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Abstract 

Every Mealy-automaton whose output equivalence is not the universal 
relation has a non-trivial simple state-homomorphic image. Thus the simple 
Mealy-automata play an importante role in the theory of Mealy-automata. It 
is very difficult to describe the structure of these automata. Contrary to the 
earlier investigations, in our present paper we concentrate our attention only 
to a special kind of simplicity, namely the strongly simplicity. Besides we give 
a construction for strongly simple Mealy-automata, we also describe the struc-
ture of all Mealy-automata which have strongly simple state-homomorphic 
image. 

1 Preliminaries 
By a Mealy-automaton we mean a system A = (A, X, Y, 6, A) consisting of a state 
set A, an input set X, an output set Y, a transition function 8 : A x X —• A 
and an output function A : A X X —• Y. In that case when |.A|, |Jf|, |F| are finite, 
A = {A, X, Y, 6, A) is called finite (|S| denotes the cardinality of a set S) . A Mealy-
automaton A is called a Moore-automaton if 

<5(ai) = Ha2.2:2) ==> Afai .xx) = A(a 2 , 2 2 ) 

for all ai , 02 £ A and 11,12 G X. It means that the function A can be given in the 
form 

A(o, x) = n[S(a,x)) (ae.A,x€X), 

where fj.: A —* Y is a single-valued mapping. The function fi is said to be the sign 
function of A. 
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Let X* and X+ denote the free monoid and the free semigroup over a non-
empty set X, respectively. We extend the functions 6 and A of A in the usual forms 
S : A x X* —• A* and A : A X X' —V as follows : 

6(a,e) = a, S(a,px) = S(a,p)S(ap,x), 

A(a,e) = e, A(a,px) = A(a,p)A(ap,x), 

where a e A, p € X+, x G X, ap denotes the last letter of S(a,p) and e denotes the 
empty word. 

An equivalence relation r of a state set A of a Mealy-automaton 
A = (A, X, Y, S, A) is called a congruence on A if 

(a,b) G r ==>• (ap,bp) e r and A(a,p) = A(6,p) 

for all a,b € A and p 6 X+. (If r € Y+ then r denotes the last letter of r.) 

Let Pmax denote the relation on the state set A of a Mealy-automaton 
A = {A, X, Y, 5, A) defined by 

(ai 6) 6 Pmax A(a,p) = A(6,p) for all p e X + ([2]). 

The pm a l-class of A containing the state a of A is denoted by pmax\o\-
Denoting the identity relation of a Mealy-automaton A by t, we say that A is 

simple if pmax = t. 

It is easy to see that p m a x is the greatest congruence of A and A ] p m a x is simple. 

Let A = [A,X,Y,6, A) and A' = (A', X, Y, 6', A') be arbitrary Mealy-
automata. We say that a mapping a : A — • A' is a state-homomorphism of 
A into A' if 

a(5(a, x)) = 5'(a(a), x), A(a, x) = A'(a(a), x) 

for all a 6 A and x X. If a is surjective then A' is called a state-homomorphic 
image of A. If a is bijective then a is called a state-isomorphism and the automata 
A and A' are said to be state-isomorphic. 

Let A = (A, X,Y, 6,X) be a Mealy-automaton. By the output-equivalence of A 
we mean the equivalence p defined as 

p = {(a, 6) 6 A x A : (V* € JQ A(a, x) = A(6, x ) } ([3]). 

It is evident that p m a l С p. Moreover p is a congruence if and only if p = p m a x . 
If p is the universal relation of A then, for every o, b e A, X* and x & X , 

A(a, gx) = A(aq, x) = A(bq, x) = A(6, gx). 

From this it follows that if p is the universal relation of A then p = pmax-

For notations and notions not defined here, we refer to [4] and [5]. 



Mealy-automata in which the output-equivalence is a congruence 

2 Strongly simple Mealy-automata 
123 

Definition A Mealy-automaton will be called a strongly simple Mealy-automaton 
if p = i. 

The next construction plays an importante role throughout this paper. 
Construct ion 1 Let A = (A, X, Y, S, A) be a Mealy-automaton. To arbitrary states 
a of Aj we can associate mappings aa of X into Y defined as follows: 

a a : x —• A(o, x). 

Consider the set A = { a a ; a G A} and, for every a G Л and x G X, let 

S'(aa,x) = аца,х), A ' (a a ,x ) = a a (x ) . 

T h e o r e m 1 For an arbitrary Mealy-automaton A = (A, X,Y, S,X), the following 
four conditions are equivalent: 

(i) The quintuple ^ — (A, X, Y, 6', A'), where A, 6', A' are defined as-in Construc-
tion 1, is a Mealy-automaton; 

(H) p - pmax in Aj 

(Hi) A. and Ajpmax are state-isomorphic; 

(iv) A]Pmax is strongly simple. 

P r o o f . Assume that is a Mealy-automaton. Then a a = аь implies 
as(a,x) = aS(b,x) f ° r every a,b G A and x € X, because 5' is well-defined. We 
show that p = Pmax in A• Consider two arbitrary elements a and 6 of A with 
(a, 6) E p. Then aa = аь and so we get oti(a,x) = аб(ь,х) f ° r every x 6E X. Using 
this idea and the fact that 6 is extended to Л х X*, we get aap = ctbp for every 
p € X*. Thus 

A(a,px) = A (ap,x) = A(6p, x) = A(6,px) 
for every p €E X* and x € X . Consequently (a, b) 6 Pmax which implies that 
P — Pmax in A. Thus (i) implies (ii). 

Assume that p = pmax in a Mealy-automaton A. To show that A. is a Mealy-
automaton, it is sufficient to prove that 6' is well-defined. Let a and b be arbi-
trary elements of A with aa = «ь- Then (a, b) G p = pmax from which we get 
(<5(a, x),6(b, x)) e p = Pmax for every x € X. Thus ай(а,х) = <*s(b,x) (s e X ) and 
so 6' is well-defined. Consequently, (ii) implies (i). 

To show that (ii) implies (iii), assume p = pmax in A. Then a „ = ab if and only 
if (a, b) G Pmax which implies that aa —• pmax\o\> ° G A is a state-isomorphism of 
A onto AJ Pmax- Consequently, (iii) is satisfied. 

Assume (iii). Then ¿ i s a Mealy-automaton. Thus A' is well-defined. From this 
it follows that A. and so A/pmax is strongly simple. Therefore, (iv) is true. 

Condition (ii) follows from (iv) in a trivial way. • 

Construct ion 2 Let M be a non-empty subset of the set Y x of all mappings 
of X into Y, where X and Y are arbitrary non-empty sets. Consider the Mealy-
automaton M = (M, X, Y, S*,X*), where 6* is arbitrary and A* is defined as follows: 

A*(a,x) = q(X), a G M, x e X. 
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For non-empty sets X and Y, denote M[X,Y 1 the set of all Mealy-automata 
defined in Construction 2. It is evident that £_ 6 M[X, Y] supposing that p = pmax 
in the Mealy-automaton A = (A, X, Y, 8, A). 

Theorem 2 A Mealy-automaton is strongly simple if and only if it is state-
isomorphic to a Mealy-automaton M = (M,X,Y,8*,\*) defined in Construction 2 
for some X, Y, 8* and A*. 

P r o o f . It is trivial that Mealy-automata defined in Construction 2 are strongly 
simple. 

Conversely, let A = (A, X, Y, 8, A) be an arbitrary strongly simple Mealy-
automaton. For this Mealy-automaton consider ¿_ = (A,X,Y,S', A') with A, 8' A' 
defined in Construction 1. By Theorem 1, A is isomorphic to Ae Ai [X,y] . • 

L e m m a 1 M_lt M2 E .MIX, y ] are state-isomorphic if and only if 
M i = M 2 • 

P r o o f . Assume that M_x, M_2 E M\X,Y\ are state-isomorphic. Let <p be a state-
isomorphism of M1 onto M ? . Then, for every a E M\ and x E X, 

a(x) = Ai(a,x) = A ^ i a ) , * ) = p (a ) (x ) 

and 
<p(6;(a,x)) = 6;(<p(a),x). 

From the first expression we get that <p is identical and so M\ = Mi, A J = A|. 
Then the second expression implies 8f = 8£. Consequently, M_1 = M 2 . • 

Corol lary 1 If X and Y are finite non-empty sets then 

i w i i ^ E ( ' T V 1 * 1 -

P r o o f . Let X and Y be arbitrary finite non-empty sets. Then |y x | = |y|'*'. Let 
M C Y x be arbitrary with \M\ = k. By the Lemma, the number of all different 
Mealy-automata defined in Construction 2 with the state set M is &fclxl, because 
we can choose 8* : M X X —* M in fcfclxl different way. This implies our assertion. • 

It is known that every Mealy-automaton is equivalent ([4]) to some Moore-
automaton. Therefore, it is interesting for us to know how we can construct the 
strongly simple Moore-automata. We note that a Mealy-automaton M_ defined in 
Construction 2 is a Moore-automaton if and only if we choose 8* such that 

<*i(zi) ^ 0=2(2:2) ==> 6* (a i ,x i ) / 6*{a2,x2) 

for every Qi, a^ E M and xi , 12 E X. Moreover, the output function A* of M does 
not depend on the input signs if and only if all mappings a & M are constant. In 
this case M can be considered as a special Moore-automaton ([l]) with the sign 
function A* and the output function A defined by A(a, x) = A*(5*(a, x)). Thus the 
number of these special Moore-automata belonging to Xt[X,y] is 

xk'i'H fc=iv ' 
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supposing that X and Y are finite. 
Introduce a partially ordering " < " on Ai[X, Y] as follows: Ml < M 2 if and only 

if Mi C M2 and Si equals the restriction of 82 to Mi X X . Under this ordering an 
element of A([X, Y] is maximal if and only if its state set is Y x . If X and Y are 
finite then the number of maximal elements of .M[X, Y] is 

|Y | ( l r l ' x | ) l x l a . 

It can be easily verified that the number of maximal elements of Ai[X, Y] which are 
special Moore-automata (see above) is 

3 Mealy-automata having a strongly simple 
state-homomorphic image 

In this chapter we give a construction for Mealy-automata which has the property 
P = Pmax • 

Construct ion 3 Let M = (M, X , Y,8*, A*) be a strongly simple Mealy-automaton 
(defined in Construction £). Consider a family of sets Bm, m G M such that 
Bm H Bm. = (I i / m / m'. For all x G X and m G M, let <pm,x be a mapping of 
Bm into Bs'(m,x)- Let B = Um€MBm. Define the functions 8° : B X X —• B and 
A0 : B x X -+ Y as follows. For arbitrary b G Bm, let 

8°(b,x) = <pmtX(b) and A°(6, x) = m(x). 

It can be easily verified that 8° and A0 are well-defined and so ¿= (B, X, Y, 8°, A°) 
is a Mealy-automaton. 

T h e o r e m 3 A Mealy-automaton has the property that p = pmax if and only if it 
can be defined as in Construction S. 

P r o o f . Let B be a Mealy-automaton defined in Construction 3. We prove that 
P = Pmax • For all m g M , p 6 X* and x G X let <pm,px = <PmP,x ° <Pm,p, where mp 
denotes the last letter of 8*(m,p). It is clear that <pm,p(a) = ap for all a G Bm and 
p G X* , where ap denotes the last letter of £°(a,pj. Assume (a, 6) G p for some 
a, 6 G B. Then a, b G Bm for some m G M . For arbitrary p G X* and x G X , 

A°(a,px) = A°(ap,x) = A°(vpm,p(a), x) = A0(*>„,.„(&), x) = A°(6p, x) = A°(6,px). 

PVom this it follows that (a, 6) G pmax-
Conversely, assume that p = pmax in a Mealy-automaton A = {A, X, Y, 8, A). 

By Theorem 1, A = (A, X, Y, 8', A') is a Mealy-automaton which is state-isomorphic 
with the strongly simple Mealy-automaton AJpmax. Using Construction 3 for M = 
A_, consider the Mealy-automaton B_ = (B,X,Y,8°, A0) such that Bai = pmax\o\ 
and <paa<x defined by <pai,x{b) — 8(b,x) for arbitrary a G A, b G £«»> x G X . It is 
easy to see that A = B, 8 — 8° and A = A0. Thus A = B. • 

R e m a r k . If the output equivalence p of a Mealy-automaton A is the universal 
relation of A then A is simple if and only if it is strongly simple if and only if it 
is trivial (it has only one state). Thus our problems are trivial in this case. We 
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note that if A = (A,X,Y,S,X) is a Mealy-automaton in which p is the universal 
relation then the congruences of A are the same as the congruences of the pro-
jection Apr = [A, X, i ) of A. But the simplicity of automata without outputs is 
modified as follows: An automaton B_ without outputs is called simple if its every 
state-homomorphic image is trivial or isomorphic to B_. It is easy to see that this 
simplicity is different from the strongly simplicity. (Here the strongly simplicity 
means that the automaton is trivial.) 
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