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On codes concerning bi-infinite words 
Do Long Van* Nguyen Huong Lam* Phan Trung Huy* 

Abstract 
In this paper we consider a subclass of circular codes called Z-codes. Some 

tests of Sardinas-Patterson type for Z-codes are given when they are finite , 
or regular languages. As consequences, we prove again the results of Beal 
and Restivo, relating regular Z-codes to circular codes and codes with finite 
synchronization delay. Also, we describe the structure of two-element Z-
codes. 

1 Preliminary 
In this paper only very basic notions of free monoids and formal languages are 
needed. As a general reference we mention [7], and for the facts concerning codes 
we always refer to [3] silently. In addition to this we use also notions concerning 
infinite and bi-infinite words without very formal definitions because of a wide 
availability of papers on the subject. To fix our notations we want to specify the 
following. Throughout this paper A denotes a finite alphabet. The free monoid 
generated by A, or the set of finite words, is denoted by A* and its neutral element, 
the empty word, by e. As usual we set A + = A* — e. For a word x in A*, |z| means 
the length of x. We call a nonempty word x primitive if it is not a proper power of 
any word, otherwise x is imprimitive. We call two words x and y copower if they 
are powers of the same word. For example, as well known two different words are 
copower if and only if the set they form is not a code. For two finite words x and 
y the notation y x _ 1 and x _ 1 y are used to denote the right and the left quotient of 
y by x respectively. Naturally, the quotient and the product of two words can be 
extended to languages, i.e. subsets of A* : 

X~lY = { x _ 1 y : x e X,y <=Y), YX'1 = { y x _ 1 : x € X , y € F } . 
XY = {xy:xeX,yeY},X2=XX,...-, 

and X* = Un>o Kleene closure of X ) . 
In the following, our consideration is mainly based on the notion of infinite and 

bi-infinite words on A. Let NA, AN,AZ be the sets of left infinite, right- infinite 
and bi-infinite words on A respectively. For a language X of A*, we denote u X , X" 
arid U X U the left infinite, the right infinite and the bi-infinite product of nonempty 
words of X respectively, i.e. their elements are obtained by concatenation of words 
of X—e carried out infinitely to the left, to the right or infinitely in both directions. 
For example, 

w X = {... U2U1 : ti{ e X — e,i = 1,2,...}. 

•Institute of Mathematics, P .O.Box 631, 10000 Hanoi, Vietnam 

97 



98 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy 

Factorizations in elements of X (over X, on X ) of a left or right infinite word are 
understood customarily (see [JLO] for details), but factorizations of a bi-infinite word 
need a special treatment as follows. Let w £ Az be in the form: 

w = ... a_2a_iOoOia2 ... 

with a,- € A. A factorization on elements of X of the bi-infinite word w is a strictly 
increasing function p : Z —• Z satisfying x,- = oM(,) + 1 . . . a^f+i ) € X for all t e Z. 
Two factorizations ¡x and A are said to be equal, denoted p = A if there is t £ Z 
such that A(i + t) = ¿t(i) for all t 6 Z. Otherwise, A and \i. are distinct, denoted 
H / A. It is easy to verify that fi ^ A iff n{Z) / A(Z), or equivalently, there exist a 
word u 6 A+, two bi-infinite sequences of words of X : . . . , x_2, x~i, xo> xi, • • • 
and • •., y~ 2 , y — i , Vo, yi, J/2 > • • • such that 

. . . 2 _ 2 I _ i U = . . . y _ i y 0 , |u|<|x0|, 
2 0 i i . . . = uyxy2..., |u| < |s/o| 

with u j i i o or u ji t/o-
If every rigth infinite word of AN has at most one factorization on elements of 

X then X is said to be an N-code (see [10], where in a wider context JV-code is 
called strict code). Analogously, if every left infinite word possesses this property, 
we call X an N-code. Obviously, X is an N-code iff X = [x : x € X } is an iV-code, 
where i is the mirror image of the word x. For the bi-infinite words, we have our 
basic 

Definition 1 A language X of A+ is a Z-code if all factorizations on X of every 
bi-infinite word are equal. 

Example 1 Every singleton {u} is always both an TV-code and an TV-code but it 
is a Z-code if and only if u is primitive. The two-word language X = {06, 6a} is 
both an iV-code and an TV-code, but it is not a Z-code since the word u(ab)u has 
two factorizations . . . ab.ab.ab ... and . . . ba.ba.ba..., which are verified directly to 
be distinct. 

The family of Z-codes is closely connected with the so-called circular code [3]. 
A language X of A* is said to be circular if for any xo, x i , . . . xm, yo, y i , . . . yn of X 
and s, t of A* the equalities 

X i X 2 . . . X m = tyo . . . ym s, 

xo = st 

imply s = e, m = n and x0 = y0, x m = ym. 
It is easy to see that every circular language is a code and that every Z-code is 

a circular code. But not always a circular code is a Z-code, as the following code 
[4] X = U {a6*a6'+1,t = 0 ,1 ,2 , . . . } shows that. Nevertheless, every regular 
circular code is a Z-code i.e. the families of regular Z-codes and regular circular 
codes coincide, as shown by Beal [2]. Therefore, results and algorithms invented 
for circular codes can be applied to Z-codes. However, in the next section we 
work independently with Z-codes, proposing some tests for regular and finite Z -
codes. As consequences of that, we can obtain a result of A. Restivo on codes with 
finite (bounded) synchronization delay [ l l ] and the aforementioned Beal's result. 
Also, for completeness, as an easy consequence of [l], we describe the structure of 
two-word Z-codes. 
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2 Tests for Z-codes 
We develop now a criterion to verify whether a finite subset X of A+ is a Z-code. 
Our procedure is something like the Sardirias- Patterson one (cp. [10]), but actually 
instead of one sequence of subsets associated to X we need two sequences associated 
to each overlap of elements of X. Precisely, we define first the subset: 

W(X) = {ty G A+ : 3u, u G A*\3x, y € X : uw = x, wv = y, tiv / e } 

whose element is called an overlap of elements of X. For each w G W(X), we define 
two sequences Ui(w,X) an V,(w, X ) of subsets of A* as follows 

U0(w,X) = w-'X-ie}, 
Ui+1(w,X) = Uiiw.X^XuX^Uiiw.X), 

V0{w,X) = ^ " ' - { e } , 
Vi+1(w,X) = XVi(w,X)-1UVi(w,X)X-\ 

i = 0,1, 2 , . . . . Further, if there is no risk of confusion, instead of W(X), U{(tu, X),. 
Vy(w,X) we write simply W,Ui,Vj. The following property of Ut(u>,X), V}(w,X) 
is useful in the sequel. 

Lemma 1 For every N > 0 and for any word u, u G Upf(w,X) iff there exist 
xi,..., xn, t / i , . . . , ym G X such that m + n — 1 = N and either 

wxi ...xn=yl ...ymu, |u| < |i„|, |tw| < |j/i| 

or 
wx1...xnu = y1...ym, |u| < |ym|, |to| < |yi|. 

Remark. Similarly, the symmetrical statement holds for Vy. 

Proo f . By induction on N. For N = O we have 

u G U0 -O- ( 3 y i G X : w~1y1 = u wu = ylt |u| < |t/iU < IS/i!)-

Suppose the lemma is true for some N > 0, we prove it true for N + 1. We have 

u G UN+i 3u' G UN, 3x G X : tt'u = x V xu - u'. 

By induction hypothesis, u' G Un iff there exist x\,..., x„ , yx , . . . , ym G X such 
that n + m — 1 = N and either 

wx1...xnu' = y i . . . y m , |u'|<|ym|, |w| < |yi| (1) 

or 
wx1...xn = y1...ymu.', |u'|<|i„|, < |J/1.t• (2) 

Therefore u G C/jv+i is equivalent to the fact that there exist xi,...,xn, x, 
S/ii • • • > ym in X such that 

( ( « ' « = x ) & ( ( l ) V ( 2 ) ) ) V ( ( x u = « ' ) & ( ( ! ) V ( 2 ) ) ) 
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or equivalently 
((u'tt = x)&(l)) V (u'u = x)&(2))V 
((xu = u')&(l)) V ((xu = u')&(2)). 

The last, in its turn, as it is easy to verily, is equivalent to the fact that there exist 
x i , . . . , x„>, y i , . . . , ymi in X such that n+m'—1 = N+1 and 

wxi ...xn> = y1 . ..ym<u, |u|<|z„>|, |to| < |yi| 
or 

wxl...xn>u=y1...ym>, |u|<|xm-|, |to| < |t/iI, 
i.e. the lemma is true also for N + 1. 

Now we state a sufficient condition for a language to be a Z-code. 
Propos i t ion 1 A finite subset X of A+ is a Z-code if for every overlap to of 
elements of X, the following conditions hold: 

(i) ifw G W n X then Ui = Q and V}- = 0 for some i,j > 0; 
(ii) ifweW-X then Ui — 0 or Vy = 0 for some i„j > 0. 

P r o o f . We suppose that X is not a Z-code, i.e. at least one word of Az possesses 
two distinct factorizations on X, therefore we have two equalities: 

. . . x _ 2 x _ i i y = . . . y _ i y 0 (1) 

X 0 X ! . . . = wyj.y-2... (2) 

for some w G A+, |u;| < |y0| and |u>| <.|xo|, w ^ x0 or to / y0, hence w G W. 
If w G W n X and, say, w ^ x0, then U0 0. By (2), for every N > 0 there is 

the least integer n > 0 such that |xo • • • xn| > |iwyi . . . yjv |> that is 
x0xi ...xn — u>yi ... yjvii 

for some word u G A*, |u| < |x„|. By Lemma 1, u G £///+„. Thus UM ^ 0: (i) does 
not hold. For the case w ^ y0, by (l) and the symmetrical version of Lemma 1 we 
get VJV 0 for all N > 0 : (i) does not hold again. 

Now let to G W — X then we have both w ^ xo and to / y0. By the same 
argument as above we obtain U{ 0 and Vj / 0 for all i, j > 0 : (ii) does not hold. 
The proof is completed. 

In order to make a converse of Proposition 1 for finite languages we prove a 
lemma, which places an upperbound on the least i such that Ui — 0. For a finite 
subset X = { x i , 22j • • • , i n } of A* we define || X ||= ]C?=i lx»l- Note that each Ui 
consists only of right factors (i.e. suffices) of words in X and if Uk = Ui ^ 0 for 
k ^ I then Ui / 0 for all t > 0. Since the set of right factors of words in X is of 
cardinality at most || X ||, such an upperbound obviously exists and we can take it 
as 2llxH. In the following lemma a more refined estimation is given. 

Lemma 2 For any finite subset X of A* and w G W, the following assertions are 
equivalent 

(i) Ui(w, X) jt 0 for some i >|| X ||; 
(ii) Ui (to, X ) ^ 0 for all i > 0; 
(Hi) There exist infinite sequences Xi, X2, -. •; yi, y21 ••• of words in X 

such that 
XOX\%2 •••- yiy2 • • • 

with |to| < |yi|. 
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Remark. The symmetrical statement holds for VJ(w,X). 

P r o o f , (iii) => (ii): already done in the proof of Proposition 1. 

iii) fi): obvious. 

i) =» (iii): Let uN E UN{W,X),N >|| X ||. Then there exist u< € UI{W,X) 
such that u0 = to, u,+ i € uJxX or X - 1 U i , t = 0 , 1 , . . . , N — 1. It is easy to see 
that uq, t t i , . . . , ujv are suffices of words in X and the cardinality of the set of the 
suffices of the finite set X does not exceed || X || and thus is less than N + 1. 
Therefore, there are p and q,0 < p < q < N such that up = uq. Let I be the largest 
number not exceeding q—p such that u p + i = yj"1up, up+2 = (yiJ/2) - 1«p, • ••, «p+1 = 
(yi •••yj)~1"p.i where yi,...,yi 6 X; otherwise I = 0. Then u p + , + 1 6 "p+j-X" 
and we apply Lemma 1 to the case uq € Uq-p-i(up+i, X) to obtain some words 
xi,... ,xn and z\ , . . . , z m of X such that 

Up+jXi ...xn = zi... zmuq 

or 
Up+tXl .. .xnuq = Zx .. .zm. 

Whence 
u p x i . . . xn = yi ... yizx ... zmuq 

or 
UpZl ...xnuq = yi ...yiZx ...zm. 

Since up = uq, these equalities lead respectively to the infinite words 

up(xi... xn)w = (t/i ... yizx ... zm)u (1) 

or 

up(a:i ...xnyi ...ytzi...zm)u = (yx ...yizx ... zmxi... xn)w. (2) 

On the other hand, since up S Up(u),X), again by Lemma 1 we have 

tux = y'yup, < |y'| (3) 

or 

wxiip = y'y, |w|<|y'| (4) 

where y' G X, x, y € X*. Combining (3) and (4) with (1) and (2), we get four 
possibilities that all lead to the desired infinite equality in (iii). Lemma 2 is proved. 

Now we are ready to state our criterion. 

T h e o r e m 1 A finite subset x of A+ is a Z-code if and only if for every overlap w 
of elements of X, the following conditions hold: 

(i) ifw&WC\X then Ui{ w, X) = 0 and Vs{w, X) = 0 for some i,j <|| X ||; 
(ii) • if w. e W - X then Ui{w,X) = 0 or v/(w,X) = 0 for some i,j <|| X ||. 
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Proo f . The sufficient part is Proposition 1, we have to prove only the. necessary 
one. Suppose that (i) or (ii) does not hold. We shall derive from this two equalities 
which show that X is not a Z-code. In fact, by Lemma 2 and its symmetrical 
version, we have two cases: there exist 

(1) weW C\X and x,-, yy e X, i, j = 0 ,1 ,2 , . . . such that 

x0X! • • • = uiy0yi..., |to| < |x0| 

or 
. . .XIXO = • ..yiyoui, |u>| < |sco|; 

(2) w e W - X and x,-,yy € X,i,j = 2 , - 1 , 0 , 1 , 2 , . . . such that 

x 0 x! • • • = u>y0yi. . . , M < |x0| 

and 
. . . x_ ix 0 = . . .y_iy0w, ¡u>| < |x0| 

regarding (i) or (ii) does not hold. 
The first case together with the obvious equalities . . . ww = . . . tutu and ioto . . . — 

ww . . . show that X is not a Z-code. 
The equalities in the second case themselves ensure that X is not a Z-code. 

The proof is completed. 
We give now some examples illustrating the execution of the algorithm. 

Example 2 (a) Consider X = {a2b,b2a}. We apply Theorem 1 to show that X is 
a Z-code. 

W = {a,b}, 
U0{a,X) = {ab}, £Ma,X) = 0, 
U0(b, X) = {6a}, U\(b, X) = 0. 

Since a, 6 ^ X, we conclude that X is a Z-code. 
(b) Let-X - { u } with u imprimitive, u = Xn(n > 2). Clearly A S W - X, 

U0{X,X) = { A " " 1 } , which impUes A e t/i(A, X ) , A " - 1 € U2(X, X),.... Thus 
TJi{A, X) ± 0 for all »' > 0. So {u} is not a Z-code. 

Conversely, let X = {u } not be a Z-code and let A be an overlap of X such that 
Ui(X, X) ^ 0 for all i ^ 0. Since A is an overlap of u, we have xA = u for some 
x e A+. Further, if A0 G Uo(X,X) then AA0 = 11. Hence U0(X,X) = {A 0 } . Let 
•̂ l G Ĉ i (A, AT) then AoAi = it. Thus |Aj| = |A| and from xA = u it follows A = A^ 
Consequently AoA = AAo = u, which with Ao, Ai ^ e yield that u is imprimitive. 
Thus {u } is a z-code if and only if u is primitive. 

The main setback of Theorem 1 is that it is unfit for infinite (even regular) 
languages. 

Example 3 Consider X = {a,cab,c,bc+d} on the alphabet A = {a,b,c,d}. It is 
an infinite regular Z-code, but for all t > 0 : Ui(c,X) ^ 0. 

Nevertheless, for the important class of regular languages we can work out 
another algorithm close to the previous one, also of Sardinas-Patterson type. Let 
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X be a regular language and as before W be the set of overlaps. First, for each 
overlap w S W we construct two sequences: 

U0 = w~lX - {*}, Ui+1 = U^X*, 

Vo = Xw-1 - {e}, Vi+1 = X'V;1 

for all i > 0, which, if needed, will be referred to as U{(w,X) and Vy(tu,X) . Of 
course there is no need to compute Ui(w, X ) , Vj(tv, X ) for all w € W, it is sufficient 
to take representatives modulo the right and left principal congruence defined by 
X * or X . Recall that for a subset X of A* the following equivalence relation 

u =R v u _ 1 X = t i - 1 X , ti, ti € A " , 

called right principal congruence defined by X . Analogously is defined the left 
principal congruence =]_,• When X is regular, the number of right (left) principal 
congruence classes, called right index (resp. left index) of X , is finite and equal to 
the number of states of the minimal automaton recognizing X . Now we state 

T h e o r e m 2 Let X be a regular subset of A+ and m, e be the right and left index 
of X*. Then X is a Z-code if and only if for all w EW the following conditions hold 

(i) weWnX implies Ui(w,X) = 0 and Vy( to ,X) = 0 for some i < m,j < e; 
(ii) w € W — X implies U{(w, X) = 0 or Vy(to, X ) = 0 for some i < m, j < e. 

Remark. As seen from the proof below, (i) and (ii) are sufficient for any language 
of A* to be a Z-code. 

Proof . In fact, we prove an equivalent statement: X is not a Z-code iff (i) or (ii) 
does not hold. 

First, let X not be a Z-code. Then there exist two equalities: 

. . . x _ 2 x - i t o ' = . . . y - i y o , (1) 

x0xi ... = wy1y2... (2) 

with |u>| < ¡xq|, |u)| < |t/o|j xii Vj G X , w XQ or to yo> hence w 6 W. 

If w G W fl X , we assume for certainty that w / yo and consider ( l ) , putting 
wo = you>-1 6 V0. From (1) we get 

. . . x _ 2 x _ i = . . . y _ 2 y _ iv0. 

Choose n € N such that | x _ „ . . . x _ 2 x _ i | > |uo| and put again t>i = 

( x _ i . . . x - i ju j * 1 , hence t^ 6 X 'v^ " 1 C X * V 0 = V i and 

• • • z - (n-i -2)2 : - (n+i)w i = • • • y - 2 y - i -

We apply this argument over and over again to see that Vy ^ 0 for all j > 0, i.e 
(i) does not hold. 

If now w € W — X , we have both w ^ xo and w ^ yo- Similarly, we apply the 
argument above to ( l ) and (2) to verify I/j ^ 0 and Vy ^ 0 for all t, j > 0 : (ii) 
does not hold. 
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Conversely, let ¡7, ^ 0 for all » > 0 and N be any integer not less than m, 
and UN £ UN- There exist u, € Ui,x = 0 , 1 , . . . ,N — 1 such that u0 6 vu~1X, 
Ui+1 £ ut^X*,» = 0, 1 , . . . , N — 1, or equivalently, WUQ £ X , £ X*, ¿ = 
0,1 N — 1. Among u0, • • • > VN we can pick out u, and up such that p < q 
and uq =r Up mod X*. We define now an infinite sequence of words u'Q, u^ , . . . by 
putting 

«i = , 0 < » < g — 1 
and 

u'<t+i = up+t, ¿ = 0 , 1 , . . . , 

where t is the least nonnegative residue of ¿ mod q — p. 
It is easy to verify that 

for t = 0,1, 2 , . . . and 
x1 = WU'Q = WUO € X. 

Consider now the infinite product wu'Qu\ ... written in two ways 

(umoKrijUa) • • • = u>(uou'i)(u2u3) 

or 

x0xi • • • = wyxy-2 ... (3) 

with xq £ X, |tu| < |xo|;x,-,yy € X*. 
Analogously, if V j ^ 0 for all t > 0, we have the equality 

. . .x_2x_iu> = . . . y_ iyo , (4) 

where y0 £ X, |to| < |y0|; Xj, yy £ X*. _ 
If now tu EW n X and (i) does not hold, for instance, £/,• / 0 for all t. Then (3) 

together with the obvious equality . . . ww = ... ww show that X is not a Z-code. 
If w £ W - X and (ii) does not hold, i.e. Ui,V}- ji 0 for all i,j > 0. Then (3) 

and (4) will give rise to two distinct factorizations on X of some bi-infinite word: 
X is not a Z-code and the theorem follows. 

Example 4 We use Theorem 2 to show that the language X = {a, cab, c, bc+d} 
given in Example 3 is in fact a Z-code. 

W = {c,b}, 
U0(c,X) = {ab},U1(c,X) = c+dX*,U2(c,X) = &, 
V 0 ( C , X ) = 0, 
U0(b,X) = c+d,Ui(b,X) = 0. 

Since c £ W n X , beW - X , X i s a Z-code. 

In general Theorem 2 is not true for arbitrary languages, as shown in the fol-
lowing 
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Example 5 Consider X = {a i+26a<6 : t = 0 ,1 ,2 , . . . }u{6a2 i + 16_: t" = 0 , 1 , 2 , . . . } C 
{a, 6}*. Clearly, b is an overlap and for all t > 0, we have ab 6 U<(b, X), o2( i+1)fc e 
VAb, X), i.e. Ui,Vj ^ 0 for all i,j > 0, but a simple verification ensures that X is 
a Z-code. 

We should mention two other algorithms to verify whether a regular code X is a 
Z-code. Both of them consist in checking the emptiness problem for some automata 
(Devolder and Timmerman [4], Beal (2j) that has as well known a polynomial time 
complexity in the number of states of automata. 

Using Theorem 2 we give alternative proofs of the results of M.P. Beal and A. 
Restivo. First, we prove 

Corollary 1 (M.P. Beal [l]) Let X be a regular code. Then X is a Z-code if and 
only if it is a circular code. 

P r o o f . First, observe that if X is a code then 

(1) for any to 6 W n X : Ui(w,X) n X* = 0 and Vi{w,X) n X* = 0 for all 
t' = 0 ,1 ,2 , . . . ; 

(2) for any w € W - X : Ui(w,X) D X* = 0 or Vi(w,X) n X* = 0 for all 
» = 0 ,1 ,2 , . . . 

that are trivially to be verified using Lemma 1 or its symmetrical version. 
Let now X be a regular circular code, hence a code: ( l ) and (2) are satisfied. 
Suppose that for some to G W fl X we have, say, Ui ^ 0 for all t = 0,1,2 

For any N > 0 there exist uo, « i , . . . , «at such that tii € UQ1X*, . . . , ujv 6 
u ^ ^ X * . Since X* is of finite right index m, if we take N sufficiently large, we can 
find i,j : 0 < i < j, such that t i ^ X * = uJ1X* and j — 1 is even. Consider the 
words 

U = Ui+1 . . .Uj , v = U i + 2 - - - « j - l > 
it follows ityu,+i 6 X*, v S X* and u = u,+1uuy € X*. By circularity of X we get 
uy, u , + i € X*, in particular, Uy £ t/y 0 X* 0 contradicting (1). Therefore for 
any w £ W n X we have Ui = 0 for some t and analogously Vy = 0 for some j. 

As for any to € W — X, by the same way, we can conclude that either J7,- = 0 
fpr some t or V j = 0 for some j. By virtue of Theorem 2, X is a Z-code. The proof is completed. 

We now deduce another statement concerning codes with bounded synchro-
nization delay. Recall that a subset X of A* is said to be a code with bounded 
synchronization delay provided it is a code and for some integer p > . 0, for all 
«,»£ Xp, and for all g, f (E A*, 

gu, vf e X* 

whenever 
guvfeX*. 

The least number p satisfying this condition is the synchronization delay of X. The 
fact that every code with bounded synchronization delay is a Z-code is obvious, but 
the reverse conclusion is not always valid. A lot of interesting properties of these 
codes have been discovered, for example, in the finite case, these codes are exactly 
the very pure codes, i.e. circular codes (see [ll], [12]). We have the following 
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Corol lary 2 (A. Restivo [11]) Let X be a regular subset of A+,X is a code with 
bounded delay if and only if it is a Z-code satisfying A*XdA* fl X = 0 for some 
positive integer d. - — _ 

Proo f . "Only if" part: first, the fact that each code with bounded synchronization 
delay is a Z-code is easy. Further, we show that A'XdA*nX = 0 for all d exceeding 
the right index of X. Suppose on the contrary that 

u x i . . . XdV € A*XdA* n X 

for some xi, x2,.. •, xd 6 X and u, v € A*. Then, indeed, there exist » and j, i < 
j < d, such that u i i . . . X{ =R XIX\ . . . xy mod X which implies that for all k = 
0 , 1 , 2 , . . . : 

UXI... x ; (x , + 1 . . . Xj)k =R UXi... x; ( x ; + i . . . xy) f c+1 mod X 

and consequently 

uxx ... xi(xi+1 ... xj )kxj+1 ...xdv&X. 

Hence the synchronization delay of X cannot be bounded. 
Conversely, let X be a regular Z-code and A*XdA* D X = 0 for some positive 

integer d, hence d > 2. By Theorem 2, for all overlaps w € W, Um(w, X) — 0 or 
Ve(tu, X) = 0, where m and e are the right and left index of X*, respectively. We 
show that X is of bounded synchronization delay not greater than p = (m + l)ci 
(the value in [l l] is 2(m + l)<i). If that is not so, there must exist some words 
g, h e A', xlt..., xp, x p + 1 , . . . x2 p , y i , . . . , yq € X such that 

gx1...xpxp+1...x2ph = y1...yq (1) 

and for all k = 1, 2 , . . . , q 
gxx . . . xp ^ yx... yk. 

Thus, it has to exist a unique positive integer I < q such that 
yi ...yi-i < gxx ...xp < yi ...yi 

and the largest positive integer t < p— 1 and the smallest positive integer j > p+ 1 
satisfying 

gxi.. .n < yx .. .yi-i < gxx.. .xp < yx.. ,yt < gxx . . . x y (2) 

(abusing language, we write for words x,y,x < y,x < y to indicate that x is a 
prefix, a proper prefix of y, respectively). Since yt £ A*XdA*,j < d + p and 
i > p — d. 

Further, if in (2) gxx... x» = y i . . - JU-i and gxx • • • xy = yx . . . yt then 

' yi = xi+1...Xj, j - i > 2 

that is a contradiction with the fact that X is a code. 
Alternatively, assume that gxx.. .xy ^ yx'... yi which gives rise to 
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g x x . . . x j - i w = y i - . - y i , (3.1) 

xJx}+1...x2ph = wyt+i...yq, (3.2) 

where to G W and |t/>| < |J/I|, |ti/| < |xy|. Similarly, the case gxi... xt- ^ y i . . . yi-i 
gives rise to 

gxi...x{+1-yi... yi-!W, (4.1) 

wxi+2...X2Ph = yiyi+i...yq, (4.2) 

where w & W and |to| < |yj|, |to| < |x,+i|. 
We will show that (3.2) or (4.2) equally leads to U2m{to, X ) ^ 0 and (3.1) or 

(4.1) - to Vfc(to, X ) ^ 0 with fc abitrarily large, in particular k > e that is quite a 
contradiction. 

First, suppose that we have (3.2), setting 

U1 = x] +1 • • • Xj+d, • • •, um = xj+(m-l)d+l • • • Xy + md 

and let q{k) the smallest integer such that for k = 0 , 1 , . . . , m 

X j i < toy ( + 1 . . .y i ( f c ) (5) 

(for compactness, we set by convention that xyui . . .Ufc = xy when k = 0). Since 
A*XdA*CiX = 0, to < xy and t i i , . . . , u m e it follows /+1 < q(0) < q( 1) < < 
g(m), Putting ufc = y ( + i . . . y , ( f c ) , f c = 0,1,2, . . . , m , by (5) and A*XdA* n X = 0 
we get 

XyUi...Ufc < WVK < Xytlj . . . u f c + i (6) 

for fc = 1 , 2 , . . . , m — 1 and 

toufc_i < xyu i . . . ufc < toufc (7) 

for fc = 1 , . . . , m . 

It is easy to verify that (6), (7) together with w < xy yield 

(tOUo)~^(xyUi) e U2l - •. , (u;um_i) _ 1 (xyui . . . tlm) e t/2m, 

i.e. U2m f 0. Likewise, since t + 2 < j , (4.2) leads also to C / 2 m / 0. 
Now, as far as Ve is concerned, we treat (3.1) and (4.1) as above, only in the 

symmetrical way. Directly, (3.1) or (4.1) cannot lead to Vc ^ 0, but we can "pump" 
them up to some equalities "long" enough by proceeding as follows. Suppose, for 
example, that we have (4.1). Among m + 1 numbers 1, d + 1 , . . . , md + 1 there 
must exist o, b such that grxi . . .x0 gx% ...if, mod X* with a < b. Note that 
b — a > d > 2 and o, 6 < md + 1 < p — d + l < t + 1. Further, for some integer 
s < t < I we must have 

yi---y.-l "a = 9*1 •••Xa, 
gx i...xava = yi ...y„ 
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and 

yi-yt-i«6 = gxi...xb, 
gxl...xbvb = yi...yt, 

«6«6 = tk, 

where u0 , u„, ub , «6 € A*. Hence x a + i . . . x j + i € vaX*w. Prom gx i...xa =r 
gx i . . . xt, mod X* it follows 

gxi. ..xa =R gii... x a ( x „ + i . . . xb)k mod X* 

for all k — 0 ,1 ,2 , Since gxi ... xava £ X* we have gxi... x a ( x a + i . . . Xb)kva £ 
X\ Therefore 

gx1...xa(xa+1...xb)kxa+1...xi+i &X*w, (8) 

where, as before, 
Looking into 

< R + i l - , , 
8) we see that the left-hand side of (4.1) is pumped up by a 

product of k(b — a — 1) words. We take k large enough to obtain a sufficiently 
"long" equality of the form (4.1). Now proceeding as is done for U2m , we conclude 
that V e is nonempty. This contradiction with Theorem 2 completes the proof. 

The regularity condition is essential for Theorem 3 to be valid. Indeed, consider 
the following 

E x a m p l e 6 The Z- code X = {ai+1baib :i = 0,1, 2 , . . . } C {a, b}* is not a regular 
language. It is not a code with bounded synchronization delay, although A* X2 A* n 
X = 9. 

" Concluding, from [8] or [l] we deduce the following statement. 

Theorem 3 Let X = {x,y}(|x! > |t/|) be a two-word language of A* then 
X is not a Z-code if and only if one of the following assertions holds 

(i) x or y is imprimitive; 
(ii) x and y are conjugate; 
(Hi) xyn is imprimitive for some positive integer n < + 1; 
(iv) x2y is a square. 

P r o o f . Obviously, if one of (i)-(iv) holds, X is not a Z-code. 
Conversely, suppose that X is not a Z-code (thus not a circular code, not a very 

pure code) and besides x and y are primitive and not conjugate. We show that (iii) 
or (iv) must occur. 

Indeed, by [8] or [l], x*y U xy* contains an imprimitive word u = vm, m > 2: 

- if u = xyn then in — l)|y| cannot excceed |u| — 1 otherwise by Fine and Wilf 
Theorem (see [9] or [5]) x and y are copower that contradicts the assumption. Thus 
( n - l ) | y | < H t o r 2 ( n - l ) | y | < 2 H < H + »|y| = |®y»|.i.e. |n| < |f| + 1; 

- if u — xny = vm we can suppose n > 2. Further, if the inequality 

. n + 1 m > T. n — 1 
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holds, then m ( n - l ) | i | > (n+l)|x| > njx|+|!/| = m|w|. Therefore, (n - l )|z| > |«|, 
or, n|x| > |x|+ |u|. Again by Fine and Wiif Theorem x, v and thus x, y are copower 
that contradicts the assumption. So, we always have m < Since m, n > 2 it 
follows m = n = 2. 
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