) : *V(v3(x)) = 0. The set U«eP(p) ^ ( ^ i 2 ) ) 
noted by I(<p) and is called the set of variables introduced by <p. The set of 
substitutions and the set of ground ("V, Q)-substitutions are denoted by Su&(V, f2) 
and gSub{V, fl), respectively. The composition of two ("V, Q)-substitutions <p and 
t/i is the t(Q)(l))-assignment which is defined by \p(<p(x)) for every x g "V. It is 
denoted by <p o \p. 

An equivalence relation ~ on T{i i ) (V) is called an (l-congruence over T{fl)("V), 
if for every / g f i ( n ) with n > 0 and for every tlt a j , . . . , i „ , s„ g T(fl)("V) with 
ti ~ ax , . . . , tn ~ a„, the relation f(ti tn) ~ / ( s x , . . . , a„ ) holds. 
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2.4 ^-Unification 

An equation over 0 and V is a pair (£,«), where t,s € T{fl)(V). As usual we 
denote an equation (t, s) by t = a. Thus, we consider an equation as an ordered 
pair. In the rest of the paper, we let E denote a finite set of equations over ft 
and V. The E-equality, denoted by =g, is the finest (i.e., smallest) congruence 
relation over T(ft)(V) containing every pair {ip{t), ip(s)), where t = s € E and t/i 
is an arbitrary (V, OJ-substitution. If t =E a, then t and a are called E-equal (cf. 
[15]). Two terms t, a € T(ft ) (V) are called E-unifiable, if there exists a (V, fi)-
substitution p such that yj(t) =E p[a). The set { p \ <p(t) =E y>(s)} is called 
the set of E-unifiera of t and a, and it is denoted by Z/.E(i, a) (cf. [28]). Let V 
be a finite subset of V. We define the preorder <E on (V, ft)-substitutions 
by p <p' (V-), if there exists a (V, fi)-substitution ip such that for every 
xeV :rfi(p(x)) =E<p'(x) (cf. [28]). 

2.5 TRS, Reduction, Narrowing, and Narrowing Trees 

A term rewriting ayatem, denoted by Z, is a pair (ft, R), where fl is a ranked 
alphabet and R is a finite set of rules of the form I —* r such that /, r 6 T{ft)(V) 
and V(r) C V(l) (cf. [14]). For every term rewriting system Z = (ft, R), the related 
aet of equations, denoted by E%, is the set ( ! = r | l - t r £ R} (cf. [24]). 

The reduction relation aaaociated with Z, denoted by = > £ , is defined as follows: 
for every t,s e T(il)(V) : t a, if there exist u € 0 ( t ) with t/u 4. V,p e 
Sub{V,il),l — r 6 R with <p{l) = t/u, and a = t[u « - y?(r|] (cf. [14]). We use the 
standard notation ==>•* to denote the transitive-reflexive closure of 

A term rewriting system is canonical, if it is confluent and noetherian (cf. [15]). 
A term t is a normal form of a term a, if a t and t is irreducible, i.e., there 
does not exist any term t' such that t =>•£ t'. For a canonical term rewriting 
system Z, every term t has exactly one normal form (cf. [15]) which is denoted by 
n/^(t ) . A (V, ft)-substitution p is in normal form if for every x €E P(p), p{x) is 
irreducible. 

The aet of narrowing interfacea for Z and t € T(Ct)[V), denoted by 
narI(Z,t), is the set {{^,p,l r,p) \ u S Oft),t/u $ V I 
r G R, o is a renaming of variables in I such that Vfpf/) ) n V(t) = v,p e 
Sub[V,U) is the most general unifier of p{l) and t/u}. The set of narrowing oc-
currences for Z and t S T(0)( V), denoted by narO(Z, t), is the set {u | (u, p, I —* 
r,p) € narI(Z,t)}. The narrowing relation associated with Z, denoted by is 
defined as follows. For every t,s e T{ii)(V) and ip,ip' e Sub(V,n) : (t,^) 
(s,ip'), if the following three conditions hold: 

1. There is a narrowing interface (u, p,l —» r, p) € narI(Z, t). 

2. a = p{t[u « - p(r)]). 

3. \j>' = \}> o (^|v(t)) (cf. [24]), where composition is read from left to right. 

It is obvious that there are two types of nondeterminism involved in the narrow-
ing relation. Starting from a term t, first, there may be more than one narrowing 
occurrence in t, and second, for a fixed narrowing occurrence, there may be more 
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than one narrowing interface. As usual, for a given starting term t and for given 
orders on the set of occurrences of t and on the set R of rules, one can collect all 
the possible narrowing sequences which start from t, into one tree which is called 
narrowing tree for t. 

3 ^-Unification by LO Narrowing and Unifica-
tion 

As starting point of our considerations we recall the uu-algorithm which is induced 
by Theorem 3 in [3l. Here we impose the leftmost outermost narrowing strategy 
on the narrowing relation of the algorithm. 

Before we recall the approach of [3], let us first state that the approach of [25] is 
technically a bit too complicated for the present purpose although it would theoreti-
cally also be a possible starting point. In [25] a uu-algorithm for equational theories 
induced by canonical, uniform trs's, is presented, where only leftmost outermost 
narrowing steps are allowed; in fact, ctn-trs's are canonical, uniform trs's. 

Furthermore, we note that for ctn-trs, outer narrowing [30] is the same as outer-
most narrowing. But, in [30], there is no uu-algorithm presented, only a universal 
matching algorithm. 

3.1 The Leftmost Outermost Narrowing Relation and 
CTN-TRS's 

In the leftmost outermost narrowing relation, a pair (t, \j>) derives to a pair (t', ip') 
at the minimal element (with respect to </«») of the set of narrowing occurrences 
in t. 

Definit ion 3.1 Let Z = (fl.iZ) be a term rewriting system and let t g T(fl)("V). 

• The leftmost outermost narrowing occurrence for Z and t, denoted by lo-
narO(Z, t), is the narrowing occurrence miniex(narO{Z, t)). 

• The set of leftmost outermost narrowing interfaces for Z and t, denoted by 
lo-narI(Z,t), is the set 

{(u,<p,l —» r,p) | (u,<p,l —• r,p) 6 narI{Z,t) and u = lo-narO(Z,t)}. 

• The leftmost outermost narrowing relation associated with Z, denoted by 
is defined as follows: for every t,s 6 T(ft)("l>) and ip,^' S Sub(V,n): (t,ip) 
derives to (s,ip') by denoted by (t, if)) («jV*')) if th® following three 
conditions nold: 

1. there is a leftmost outermost narrowing interface (u,<p,l —* r,p) € lo-
narl(Z.t) 

2. a = v?(t[u - p(r)]) 
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3. f = rj> o (Hv(t)) © 

It is obvious, that { C ^ , 
In Example 1 of [3] it is shown that the uu-algorithm of |16] which is based on 

the unrestricted narrowing relation, is not complete if one imposes a strategy on 
the narrowing relation. In particular, this negative result holds for the leftmost 
outermost narrowing relation. 

However, Echahed also proves a positive result: the uu-algorithm of [16] stays 
complete for an arbitrary strategy imposed on the narrowing relation if one re-
stricts to canonical trs's that have the property of free strategies. We call these 
trs's canonical, totally defined, not strictly sv.b-unifia.ble term rewriting systems, for 
short: ctn-trs's. 

A ctn-trs R = (ft, R) is a canonical trs, where fl is divided into two disjoint 
ranked alphabets, denoted by F and A . F is called the set of function symbols 
and A is called the set of working symbols or constructors. The left hand sides 
of the rewrite rules in R are linear in V; function symbols only occur at the root 
of a left hand side. Thus, ctn-trs's are particular constructor-based trs's (cf. [30]). 
Furthermore, every function symbol in F is totally defined over its domain (cf. 
Definition 12 in [3]), i.e., if a term is in normal form, then it is in T{A)(V). Finally, 
the left hand sides of the rules in R must be pairwise not strictly sub-unifiable. 

Definit ion 3.2 (cf. [3] Definition 10 and Definition 11). Let t,t' S T(n)(V). 

• t and t' are sub-unifiable, if there exists an occurrence u in O(t) n O(i ' ) such 
that the following two conditions hold: 

1. i / u and p(t' /u) are unifiable with most general unifier au where p is a 
variable-renaming such that V(t /u) fl V(p(i ' /u)) = 

2. For all occurrences w with w < u,tjw and t'/tw have the same label at 
the root. 

• t and t' are strictly sub-unifiable, if there exists an occurrence u where t and 
t' are sub-unifiable and the corresponding most general unifier cr„ is neither 
a variable renaming nor the empty substitution. 0 

Example 3.3 Let R = (fl, R) be a canonical trs where fl = { / ( 2 ) , - y ( 1 ) , a<0 ' } and 
let R contain the following rules: 

/ ( a , a) - a (1) 
f(l[x),a) - <y(a) (2) 
f{*,l{y)) - 7 (7(a) ) (3) 

• For the trs R, the left hand sides of rule 1 and rule 3 are strictly sub-unifiable 
at occurrence 1; the same holds for rule 2 and rule 3. 

• The left hand sides of rule 1 and rule 2 are sub-unifiable at occurrence 2 but 
not strictly sub-unifiable, because the most general unifier o 2 is the empty 
substitution. 
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• Let Z' = (il, R') be a trs where R' contains rules 1 and 2 in R and additionally 
the following two rules: 

/ ( a ,T (y ) ) - Tf(T(«)) (3) 
/(-*(*), 7(y)) - ir(Tf(o)) (4) 

The left hand sides of the rules in R' are pairwise not strictly sub-unifiable. 
Furthermore, the left hand sides of the rules 2 and 3 are not sub-unifiable 
and the left hand sides of the rules 1 and 4 are not sub-unifiable. 0 

Now, we are able to define ctn-trs. 

Definition 3.4 Let Z = (H,i2) be a trs. Z is a canonical, totally defined, not 
strictly sub-unifiable term rewriting system, for short ctn-trs, if the following con-
ditions hold: 

1. Z is canonical. 

2. ft = F U A and F n A = 0. 

3. Every left hand side is linear in V. 

4. Every left hand side has the form / ( i i , . . . , t n ) where / G F a n d for every 
* G [n] : t{ G T(A){V). 

5. For every t G T(f i ) (V) : nfR(t) G T(A)(V). 

6. The left hand sides of the rewrite rules in R are pairwise not strictly sub-
unifiable. 0 

In the sequel we will denote a ctn-trs by the triple [F, A,R). In fact, the trs in 
Figure 2 is a ctn-trs. To give the reader an idea about the computational power 
of ctn-trs's, we mention that every primitive recursive tree function [17] can be 
described by a ctn-trs (which follows from [6]). But in fact, ctn-trs's are even more 
powerful. 

In general, it is not decidable whether a trs is canonical (cf., e.g., [15]). However, 
if Z is canonical, then the conditions (2)-(6) in Definition 3.4 are decidable. 

3.2 The UU-Algorithm of Echahed 

Here we recall the uu-algorithm of Echahed. < This algorithm computes particular 
En-unifiers which sire called ground (Eg, A)-unifiers. The range of such a unifier is 
a subset of T{A), i.e., function symbols and variables are not allowed. For a ctn-trs 
Z, this point of view is reasonable, because, in particular, Z is totally defined and 
every function call can be evaluated into an element of T(A). Thus, e.g., if we 
consider the ctn-trs Z i in Figure 2 and we want to compute Eg l-unifiers of the 
terms mi(x) and z, then we are not interested in the minimal .Eg,-unifier [z/mt'(x)]; 
rather we should be able to compute the unifier \z/a, x/a\. 

Definit ion 3.5 Let Z = (F, A , R) be a ctn-trs, let t,s G T(F U A)(V) , and let 
<p G UEz (t, s) be an ¿^-unifier of t and s. 
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• <p is an (ER, A)-unifier of t and a, if <p € 5u6(V, A) . 

• <p is a ground (Ex, A)-unifier of t and a, if f> G gSub(V, A) . 

The sets of (ER , A)-unifiers and of ground (ER , A)-unifiers of t and a are denoted 
by (*>a) and gU l B«,A)(t ,«) , respectively. © 

Similar to the situation of .EJ-unifiers of two terms t and a, we do not have to 
compute the whole set gU{E*,&)(*>')> b i t rather an approximation of it. It suffices 
to compute a ground complete set of (ER , A)-unifiers of t and A. 

Definit ion 3.6 (cf. [3] page 92) Let Z = (F,A,R) be a ctn-trs. Let t,a e 
T{F U A) (V) and let W be a finite set of variables containing V = V(i) U "V (s). A 
set S of (V, A)-substitutions is a ground complete set of (ER, A)-unifiers of t and 
a away from W, if the following three conditions hold: 

1. For every <p € S: D(<p) C V and I(<p) n W = 0. 

2. S C l / (s« ,A)(t ,« ) . 

3. For every <p € gU[E>s) there is a ^ € S such that ^ <P (V)• © 

For ctn-trs's. Theorem 3 of [3] shows a uu-algorithm which computes a ground com-
plete set of (ER , A)-unifiers based on an arbitrary narrowing strategy. We present 
an instance of this theorem where we choose the leftmost outermost strategy. We 
assume that R is extended to objects of the form (equ(t, a), <p) where equ is a 
new binary symbol, in the way as it is done in, e.g., [16] and [3]. 

T h e o r e m 3.7 (cf. [3] Theorem 3) Let Z = (F,A,R) be a ctn-trs. Let t,s e 
T(F U A)("V), and let V be the set V(t) U V(a). Let S be the set of all (V, A ) -
substitutions <p such that <p is in S iff there exists a derivation by 

-&Je (egu(t3 ,s2),^2) &R °Je (equ(tn,an),pn), 

where for every t € [n] : ipi is in normal form, tn and sn are in normal form and 
unifiable with most general unifier p, and <p = (<pn o y)\v. Then 5 is a ground 
complete set of (ER, A)-unifiers of t and 3 away from V. 0 

Clearly, in the leftmost outermost narrowing relation only one type of nondeter-
minism occurs, i.e, for a fixed narrowing occurrence, there may be more than one 
rule applicable. Thus, the leftmost outermost narrowing tree for a term equ(t, s) 
results from the narrowing tree for equ(t, s) by deleting the branches which do not 

.ustrate the leftmost outer-
«2, a) ) ) and we compare it 

The latter one consists of 

correspond to derivations by **R. In Figure 4 we il 
most narrowing tree for the term cqu(ah(zi,<x),mi(a 
with the narrowing tree for equ(ah(zi, a ) , mi(a[z2, a)) 
the shaded and the non-shaded areas, whereas the former one only contains the 
non-shaded areas. We note that, for the computation of the -unifier, it must 
be checked after the computations of the narrowing derivations, whether the two 
subtrees contained in the labels of the leaves are unifiable. 
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eqv(»h(*i, a), mi(<f(*3, a))) 
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In general, by fixing one narrowing occurrence the breadth of the narrowing 
trees is reduced. Moreover, by choosing the leftmost outermost narrowing strategy, 
also the depth of narrowing trees is possibly reduced: arguments of functions are 
only evaluated on demand. 

If we regard the shape of narrowing trees as a measure of the complexity of a 
uu-algorithm, then the uu-algorithm which is induced by Theorem 3.7, is as efficient 
as the uu-algorithm in [16] which is based on the unrestricted narrowing relation. 
But in some cases it is even more efficient. This is the reason for paying the price 
of a reduced expressiveness of ctn-trs's with respect to canonical trs's, because we 
want to introduce an efficient uu-algorithm. 

4 .^-Unification by Unification-Driven LO-
Narrowing 

In this section we increase the efficiency of the uu-algorithm implied by Theorem 
3.7 as follows. Consider a leaf n of some leftmost outermost narrowing tree. Now 
we view the unification which takes place at n, as a sequence of decomposition steps 
[23]. Next we split up this sequence and apply every decomposition step as early 
as possible. Moreover, whether a decomposition step is applicable or not depends 
on a particular occur check. By means of this technique, some of the derivations 
that do not yield unifiers, are blocked earlier than in the uu-algorithm of Echahed. 

Every decomposition step is formalized as the application of one of the additional 
rules called decomposition-rules. The union of the decomposition-rules and R itself 
is called the extension of R. Then the ulo narrowing relation is defined on the basis 
of the extension of R. 

We start this section with the definition of the ulo narrowing relation. As an 
intermediate result, we rephrase Theorem 3.7 by using the ulo narrowing relation 
(restricted to decomposition-rules) to unify two terms. Finally, based on the ulo 
narrowing relation, we present a uu-algorithm which computes a ground complete 
set of (Eg, A)-unifiers for every equational theory where R is a ctn-trs. 

4.1 The Unification-Driven Leftmost Outermost Narrow-
ing Relation 

Definit ion 4.1 Let R = ( F , A , R ) be a ctn-trs. 

• Let a £ A' f c) with k > 0. The decomposition-rule for a has the form 

equ(cr(xi,..., xk), cr[xk+i,..., x2fc)) <r{equ(xi, i f c + i ) , . . . , equ(xk) x2k)). 

• The decomposition-part of R, denoted by £ ( A ) , is the triple [F, A,R[A)) 
where F = F U {egu} and equ is a new binary symbol, and iZ(A) is the set 
of all decomposition-rules for elements in A . 

A A A A 
• The extension of R, denoted by R, is the triple ( F , A , R ) where R is the set 

flUfl(A). © 
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sh(a, t/i) 
3h{a(xi,x2),yi) 

mi(a) 
mi(a(xi,x2)) 

equ(a,a) 
equ(a(xi,x2), o(x3,x4)) 

VI (1) 
«Mzi ,a (m» (x 2 ) , y i ) ) (2) 

(3) 
^(mi'fxa), mt'fx!)) (4) 

(5) 
a(equ(xi,x3),equ{x2,x4)) (6) 

Figure 5: Set of rules of an extension. 

A A A 
In Figure 5 the rules of the extension Z\ = ( f i , A\,RI) of Z\ (cf. Figures 2 and 
3) are shown where A = {sh™, mi<*>, egu<2)} and A i = {a™, a<0)}. 

Roughly speaking, the ulo narrowing relation is almost the same as the leftmost ¿A. 
outermost narrowing relation associated with Z. But there are the following three 
differences between the two relations. Let (t, be the current derivation form. 

1. Consider the term t = egu(a l<T(m»(a),mt(z2))) at occurrence 11 in the left-
most outermost narrowing tree of Figure 4. The leftmost outermost narrowing 
occurrence of t is 21. However, it is clear that none of the branches start-
ing from t will yield an .Eg.-unifier, because the two direct subterms a and 
<7(mi(a), mi(z2)) of t have different root symbols which cannot be changed in 
further derivation steps (this is due to the fact that Z i is constructor-based); 
hence, the terms a and a(rm(ai),mt(z2)) cannot be .Egt-unified. Thus, we 
will define the ulo narrowing relation in such a way that it blocks at this 
point. We realize this property by requiring that rules may only be applied 
at the leftmost occurrence of equ in the current derivation form t. This occur-
rence of equ is called important occurrence of t, denoted by impO(t), because 
the nonunifiability of the two subterms of t is recognized exactly here. In 
our concrete situation, impO(t) = A and none of the decomposition rules is 
applicable at impO(t); hence, the derivation blocks. 

2. If t/impO(t) = equ(zi,t') or t/impO(t) = equ(t',Zi) where t' is a term the 
root of which is labelled by a construtor symbol, e.g. a, then we can ap-
ply the decomposition-rule for a. Clearly, this leads to an instantiation of 
Zi. Since, in this situation, the algorithm for usual unification of terms [23] 
would apply the rule for 'elimination of variables' and since this elimination 
rule requires an occur check, we also have to restrict the applicability of the 
decomposition-rules by an occur check. However, we may only check whether 
Zi occurs in the (A U V)-skeleton of t' (note that the (A U "V)-skeleton is 
called shell in 221) or not. For instance, the (A U V)-skeleton of the tree 
o(a(o(zi, a), z2) , a\sh(a, Zi), a) ) is the pattern a(o(a(zi, a) , z2 ) , a)) . In 
general, our algorithm would be incomplete if we would check the whole term 
f', e.g., if we have the following situation: i ' = o(f(ot,zi), a) where / is a 
new function symbol of rank 2, and there exists a rule /(<2,t/i) —• a, then 
[z, /a(a, a)] is an ^ - u n i f i e r of Zi and t' which would not be computed if we 
would apply the occur check to the whole term t', because Zj occurs in t'. 

3. If t/impO(t) = equ(zi, z}•) for two variables Zj and zy, then, using the leftmost 
outermost narrowing relation associated with Z in a naive way, (f, <p) derives 
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to (ip, (t[impO(t) *— a l ) , p o p , ) for every a € T(A) where <p, = [z,/3, zy/s]. 
That means, <p, would be computed as the most general unifier of z. and zy 
which is certainly wrong. The most general unifier o f z,- and zy is [z,/zj;, zy fzk ] 
where k— 1 is the maximal index of a free variable in use (cf. (23]). Thus, we 
define the ulo narrowing relation in such a way that a derivation form (t, <p) 
with t/impO[t) = cqu(zi,zj) derives as follows: t/impO(t) is replaced by zk, 
every occurrence of z,- and zy in t is replaced by zk, and <p is composed with 
the substitution [z,'/zfc,zy/z*]. 

Before we introduce the ulo narrowing relation, we define some auxiliary notions. 

Definit ion 4.2 Let Z = (F, A , R) be a ctn-trs and let t £ T(F U A) (V) . 

• The important occurrence in t, denoted by impO(t), is the occurrence 
mi'n|ej({u £ 0(t) | t[u] = equ}). 

• t is in binding mode, if t[»mpO(t)l], t[t'mpO(t)2] £ "V. 

• The (A U V)-skeleton of t is the set 

{u £ 0(t) | there does not exist any v € 0( i ) ,w < u and f[u] £ F). 

• The occur check for t succeeds, if the following conditions hold: 

1. t is not in binding mode. 
2. there is an t € [2] such that t[tmpO(t)t] € V and t\impO(t)(3 -

t)J ^ V and there exists an occurrence u in the (A U "V)-skeleton of 
t/(impO{t){3 - »')) such that t/(impO(t)(3 - i))[u] = i[tmpO(i)t']. © 

Def init ion 4.3 Let Z = (F, A,R) be a ctn-trs. The unification-driven leftmost 
outermost narrowing relation associated with Z, denoted by is defined as 

^ * 

follows: for every t,a £ T{F U A ) ( V ) and V, € 5u6 (V ,A) : (t,rl>) derives to 
(s,\p') by denoted by [t,ip) (s, V"')» if t/impO(t) = equ(ti,t2) where 
t\, t2 £ T(F U A) (V) and one of the following four conditions holds: 

1. iti[A],t2[Al £ A and MA] = f3[A]) or (((¿i[A] £ A and t2[A] £ V) or (tj.[A] £ 
V and t2[A] £ A)) ana the occur check fails for t) and the following three 
conditions hold: 

(a) (egu(t1,t2),^0) ^ « ( a ) (t',<p'). 

(b) s = <p'(t[impO{t) — i ']). 
(c) ip' = tp o <pl. 

2. • ¿i,¿2 G V, tj ^ t2, and the following three conditions hold where k = 
min{i | Zi £ V\(V(t) U D[1>) U I(t/>))}: 
(a) <p' = [ii/z f c ,t2 /zfc]. 
(b) s = <p'{t\impO{t)*-zk}). 
(c) V = <p>. 
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• ti, ia 6 "V, ti = i2 , and the following two conditions hold: 
(a) a = t[impO(t) «- tx]. 
(b) = 

3. ii [A] g F and the following three conditions hold: 

(a) [ t u v t ) P . * ) -
(b) a = <p'(t\impO(t)l t']). 
(c) r/>' = $ o <p'. 

4. ii[A] ^ F and t2|A] € F and the following three conditions hold: 

(a) {t2,<Pt) (*',*>')• 

(b) s = <p'{t[impO{t)2 *- t'}). 
(c) iP' = ^o<p'. 0 

If a rule / —• r e .R is applied, i.e., in cases 1, 3, and 4, we write In case 2 
we write 'v* . to indicate that the current term is in binding mode. K ,bm 

In the following example we show three derivations by the ulo narrowing relation 
which illustrate the involved occur check. 

Example 4.4 Consider the ctn-trs Zi and its extension Z\ (cf. Figure 5). 
(a) Consider the terms SH(ZI, <7(01,22)) and cr(mi(zi), <J(Z2, a)) . A possible deriva-
tion by runs as follows: 

(equ(sh(zi,a(a, z2)) , <r(m»(zi), <r(z2, a) ) ) , <p$) 
«i,x,(i) (e^u(ff[a,z2),(r[mi{a),a{z2,a))),\z1/a]) 
£ i,A,(6) WC9U (Q> m t ' ( a ) ) . «9«(*2, °(*2, a))) , [ * i / a D 

^,12,(3) W e i u ( « . a)> a))) , [*i/®D 
«1,1,(5) (g(a, egu(z2 ,g(z2 , a))) , [*i A»]) 

u 
u 
u 

Here the derivation stops, because the occur check succeeds. 

S Consider the terms sA(zi,a(oi,z2)) and a(mt(zi), a(z3 , a)) . The first four 
ivation steps are analogous to those one in (a). 

4 u 
«1 

U 

«1,2,(6) u 
Jt i,21,6m 

(egu^/ i f o , <t(q!, z2)), ^ m » ' ^ , a(z3 , a) ) ) , ^>0) 

(e[a,equ(z2,<r(z3la))), [zi /a]) 
(a(a,a(eqfu(z4, z3) , egu(z5, a) ) ) , \z1/a,z2/a(zi, z5)]) 
(<7(a,ff(z6, equ(zs, a) ) ) , [ z i /a , z2/a(z6, z 5 ) , z 3 / z 6 ] ) 

*»22,(5) ( f f ( a . f f ( z 6 , a)) , a ) , z 3 / z 6 ] ) 
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Here the derivation yields the iJjj,-unifier [zi/a, z2/a(ze, a),z^/zQ\. 

(c) Now enrich Ri by the rules sh(ft, y) —» ft (with number (7)) and mi (ft) —» ft 
(with number (8)) where ft € A^0 ' . Denote this ctn-trs by R2 and its extension by 
R2 where the decomposition-rule for ft has the number (9). Consider the terms z\ 
and <i(a,sh(z2,zi)). 

{equ{z1,<T(a,ah{z2,zi))),<p^) 

,,A,(6) Me?«(*3, a), equ(z4, sh{z2,a{z3, «4)))), [zi/o(zz, *4)]) 
eQu(z*> s h( z*> ff(a« *«))))> l*i/*(<*• z*)\) 

(*) ^ j e , 22 (7) e 9 u ( * < > &))> [^i/crfa, z 4 ) , z2/ft\) 

^ 2 , ( 9 ) [*!/*(«,0),Z2/0]) 

Hence, this derivation yields the 2£g,-unifier \zi/cr(a, ft), z2/ft\. Note that at (*) 
the occur check is only applied to the (A U "V)-skeleton of sh(z2, cr(a, Z4)). 0 

4.2 Unification by ^jc(a) 

As an intermediate result between Theorem 3.7 and the intended uu-algorithm 
in Theorem 4.7 which is based on the ulo narrowing relation, we show in this 
subsection that the usual unification of two terms t,s € T(A)(y) can be realized 
by a derivation by the ulo narrowing relation associated with x ( A ) . 

L e m m a 4.5 Let R = ( F , A , E ) be a ctn-trs and let t,s & T (A) (V) . The terms 
t and s are unifiable with most general unifier ip iff there exists a derivation by 

of the following form [equ(t,s),<p$) ( i ' »v) and t' S T(A)(V). 

Proof: For the usual term unification, we consider the algorithm in [12] which trans-
forms sets of unordered pairs. Let us briefly recall this algorithm. The unification 
of t and s starts with the set P = { ( t , « ) } . Then, a finite number of transformations 
is applied step by step to this set. Every transformation is of one of the following 
three types: 

1. If (z{,zi) € P, then P is transformed into the set P\{(z,•,£;)}. 

2. If Wt\,... cr (s i , . . . , Sk)) G P, then P is transformed into the set 
P \ { { a ( t 1 , . . . , tk), ct(si, . . . , s f c))} U { ( t i , s i ) , . . . , (ifc, s f c)} . 

3. If (z,-,s) G P such that Zi does not occur in s, then P is transformed into 
3)})u{(z,-, s ) } , where <p = [z;/s] and the ^>-image of a set is defined 

as the set of the images of its elements. 
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The algorithm stops, if P is in solved form, i.e., P = {(zi,U) | t e [n]} where 
for every t , j 6 [nj : Z{ ji Zj for » / j and z,- does not occur in any tj. Then, 
\zi jt\,..., zn/tn\ is the most general unifier of t and s. 

Let us note that the algorithm computes the same unifier (modulo variable 
renaming) if a strategy is imposed on the order in which the transformation steps 
are applied. Thus, we can choose the order which corresponds to leftmost outermost 
narrowing by 

Each transformation of the unification algorithm corresponds to the following 
derivations by ^ j j ( a ) where (t,<p) € T ( A ) ( V ) X Sub(V, A) . 

1. A transformation of type 1 corresponds to the derivation step (t, <p) 
(t\impO(t) *— Zi],<p), because t/xmpO(t) = equ(zi, Zi). Then, the substitu-
tion <p is not changed. 

2. A transformation of type 2 corresponds to the derivation step (t,<p) ~>je(A) 
(t',<p), where t' = t\impO(t) <— a(equ(ti, s i ) , . . . , equ(tk, s/t))] and <p is not 
changed, because t/%mpO(t) = egufcrfi! , . . . , f f c ) ,a (s i , . . . , s fc)). Thus, an ap-
plication of an decomposition-rule covers the transformation of type 2. 

3. The correspondence of a transformation of type 3 is split up into two cases. 
Case 1: If a £ V, then the transformation corresponds to the derivation 
(t, <p) (¿'j ° \zi/s}), where t' is the term that results from t by re-
placing every occurrence of Zi by a. The length of this derivation is aize(a), 
because decomposition-rules are applied node by node in a. Note that the 
applicability of decomposition-rules is subjected to an occur check (cf. Defi-
nition 4.3 1.). 
Case 2: If a = Zj with j ^ t, then t is in binding form and the transformation 
corresponds the derivation step (t, <p) ~»£(a),6m (i', <p ° 2,/zfcj) where 
Zk is a new variable. 

Conversely, in the definition of ~»k(a)> there occurs exactly one of the cases 1, 2, 
3.1, and 3.2. In every of these cases, the derivation step by corresponds to 
the transformation of the unification algorithm which is mentioned above. 0 

The unification of the terms t = cr(zi, z2) and a ~ <t{(t(z2, a ) , a ) via a derivation 
by is shown in Figure 6 (for Z\ and A i cf. Figure 2). The most general 
unifier is 6 = [z\/(r(oc,a.),Z2/a]. 

Now we rephrase Theorem 3.7 by replacing the unification by a derivation in-
duced by 

T h e o r e m 4.6 Let Z = (F, A , R) be a ctn-trs. Let t, a € T(F U A ) (V) , and let V 
be the set "V(i) U "V(s). Let S be the set of all ("V, A)-substitutions <p such that <p 
is in S iff there exists a derivation by : 

(equ(t,a),<po) {equ[tlt <px) 

(equ(t2,a2), <p3) (equ(tn, an), <pn), 
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(equ(a(z1)g7),cT(<T(z3, a), a)), y?0) 
Ä,(A,),(6) (<7(egu(*lt <r(z2, <*))> equ(z3, a ) ) , 

^äi (a , ) . (6) {<r{o{e<lu{z3,Z2),tqu(z i ,a)),equ(z2,a)),\z i /a(z3 ,z i))) 
A,),6m («rM*6, equ{z4, ct)),equ(zB, a) } , [zi/a(zb, z4), z 2 / z 5 ] ) 

äi(Ai),(&) (cr{°{z(,,a),equ(zt„ a ) ) , [ z i / f f ( z s ,a ) , z 2 /z 6 ] ) 
ÄifAjJ.is) (^M«*. <*), <*), [ z i M a , <*)> *2/ a I ) 

u 

u r\> 
U 

< \ > 

U 
U 

Figure 6: A unification by a derivation by ^.RilAi)-

where for every »' 6 [n] : <pi is in normal form, tn and sn are in normal form, and 
there exists a derivation by 

(equ[tn,sn),<pn) (*',¥>'), 

such that t' e T{A)("V) and <p = p'jy. Then 5 is a ground complete set of ( E g , A) -
unifiers of t and s away from V. 

Proof: The correctness of Theorem 4.6 immediately follows from Theorem 3.7 and 
from Lemma 4.5. 0 

4.3 .^-Unification by 

We finish this section by showing that we can compute a ground complete set of 
(Eg, A)-unifiers of two terms t and s by derivations induced by the ulo narrowing 
relation. 

T h e o r e m 4.7 Let R = (F, A , R) be a ctn-trs. Let t,a € T(F U A ) (V) , and let V 
be the set V(f) U V(s). Let S be the set of all (V, A)-substitutions <p such that <p 
is in S iff there exists a derivation by 

{equ[t,s),<pt) {h,<pi) (t2,<P2) (tn,<pn), 

where for every » S in] : <pi is in normal form, tn € T (A) (V ) , and <p — <pn\v • Then 
5 is a ground complete set of (Eg, A)-unifiers of t and s away from V. 

Proof: We show that there exists a derivation 

io * u * 

[equ[t,s),<p0) (equ(t',i'),<p') ^je(A) (**.£>*), (1) 

where t',s',t* e T(A)(V) and <p',<p* € Sub[V, A ) iff there exists a derivation 

(eqti(t,s),<pt)&£{f,<p*) (2) 

Then from Theorem 4.6 the correctness of the present theorem follows. 
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Derivation 1 = > Derivation 2 

First, we show that for every derivation 1, there exists a derivation 2. For this 
purpose, we introduce the function eqpoa : r ( f U A ) ( V ) X T(F U A ) ( V ) -+ IN 
that yields, for two terms ti and f 2 , the maximal number of steps which can be 
performed by on the term equ(ti,t2). In order to describe this function, 
we first have to find out the first occurrence notequ(ti,t2) in t\ or t2 at which no 
decomposition-rule is applicable; notequ(ti,t2) is defined by 

minlex[{u £ 0(h) U 0 ( t 2 ) | ti[u] e F or t2[u] e F or 
( t i M € A and t2[u] 6 A and ii[u] / ^[u]) or 
the occur check for e?u(ti[u], t2[uj) succeeds}) 

Then eqpos(ti, t2) is defined by summing up the number of possible applications of 
decomposition-rules at occurrences which are common to t\ and t2. 

£ equatepa{titt2,u) 
{ueO(t!)nO(t,) | u<ie»not«iu(t1,«j)} 

equstepa(ti,t2, u) is the number of possible applications of decomposition-rules at 
occurrence u. Let t' = t$-i/u. 

1 if 11 [u], t2 [u] € A and 11 [u] = t2 [u] 
1 if i i H . i a H e V 
n if, for some t € [2] : t,[u] S V,t ' € r (A ) (V)\V 

and n = card(0(t')) 
n if, for some t 6 [2] : t,[u] £ V, 

t' € T ( F U A ) ( V ) \ T ( A ) ( V ) and n = 
card({u> € O(t') I w < l e x min,ex{{v | f [w] € F})}) 

To give an example, consider the following two terms i j = a(cr(cr(a, a), zi), 
cr i / (a) ,a) ) and t2 = a(tr(z2,23), cr(a(a, a) , a)) (in Figure 7, the occurrences at 
which a decomposition-rule is applicable, are enclosed). 

Obviously, notequ[ti,t2) = 21. Hence, eqpos(ti,t2) = equstepa(ti,t2,h) + 
equstepa(ti,t2, l) + equsteps[ti, t2,11) + equatepa{ti,t2,12) + equatepa(ti,t2,2). 

And equateps(ti,t2, A) = equatepa(ti,t2,i) = equ3tepa(ti, t2,12) = 
equsteps(ti, t2, 2) — 1, and equstepa(ti, t2,11) = 3. Thus, eqpoa(ti,t2) = 7. This 
means that, starting from equ(ti, t2), it is possible to perform exactly 7 applications 
of some decomposition-rule. The result after application of 7 decomposition-rules 
is the term 

cr(a(a(a, a), 24), a{equ(f(a),a{a, a) ) , equ[a, a)) ) 
which is shown in Figure 8, where 24 results from the handling of the binding mode. 

Furthermore, we prove the following Claim by induction on k. 

Claim 1 For every k > 0, f, <= T(F U A) (V) , f € T(F U A) (V) , and for every 
<p, rj) €E Sub("V, A) : If there exists a derivation 

equsteps(ti, t2, u) = < 
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equ 

Figure 7: The term equ(ti,t2). 

then there exists a derivation 

Induction on k: 

k = 0 : it = i and (, = a. We have ( e g u f t . s ) , ^ ) (f, V)-

From Ä(A) C Ä follows (egu(t, s), <p$) 
u eqpo»((t,{.) 

M ) -

A: —» A: + 1 : There exist j/.rf g T ( F u A ) ( V ) , f ' € T(F U A ) ( V ) , vAV-' 6 
and there exists the following derivation: 

( e g u ( i , s ) , ^ ) (egu(ft, $,),<p) (equ(f{, <p') (f'.V-')-

Now we split the derivation by into two derivations: There 'exist f S 
T{F U A)CV), <p S Sub(V, A) , and there exists the following derivation: 

(equ(t, a), <p$) {equfa, £,), <p) (equ(tf, <p') (f, <p) 

U cqpot(fl,(l)-cqpot(ft,f,) , , 
'Ä(A) 

There exist f € T(F\JA)(V), <p' £ 5u6("V,A), and there exists the following 
derivation by changing the order of applications of rules in the previous derivation: 

u eqpot{{l,('.)-eqpot'((t,f.) , , 

u eqpot((t,(t) 

*Ä( A ) (I'.N 
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a a a 

Figure 8: Resulting term t* after application of seven decomposition-rules. 

Changing the order of the derivation is correct, because in the derivation step 
(equ(çt> ?»), <p) (eQu(ft> $»)> <P')> »function f is applied at the leftmost outermost 
narrowing occurrence. EVom the definition of eqpos it follows that / is also the label 
of the leftmost outermost narrowing occurrence in Ç*. Furthermore, in the case of 
a function application, the relations and yield the same result. 

Example: Let ft — h a n d Ç, = t2 in Figure 7 and let f(a) —» a be a rule in R. The 
leftmost outermost narrowing occurrence in equ{ti,t2) in Figure 7 is occurrence 
121 which is labelled by the function symbol / . After eqpos{ti,t2) = 7 applications 
of decomposition-rules we get the term t* in Figure 8 which is denoted by f ' in the 
proof. The leftmost outermost narrowing occurrence in t* is the occurrence 211 
which is also labelled by / . Furthermore, the next step in the derivation by ^ R 
starting with equ(ti,t2) in Figure 7 is analogous to the next step in the derivation 
by jg- starting with t* in Figure 8. • 

The existence of the following derivation follows from the induction hypothesis: 

/ /. \ \ U k+eqPOB(ft,i.) _n « /_ v „ eqpo.UifD-eqpo.Ut^,) 
(equ(t, s), <p$) (ç ,<p) (Ç,<p) ̂ (a) (i,i>)-

The existence of the following derivation follows from R[A) Ç R: 

I U \ \ ti k+1+e1P°»U't'<'.) ,J 

This finishes the proof of Claim 1. 

Especially, if A; is equal to the length of the derivation by in derivation 1, 
it follows that for every derivation 1, there exists a derivation 2. 
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Now we" show that for every derivation 2, there exists a derivation 1. For this 
purpose, we introduce the function eqapp : T{F U A)("V) —• IN that yields, for a 
term t, the sum of applications of decomposition-rules and steps started by a term 
in binding mode, in the derivation by up to t. 

eqapp(t) — card({u 6 O(t) | u <ux t'mpO(i)}) 

Furthermore, we prove the following claim by induction on k. 

Claim 2 For every k> 0 , f e T{F U A)(V) , and if> € Sub(V,A) : If there exists 
a derivation 

(egti(t,s),p0) 

then there exist ft, f, G T(F U A) (V) , <p G Sub[V, A) , and there exists a derivation 

Induction on k: 
k = 0 : f = equ(t, s), V" = <P$- Thus, egapp(f) = 0. We have 

( o o - o o 
(equ(t,s),<p0) (egu(ft,f,),y>0) (i, rp). 

k -> k+ 1 : There exist f ' G T{F U A)(V) , G 5ufc(T, A) , and there exists the 
following derivation: 

(egu(i,s),y>0) (f'.V'')-

From the induction hypothesis it follows that there exists the following derivation: 

I I, ^ , 0*-<WP(i) ue««pp(?), „ , , 
N" ( t , s ) ,v?0 ) ^ j e (egulft.f , ) ,^) VO (? , )• 

Now we have to distinguish the following two cases: 

Case 1 : egapp(f') = egapp(f). Then, the /e + 1th derivation step is a function 
application. The same function application can be applied to the term egu(ft,£,) 
in a derivation step by 
Example: Let ft = ' l and = t? in Figure 7 and let f be the term t* in Figure 
8; eqapp(t*) — 7. The next derivation step in the derivation by starting with 
t* is the application of the rule / ( a ) —• a which simply replaces the subterm f(a) 
in t* by a. The resulting term is denoted by in the proof. The next step in the 

derivation by starting with equ(ti,t2) is the application of the same rule. • 

Furthermore, the eqapp(f) derivation steps by work only on occurrences 
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that are less with respect to <i e x than the occurrence where the function is ap-
plied. Thus, there exist tf.tf e T(F U A) (V) , <p' S Sub(V,A), and there exists a 
derivation: 

/ IJ. \ ^ ' 0 f c - e « o p p ( i ) I o / » M M u « 4 « p p ( c ' ) , , , n 

(equ(t,s),<p 0) [equ[St,(.),<p) > £>)> P ) (¡T.V1)-

Then we obtain the following derivation: 

/ \ . , o f c + 1 - e « a P P ( i ' ) u cqappW) . , „ . 

Case 2 : eqapp($') = eqapp($) + 1. One of the cases 1 and 2 in Definition 4.3 is 
applied in the added step. In these cases exactly works as (e.g., suppose 
that the subterm f [ a ) is replaced by a ( a , a ) in Figure 8, then the decomposition-
rule for a is applied in the added step.). We get the following derivation: 

/ U \ \ lok-<0"M<) . u eqapp{$) . u 

(equ[t, s), <p0) (egu(ft, f ,) , <p) ^je(A) (?, V) A) (? , V» )• 

From eqapp($') = eqapp($) + 1 follows: 

(equ[t, s), w) (egu(ft, fc), <p) ~»;j(a) (? , V1 )• 

Here we obtain the following derivation: 
/ U \ \ ,0k + l-eqappU') ueqappW) 
(equ(t, s),<p0) (equ(it,S,),<p) (S >• 

Especially, if A: is equal to the length of the derivation by in derivation 2, 
it follows that for every derivation 2, there exists a derivation 1. This finishes the 
proof of Claim 2. © 

The unification-driven leftmost outermost narrowing tree of for the ERl-
unification of the terms sh(zi,a) and mi{o(z2, a)) is shown in Figure 9. At leaves 
which are labeled by 'clash!', the derivations are stopped by the ulo narrowing rela-
tion. Thus, in an intuitive sense, the uu-algorithm induced in Theorem 4.7 is more 
efficient than the uu-algorithm of Theorem 3.7. (Compare the ulo narrowing tree 
of Figure 9 with the leftmost outermost narrowing tree in Figure 4.) 
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egu(«/>(*i, a), m»'(<y(*3, a))) 

equ{a, mi(ff(»j, a))) 

equ(a, ff(m»(a), rm'fs?})) 

e<ju(í/v(*3, if(mi(i4),a)), mi(ff(ij, a))) 

ega({f(m»'(*4), a),<y(m»(a), mi(ij))) 

<7(c<ju(mii(«4), m»(a)), cgu(a, mifz?))) 

tr(«flu(a, rm(a)),e?u(a, rm(j3))) *(e<iu(a(rm{*0),rm(*s)), mi{a)), equ(a, mi(*3))) 

<r(equ(a, a), equ(a, m»(*3))) <y(eflu(<f(m»(*í), m»(*5)), a), «flu(a, ^ ( í j ) ) ) 

clash! 

<r(a, ««ju(a, a)) 

<y(a, a) clash! 

Figure 9: Ulo narrowing tree for equ(sk(z1, a), mi(a(z2, a))). 
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In this paper we have formalized a universal unification algorithm for equational 
theories which are characterized by ctn-trs's. This algorithm is at least as efficient 
as the algorithm which is implied by Theorem 3 in [3], but sometimes it is more 
efficient. The universal unification algorithm is based on the unification-driven left-
most outermost narrowing relation which is a combination of leftmost outermost 
narrowing and unification. It is inspired by the idea of the uu-algorithm in [11] 
which combines every innermost narrowing strategy with interleaving decomposi-
tion steps. The advantage of our uu-algorithm in comparison to the uu-algorithm 
in [ l l ] is that arguments of function calls are only evaluated on demand which leads 
to a more efficient algorithm. 

The conditions that the considered trs's are canonical and not strictly subunifi-
able, cannot be weakened, because the uu-algorithm would loose its completeness. 
Furthermore, the condition that the trs's are constructor-based, cannot be weak-
ened. Otherwise, the decomposition-rules would make no sense. We are not sure, 
whether the condition that the trs's are totally-defined, can be weakened. 

As mentioned in the introduction, there exist a lot of other uu-algorithms which 
are based on narrowing strategies. But none of them combines the narrowing 
strategy with interleaving decomposition steps. Thus, nonsuccessful derivations are 
computed up to the end, whereas they are immediately stopped in our algorithm. 

Two implementations of leftmost outermost reduction for special ctn-trs's which 
are called macro tree transducers [1,4,5], are formalized in [8,13]. A nondeterminis-
tic implementation of the universal unification algorithm of the present paper which 
is an extension of the implementation in [8] by adding features for unification, is 
presented in [7]. In our current research [9] we construct a deterministic implemen-
tation of the universal unification algorithm by adding features for unification and 
backtracking to the implementation of leftmost outermost reduction shown in [13]. 
In the deterministic implementation a depth-first left-to-right traversal over the 
ulo narrowing tree is formalized. Clearly, this implementation does not produce a 
ground complete set of (E%, A)-unifiers, because otherwise the (Eg, A)-unification 
problem would be decidable. Rather there «ire three possibilities: 

• The machine stops and it has computed one (Eg, A)-unifier. 

• The machine does not stop. 

• The machine stops and it has computed no [E%, A)-unifier. In fact, in this 
situation, the tree traversal has returned to the root and it is clear that there 
is no (Eg, A)-unifier at all. 

As further research investigation, we will generalize the scope of this implementa-
tion from macro tree transducers to modular tree transducers |6]. Modular tree 
transducers are ctn-trs's which compute exactly the class of primitive recursive tree 
functions. 

Acknowledgements 

The authors would like to thank Alfons Geser for discussions on preliminary ver-
sions. The authors are grateful to the referee for communicating related work to 
us and for suggesting improvements of a previous version. 



166 

References 
48 Heinz Faß bender, Heiko Vogler 

[1] B". Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive 
program schemes. Theoret. Comput. Sci., 17:163-191 and 235-257, 1982. 

[2] N. Dershowitz and J.P. Jouannaud. Notations for rewriting. Bulletin of the 
EATCS, 43:162-172, 1991. 

[3] R. Echahed. On completeness of narrowing strategies. CAAP 88, LNCS 299, 
89-101, 1988. 

[4] J. Engelfriet. Some open questions and recent results on tree transducers and 
tree languages. In R.V. Book, editor, Formal language theory; perspectives and 
open problems. New York, Academic Press, 1980. 

[5] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sci., 
31:71-146, 1985. 

[6] J. Engelfriet and H. Vogler. Modular tree transducers. Theoret. Comput. Sci., 
78:267-304, 1991. 

[7] H. Fafibender. Implementation of a universal unification algorithm for macro 
tree transducers. In FCT'98, pages 222-233. Springer-Verlag, 1993. LNCS 
710. 

[8] H. Fafibender and H. Vogler. An implementation of syntax directed functional 
programming on nested-stack machines. Formal Aspects of Computing, 4:341-
375, 1992. 

[9] H. Fafibender, H. Vogler, and A. Wedel. Implementation of a partial E -
Unification algorithm for macro tree transducers. Technical report, University 
of Ulm, 1994. in preparation. 

[10] M. Fay. First-order unification in an equational theory. In Proceeding of the 
4th workshop on automated deduction, Austin, pages 161-167, 1979. 

[11] L. FVibourg. Slog: A logic programming language interpreter based on clausual 
superposition and rewriting. In Proceedings of the IEEE International Sym-
posium on logic programming, pages 172-184. IEEE Computer Society Press, 
1985. 

[12] J.H. Gallier and W. Snyder. A general complete E-unification procedure. In 
P. Lescanne, editor, Rewriting techniques and applications RTA 87, LNCS 256, 
pages 216-227, 1987. 

[13] K. Gladitz, H. Fafibender, and H. Vogler. Compiler-based implementation of 
syntax directed functional programming. Technical Report 91-10, Technical 
University of Aachen, 1991. 

[14] G. Huet. Confluent reductions: abstract properties and applications to term 
rewriting systems. J. Assoc. Comput. Mach., 27:797-821, 1980. 

[15] G. Huet and D.C. Oppen. Equations and rewrite rules: a survey. In R. Book, 
editor, Formal Language Theory: Perspectives and Open Problems. Academic 
Press, New York, 1980. 



A Universal Unification Algorithm Based 167 

J.M. Hullot. Canonical forms and unification. In Proceedings of the 5th con-
ference on automated deduction, LNCS 87, pages 318-334. Springer-Verlag, 
1980. 

U. Hupbach. Rekursive Funktionen in mehrsortigen Algebren. Elektron. In-
formationsverarb. Kybernetik, 15:491-506, 1978. 

J. Jouannaud and H. Kirchner. Solving equations in abstract algebras: a rule-
based survey of unification. In Computational Logic. Essays in the honour of 
Alan Robinson, pages 257-321. MIT Press, Cambridge, 1991. 

C. Kirchner. A new equational unification method: a generalisation of Martelli-
Montanari's algorithm. In Conference on Automated Deduction, pages 224-
247. Springer-Verlag, 1984. LNCS 170. 

K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys, 
21:93-124, 1989. 

D.S. Lankford. Canonical inference. Technical Report ATP-32, Department 
of Mathematics and Computer Science, University of Texas, 1975. 

R. Loogen, F. Lopez-Fraguas, and M. Rodriguez-Artalejo. A demand driven 
computation strategy for lazy narrowing. In PLILP'98, pages 184-200, 1993. 
LNCS 714. 

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages Systems, 4:258-282, 1982. 

A. Middeldorp and E. Hamoen. Counterexamples to completeness results for 
basic narrowing. In H. Kirchner and G. Levi, editors, Algebraic and Logic 
Programming, pages 244-258. Springer-Verlag, 1992. LNCS 632. 

P. Padawitz. Strategy-controlled reduction and narrowing. In P. Lescanne, ed-
itor, Rewriting Techniques and Applications, pages 242-255. Springer-Verlag, 
1987. LNCS 256. 

U. S. Reddy. Narrowing as the operational semantics of functional languages. 
IEEE Comp. Soc. Press 1985, Symp. Log. Progr., 1985. 

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. 
Assoc. Comput. Mach., 20:23-41, 1965. 

J. H. Siekmann. Unification theory. J. Symbolic Computation, 7:207-274, 
1989. 

J.H. You. Solving equations in an equational language. In Conference on 
algebraic and logic programming, pages 245-254. Springer-Verlag, 1988. LNCS 
343. 

J.H. You. Enumerating outer narrowing derivations for constructor-based term 
rewriting systems. J. Symbolic Computation 7 (1989), 319-341, 1989. 

Received March 5, 1993 

Revised September 1, 1993 


