On codes concerning bi-infinite words

Do Long Van* Nguyen Huong Lam* Phan Trung Huy*

Abstract

In this paper we consider a subclass of circular codes called Z-codes. Some tests of Sardinas-Patterson type for Z-codes are given when they are finite or regular languages. As consequences, we prove again the results of Beal and Restivo, relating regular Z-codes to circular codes and codes with finite synchronization delay. Also, we describe the structure of two-element Z codes.

1 Preliminary

In this paper only very basic notions of free monoids and formal languages are needed. As a general reference we mention [7], and for the facts concerning codes we always refer to [3] silently. In addition to this we use also notions concerning infinite and bi-infinite words without very formal definitions because of a wide availability of papers on the subject. To fix our notations we want to specify the following. Throughout this paper A denotes a finite alphabet. The free monoid generated by A, or the set of finite words, is denoted by A^{*} and its neutral element, the empty word, by ε. As usual we set $A^{+}=A^{*}-\varepsilon$. For a word x in $A^{*},|x|$ means the length of x. We call a nonempty word x primitive if it is not a proper power of any word, otherwise x is imprimitive. We call two words x and y copower if they are powers of the same word. For example, as well known two different words are copower if and only if the set they form is not a code. For two finite words x and y the notation $y x^{-1}$ and $x^{-1} y$ are used to denote the right and the left quotient of y by x respectively. Naturally, the quotient and the product of two words can be extended to languages, i.e. subsets of A^{*} :

$$
\begin{aligned}
X^{-1} Y & =\left\{x^{-1} y: x \in X, y \in Y\right\}, Y X^{-1}=\left\{y x^{-1}: x \in X, y \in Y\right\} \\
X Y & =\{x y: x \in X, y \in Y\}, X^{2}=X X, \ldots ;
\end{aligned}
$$

and $X^{*}=\bigcup_{n \geq 0} X^{n}$ (the Kleene closure of X).
In the following, our consideration is mainly based on the notion of infinite and bi-infinite words on A. Let ${ }^{N} A, A^{N}, A^{Z}$ be the sets of left infinite, right infinite and bi-infinite words on A respectively. For a language X of A^{*}, we denote ${ }^{\omega} X, X^{\omega}$ and ${ }^{\omega} X^{\omega}$ the left infinite, the right infinite and the bi-infinite product of nonempty words of X respectively, i.e. their elements are obtained by concatenation of words of $X-\varepsilon$ carried out infinitely to the left, to the right or infinitely in both directions. For example,

$$
{ }^{\omega} X=\left\{\ldots u_{2} u_{1}: u_{i} \in X-\varepsilon, i=1,2, \ldots\right\} .
$$

[^0]Factorizations in elements of X (over X, on X) of a left or right infinite word are understood customarily (see [10] for details), but factorizations of a bi-infinite word need a special treatment as follows. Let $w \in A^{Z}$ be in the form:

$$
w=\ldots a_{-2} a_{-1} a_{0} a_{1} a_{2} \ldots
$$

with $a_{i} \in A$. A factorization on elements of X of the bi-infinite word w is a strictly increasing function $\mu: Z \longrightarrow Z$ satisfying $x_{i}=a_{\mu(i)+1} \ldots a_{\mu(i+1)} \in X$ for all $i \in Z$. Two factorizations μ and λ are said to be equal, denoted $\mu=\lambda$ if there is $t \in Z$ such that $\lambda(i+t)=\mu(i)$ for all $i \in Z$. Otherwise, λ and μ are distinct, denoted $\mu \neq \lambda$. It is easy to verify that $\mu \neq \lambda$ iff $\mu(Z) \neq \lambda(Z)$, or equivalently, there exist a word $u \in A^{+}$, two bi-infinite sequences of words of $X: \ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and $\ldots, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, \ldots$ such that

$$
\begin{aligned}
\ldots x_{-2} x_{-1} u & =\ldots y_{-1} y_{0}, \quad|u| \leq\left|x_{0}\right| \\
x_{0} x_{1} \ldots & =u y_{1} y_{2} \ldots, \quad|u| \leq\left|y_{0}\right|
\end{aligned}
$$

with $u \neq x_{0}$ or $u \neq y_{0}$.
If every rigth infinite word of A^{N} has at most one factorization on elements of X then X is said to be an N-code (see [10], where in a wider context N-code is called strict code). Analogously, if every left infinite word possesses this property, we call X an \bar{N}-code. Obviously, X is an N-code iff $\bar{X}=\{\bar{x}: x \in X\}$ is an \bar{N}-code, where \bar{x} is the mirror image of the word x. For the bi-infinite words, we have our basic

Definition 1 A language X of A^{+}is a Z-code if all factorizations on X of every bi-infinite word are equal.

Example 1 Every singleton $\{u\}$ is always both an N-code and an \bar{N}-code but it is a Z-code if and only if u is primitive. The two-word language $X=\{a b, b a\}$ is both an N-code and an \bar{N}-code, but it is not a Z-code since the word ${ }^{\omega}(a b)^{\omega}$ has two factorizations ...ab.ab.ab... and ...ba.ba.ba..., which are verified directly to be distinct.

The family of Z-codes is closely connected with the so-called circular code [3]. A language X of A^{*} is said to be circular if for any $x_{0}, x_{1}, \ldots x_{m}, y_{0}, y_{1}, \ldots y_{n}$ of X and s, t of A^{*} the equalities

$$
\begin{aligned}
x_{1} x_{2} \ldots x_{m} & =t y_{0} \ldots y_{m} s \\
x_{0} & =s t
\end{aligned}
$$

imply $s=\varepsilon, m=n$ and $x_{0}=y_{0}, \ldots, x_{m}=y_{m}$.
It is easy to see that every circular language is a code and that every Z-code is a circular code. But not always a circular code is a Z-code, as the following code [4] $X=\{a b\} \cup\left\{a b^{i} a b^{i+1}, i=0,1,2, \ldots\right\}$ shows that. Nevertheless, every regular circular code is a Z-code i.e. the families of regular Z-codes and regular circular codes coincide, as shown by Beal [2]. Therefore, results and algorithms invented for circular codes can be applied to Z-codes. However, in the next section we work independently with Z-codes, proposing some tests for regular and finite Z codes. As consequences of that, we can obtain a result of A. Restivo on codes with finite (bounded) synchronization delay [11] and the aforementioned Beal's result. Also, for completeness, as an easy consequence of [1], we describe the structure of two-word Z-codes.

2 Tests for Z-codes

We develop now a criterion to verify whether a finite subset X of A^{+}is a Z-code. Our procedure is something like the Sardinas- Patterson one (cp. [10]), but actually instead of one sequence of subsets associated to X we need two sequences associated to each overlap of elements of X. Precisely, we define first the subset:

$$
W(X)=\left\{w \in A^{+}: \exists u, v \in A^{*} ; \exists x, y \in X: u w=x, w v=y, u v \neq \varepsilon\right\}
$$

whose element is called an overlap of elements of X. For each $w \in W(X)$, we define two sequences $U_{i}(w, X)$ an $V_{i}(w, X)$ of subsets of A^{*} as follows

$$
\begin{aligned}
U_{0}(w, X) & =w^{-1} X-\{\varepsilon\} \\
U_{i+1}(w, X) & =U_{i}(w, X)^{-1} X \cup X^{-1} U_{i}(w, X) \\
V_{0}(w, X) & =X w^{-1}-\{\varepsilon\} \\
V_{i+1}(w, X) & =X V_{i}(w, X)^{-1} \cup V_{i}(w, X) X^{-1}
\end{aligned}
$$

$i=0,1,2, \ldots$ Further, if there is no risk of confusion, instead of $W(X), U_{i}(w, X)$, $V_{j}(w, X)$ we write simply W, U_{i}, V_{j}. The following property of $U_{i}(w, X), V_{j}(w, X)$ is useful in the sequel.

Lemma 1 For every $N \geq 0$ and for any word $u, u \in U_{N}(w, X)$ iff there exist $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$ such that $m+n-1=N$ and either

$$
w x_{1} \ldots x_{n}=y_{1} \ldots y_{m} u, \quad|u| \leq\left|x_{n}\right|,|w|<\left|y_{1}\right|
$$

or

$$
w x_{1} \ldots x_{n} u=y_{1} \ldots y_{m}, \quad|u| \leq\left|y_{m}\right|,|w|<\left|y_{1}\right| .
$$

Remark. Similarly, the symmetrical statement holds for V_{j}.
Proof. By induction on N. For $N=0$.we have

$$
u \in U_{0} \Leftrightarrow\left(\exists y_{1} \in X: w^{-1} y_{1}=u \Leftrightarrow w u=y_{1},|u|<\left|y_{1}\right|,|w|<\left|y_{1}\right|\right)
$$

Suppose the lemma is true for some $N \geq 0$, we prove it true for $N+1$. We have

$$
u \in U_{N+1} \Leftrightarrow \exists u^{\prime} \in U_{N}, \exists x \in X: u^{\prime} u=x \vee x u=u^{\prime}
$$

By induction hypothesis, $u^{\prime} \in U_{N}$ iff there exist $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$ such that $n+m-1=N$ and either

$$
\begin{equation*}
w x_{1} \ldots x_{n} u^{\prime}=y_{1} \ldots y_{m}, \quad\left|u^{\prime}\right| \leq\left|y_{m}\right|, \quad|w|<\left|y_{1}\right| \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
w x_{1} \ldots x_{n}=y_{1} \ldots y_{m} u^{\prime}, \quad\left|u^{\prime}\right| \leq\left|x_{n}\right|, \quad|w|<\left|y_{1}\right| . \tag{2}
\end{equation*}
$$

Therefore $u \in U_{N+1}$ is equivalent to the fact that there exist x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m} in X such that

$$
\left(\left(u^{\prime} u=x\right) \&((1) \vee(2))\right) \vee\left(\left(x u=u^{\prime}\right) \&((1) \vee(2))\right)
$$

or equivalently

$$
\begin{aligned}
& \left.\left(\left(u^{\prime} u=x\right) \&(1)\right) \vee\left(u^{\prime} u=x\right) \&(2)\right) \vee \\
& \left(\left(x u=u^{\prime}\right) \&(1)\right) \vee\left(\left(x u=u^{\prime}\right) \&(2)\right) .
\end{aligned}
$$

The last, in its turn, as it is easy to verify, is equivalent to the fact that there exist $x_{1}, \ldots, x_{n^{\prime}}, y_{1}, \ldots, y_{m^{\prime}}$ in X such that $n^{\prime}+m^{\prime}-1=N+1$ and

$$
w x_{1} \ldots x_{n^{\prime}}=y_{1} \ldots y_{m^{\prime}} u, \quad|u| \leq\left|x_{n^{\prime}}\right|, \quad|w|<\left|y_{1}\right|
$$

or

$$
w x_{1} \ldots x_{n^{\prime}} u=y_{1} \ldots y_{m^{\prime}}, \quad|u| \leq\left|x_{m^{\prime}}\right|, \quad|w|<\left|y_{1}\right|
$$

i.e. the lemma is true also for $N+1$.

Now we state a sufficient condition for a language to be a Z-code.
Proposition $1 A$ finite subset X of A^{+}is a Z-code if for every overlap w of elements of X, the following conditions hold:
(i) if $w \in W \cap X$ then $U_{i}=\emptyset$ and $V_{j}=\emptyset$ for some $i, j \geq 0$;
(ii) if $w \in W-X$ then $U_{i}=\emptyset$ or $V_{j}=\emptyset$ for some $i, j \geq 0$.

Proof. We suppose that X is not a Z-code, i.e. at least one word of A^{Z} possesses two distinct factorizations on X, therefore we have two equalities:

$$
\begin{array}{r}
\ldots x_{-2} x_{-1} w=\ldots y_{-1} y_{0} \\
x_{0} x_{1} \ldots=w y_{1} y_{2} \ldots \tag{2}
\end{array}
$$

for some $w \in A^{+},|w| \leq\left|y_{0}\right|$ and $|w| \leq\left|x_{0}\right|, w \neq x_{0}$ or $w \neq y_{0}$, hence $w \in W$.
If $w \in W \cap X$ and, say, $w \neq x_{0}$, then $U_{0} \neq \emptyset$. By (2), for every $N>0$ there is the least integer $n \geq 0$ such that $\left|x_{0} \ldots x_{n}\right| \geq\left|w y_{1} \ldots y_{N}\right|$, that is

$$
x_{0} x_{1} \ldots x_{n}=w y_{1} \ldots y_{N} u
$$

for some word $u \in A^{*},|u|<\left|x_{n}\right|$. By Lemma $1, u \in U_{N+n}$. Thus $U_{N} \neq \emptyset$: (i) does not hold. For the case $w \neq y_{0}$, by (1) and the symmetrical version of Lemma 1 we get $V_{N} \neq \emptyset$ for all $N \geq 0$: (i) does not hold again.

Now let $w \in W-X$ then we have both $w \neq x_{0}$ and $w \neq y_{0}$. By the same argument as above we obtain $U_{i} \neq$ and $V_{j} \neq \emptyset$ for all $i, j \geq 0$: (ii) does not hold. The proof is completed.

In order to make a converse of Proposition 1 for finite languages we prove a lemma, which places an upperbound on the least i such that $U_{i}=\emptyset$. For a finite subset $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of A^{*} we define $\|X\|=\sum_{i=1}^{n}\left|x_{i}\right|$. Note that each U_{i} consists only of right factors (i.e. suffices) of words in X and if $U_{k}=U_{l} \neq \emptyset$ for $k \neq l$ then $U_{i} \neq \emptyset$ for all $i \geq 0$. Since the set of right factors of words in X is of cardinality at most $\|X\|$, such an upperbound obviously exists and we can take it as $2^{\|X\|}$. In the following lemma a more refined estimation is given.
Lemma 2 For any finite subset X of A^{*} and $w \in W$, the following assertions are equivalent
(i) $\quad U_{i}(w, X) \neq \emptyset$ for some $i \geq\|X\|$;
(ii) $U_{i}(w, X) \neq \emptyset$ for all $i \geq 0$;
(iii) There exist infinite sequences $x_{1}, x_{2}, \ldots ; y_{1}, y_{2}, \ldots$ of words in X such that

$$
w x_{1} x_{2} \cdots=y_{1} y_{2} \cdots
$$

with $|w|<\left|y_{1}\right|$.

Remark. The symmetrical statement holds for $V_{j}(w, X)$.
Proof. (iii) \Rightarrow (ii): already done in the proof of Proposition 1.
(ii) \Rightarrow (i): obvious.
(i) \Rightarrow (iii): Let $u_{N} \in U_{N}(w, X), N \geq\|X\|$. Then there exist $u_{i} \in U_{i}(w, X)$ such that $u_{0}=w, u_{i+1} \in u_{i}^{-1} X$ or $X^{-1} u_{i}, i=0,1, \ldots, N-1$. It is easy to see that $u_{0}, u_{1}, \ldots, u_{N}$ are suffices of words in X and the cardinality of the set of the suffices of the finite set X does not exceed $\|X\|$ and thus is less than $N+1$. Therefore, there are p and $q, 0 \leq p<q \leq N$ such that $u_{p}=u_{q}$. Let l be the largest number not exceeding $q-p$ such that $u_{p+1}=y_{1}^{-1} u_{p}, u_{p+2}=\left(y_{1} y_{2}\right)^{-1} u_{p}, \ldots, u_{p+l}=$ $\left(y_{1} \ldots y_{l}\right)^{-1} u_{p}$, where $y_{i}, \ldots, y_{l} \in X$; otherwise $l=0$. Then $u_{p+l+1} \in u_{p+l}^{-1} X$ and we apply Lemma 1 to the case $u_{q} \in U_{q-p-l}\left(u_{p+l}, X\right)$ to obtain some words x_{1}, \ldots, x_{n} and z_{1}, \ldots, z_{m} of X such that

$$
u_{p+l \mid} x_{1} \ldots x_{n}=z_{1} \ldots z_{m} u_{q}
$$

or

$$
u_{p+1} x_{1} \ldots x_{n} u_{q}=z_{1} \ldots z_{m} .
$$

Whence

$$
u_{p} x_{1} \ldots x_{n}=y_{1} \ldots y_{l} z_{1} \ldots z_{m} u_{q}
$$

or

$$
u_{p} x_{1} \ldots x_{n} u_{q}=y_{1} \ldots y_{l} z_{1} \ldots z_{m} .
$$

Since $u_{p}=u_{q}$, these equalities lead respectively to the infinite words

$$
\begin{equation*}
u_{p}\left(x_{1} \ldots x_{n}\right)^{\omega}=\left(y_{1} \ldots y_{l} z_{1} \ldots z_{m}\right)^{\omega} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{p}\left(x_{1} \ldots x_{n} y_{1} \ldots y_{l} z_{1} \ldots z_{m}\right)^{\omega}=\left(y_{1} \ldots y_{l} z_{1} \ldots z_{m} x_{1} \ldots x_{n}\right)^{\omega} \tag{2}
\end{equation*}
$$

On the other hand, since $u_{p} \in U_{p}(w, X)$, again by Lemma 1 we have

$$
\begin{equation*}
w x=y^{\prime} y u_{p}, \quad|w|<\left|y^{\prime}\right| \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
w x u_{p}=y^{\prime} y, \quad|w|<\left|y^{\prime}\right| \tag{4}
\end{equation*}
$$

where $\dot{y}^{\prime} \in X, x, y \in X^{*}$. Combining (3) and (4) with (1) and (2), we get four possibilities that all lead to the desired infinite equality in (iii). Lemma 2 is proved.

Now we are ready to state our criterion.
Theorem 1 A finite subset x of A^{+}is a Z-code if and only if for every overlap w of elements of X, the following conditions hold:
(i) if $w \in W \cap X$ then $U_{i}(w, X)=\emptyset$ and $V_{j}(w, X)=\emptyset$ for some $i, j<\|X\|$;
(ii) if $w \in W-X$ then $U_{i}(w, X)=0$ or $V_{j}(w, X)=\emptyset$ for some $i, j \leq\|X\|$.

Proof. The sufficient part is Proposition 1, we have to prove only the necessary one. Suppose that (i) or (ii) does not hold. We shall derive from this two equalities which show that X is not a Z-code. In fact, by Lemma 2 and its symmetrical version, we have two cases: there exist
(1) $w \in W \cap X$ and $x_{i}, y_{j} \in X, i, j=0,1,2, \ldots$ such that

$$
x_{0} x_{1} \cdots=w y_{0} y_{1} \ldots, \quad|w|<\left|x_{0}\right|
$$

or

$$
\ldots x_{1} x_{0}=\ldots y_{1} y_{0} w, \quad|w|<\left|x_{0}\right|
$$

(2) $w \in W-X$ and $x_{i}, y_{j} \in X, i, j=\cdots-2,-1,0,1,2, \ldots$ such that

$$
x_{0} x_{1} \cdots=w y_{0} y_{1} \ldots, \quad|w|<\left|x_{0}\right|
$$

and

$$
\ldots x_{-1} x_{0}=\ldots y_{-1} y_{0} w, \quad|w|<\left|x_{0}\right|
$$

regarding (i) or (ii) does not hold.
The first case together with the obvious equalities $\ldots w w=\ldots w w$ and $w w \ldots=$ $w w .$. show that X is not a Z-code.

The equalities in the second case themselves ensure that X is not a Z-code. The proof is completed.

We give now some examples illustrating the execution of the algorithm.
Example 2 (a) Consider $X=\left\{a^{2} b, b^{2} a\right\}$. We apply Theorem 1 to show that X is a Z-code.

$$
\begin{aligned}
W & =\{a, b\} \\
U_{0}(a, X) & =\{a b\}, U_{1}(a, X)=\emptyset \\
U_{0}(b, X) & =\{b a\}, U_{1}(b, X)=\emptyset
\end{aligned}
$$

Since $a, b \notin X$, we conclude that X is a Z-code.
(b) Let $X=\{u\}$ with u imprimitive, $u=\lambda^{n}(n \geq 2)$. Clearly $\lambda \in W-X$, $U_{0}(\lambda, X)=\left\{\lambda^{n-1}\right\}$, which implies $\lambda \in U_{1}(\lambda, X), \lambda^{n-1} \in U_{2}(\lambda, X), \ldots$ Thus $U_{i}(\lambda, X) \neq \emptyset$ for all $i \geq 0$. So $\{u\}$ is not a Z-code.

Conversely, let $X=\{u\}$ not be a Z-code and let λ be an overlap of X such that $U_{i}(\lambda, X) \neq \emptyset$ for all $i \neq 0$. Since λ is an overlap of u, we have $x \lambda=u$ for some $x \in A^{+}$. Further, if $\lambda_{0} \in U_{0}(\lambda, X)$ then $\lambda \lambda_{0}=u$. Hence $U_{0}(\lambda, X)=\left\{\lambda_{0}\right\}$. Let $\lambda_{1} \in U_{1}(\lambda, X)$ then $\lambda_{0} \lambda_{1}=u$. Thus $\left|\lambda_{1}\right|=|\lambda|$ and from $x \lambda=u$ it follows $\lambda=\lambda_{1}$. Consequently $\lambda_{0} \lambda=\lambda \lambda_{0}=u$, which with $\lambda_{0}, \lambda_{1} \neq \varepsilon$ yield that u is imprimitive. Thus $\{u\}$ is a z-code if and only if u is primitive.

The main setback of Theorem 1 is that it is unfit for infinite (even regular) languages.
Example 3 Consider $X=\left\{a, c a b, c, b c^{+} d\right\}$ on the alphabet $A=\{a, b, c, d\}$. It is an infinite regular Z-code, but for all $i \geq 0: U_{i}(c, X) \neq \emptyset$.

Nevertheless, for the important class of regular languages we can work out another algorithm close to the previous one, also of Sardinas-Patterson type. Let
X be a regular language and as before W be the set of overlaps. First, for each overlap $w \in W$ we construct two sequences:

$$
\begin{array}{ll}
\bar{U}_{0}=w^{-1} X-\{\varepsilon\}, & \bar{U}_{i+1}=\bar{U}_{i}^{-1} X^{*} \\
\bar{V}_{0}=X w^{-1}-\{\varepsilon\}, & \bar{V}_{i+1}=X^{*} \bar{V}_{i}^{-1}
\end{array}
$$

for all $i \geq 0$, which, if needed, will be referred to as $\bar{U}_{i}(w, X)$ and $\bar{V}_{j}(w, X)$. Of course there is no need to compute $\bar{U}_{i}(w, X), \bar{V}_{j}(w, X)$ for all $w \in W$, it is sufficient to take representatives modulo the right and left principal congruence defined by X^{*} or X. Recall that for a subset X of A^{*} the following equivalence relation

$$
u \equiv_{R} v \Leftrightarrow u^{-1} X=v^{-1} X, \quad u, v \in A^{*},
$$

called right principal congruence defined by X. Analogously is defined the left principal congruence \equiv_{L}. When X is regular, the number of right (left) principal congruence classes, called right index (resp. left index) of X, is finite and equal to the number of states of the minimal automaton recognizing X. Now we state

Theorem 2 Let X be a regular subset of A^{+}and m, e be the right and left index of X^{*}. Then X is a Z-code if and only if for all $w \in W$ the following conditions hold
(i) $\quad w \in W \cap X$ implies $\bar{U}_{i}(w, X)=\emptyset$ and $\bar{V}_{j}(w, X)=\emptyset$ for some $i<m, j<e$;
(ii) $w \in W-X$ implies $\bar{U}_{i}(w, X)=$ or $\bar{V}_{j}(w, X)=$ for some $i<m, j<e$.

Remark. As seen from the proof below, (i) and (ii) are sufficient for any language of A^{*} to be a Z-code.

Proof. In fact, we prove an equivalent statement: X is not a Z-code iff (i) or (ii) does not hold.

First, let X not be a Z-code. Then there exist two equalities:

$$
\begin{align*}
\ldots x_{-2} x_{-1} w & =\ldots y_{-1} y_{0} \tag{1}\\
x_{0} x_{1} \ldots & =w y_{1} y_{2} \ldots \tag{2}
\end{align*}
$$

with $|w| \leq\left|x_{0}\right|,|w| \leq\left|y_{0}\right|, x_{i}, y_{j} \in X, w \neq x_{0}$ or $w \neq y_{0}$, hence $w \in W$.
If $w \in W \cap X$, we assume for certainty that $w \neq y_{0}$ and consider (1), putting $v_{0}=y_{0} w^{-1} \in \bar{V}_{0}$. From (1) we get

$$
\cdots x_{-2} x_{-1}=\ldots y_{-2} y_{-1} v_{0}
$$

Choose $n \in N$ such that $\left|x_{-n} \ldots x_{-2} x_{-1}\right| \geq\left|v_{0}\right|$ and put again $v_{1}=$ $\left(x_{-1} \ldots x_{-1}\right) v_{0}^{-1}$, hence $v_{1} \in X^{*} v_{0}^{-1} \subseteq X^{*} \bar{V}_{0}^{-1}=\bar{V}_{1}$ and

We apply this argument over and over again to see that $\bar{V}_{j} \neq \emptyset$ for all $j \geq 0$, i.e (i) does not hold.

If now $w \in W-X$, we have both $w \neq x_{0}$ and $w \neq y_{0}$. Similarly, we apply the argument above to (1) and (2) to verify $\bar{U}_{i} \neq \emptyset$ and $\bar{V}_{j} \neq \emptyset$ for all $i, j \geq 0:$ (ii) does not hold.

Conversely, let $\bar{U}_{i} \neq \emptyset$ for all $i \geq 0$ and N be any integer not less than m, and $u_{N} \in \bar{U}_{N}$. There exist $u_{i} \in \bar{U}_{i}, i=0,1, \ldots, N-1$ such that $u_{0} \in w^{-1} X$, $u_{i+1} \in u_{i}^{-1} X^{*}, i=0,1, \ldots, N-1$, or equivalently, $w u_{0} \in X, u_{i} u_{i+1} \in X^{*}, \quad i=$ $0,1, \ldots, N-1$. Among $u_{0}, u_{1}, \ldots, u_{N}$ we can pick out u_{q} and u_{p} such that $p<q$ and $u_{q} \equiv_{R} u_{p} \bmod X^{*}$. We define now an infinite sequence of words $u_{0}^{\prime}, u_{1}^{\prime}, \ldots$ by putting

$$
u_{i}^{\prime}=u_{i}, \quad 0 \leq i \leq q-1
$$

and

$$
u_{q+i}^{\prime}=u_{p+t}, \quad i=0,1, \ldots
$$

where t is the least nonnegative residue of $i \bmod q-p$.
It is easy to verify that

$$
x_{i}^{\prime}=u_{i}^{\prime} u_{i+1}^{\prime} \in X^{*}
$$

for $i=0,1,2, \ldots$ and

$$
x^{\prime}=w u_{0}^{\prime}=w u_{0} \in X
$$

Consider now the infinite product $w u_{0}^{\prime} u_{1}^{\prime} \ldots$ written in two ways

$$
\left(w u_{0}^{\prime}\right)\left(u_{1}^{\prime} u_{2}^{\prime}\right) \cdots=w\left(u_{0}^{\prime} u_{1}^{\prime}\right)\left(u_{2}^{\prime} u_{3}^{\prime}\right) \cdots
$$

or

$$
\begin{equation*}
\dot{x}_{0} x_{1} \cdots=w y_{1} y_{2} \cdots \tag{3}
\end{equation*}
$$

with $x_{0} \in X,|w|<\left|x_{0}\right| ; x_{i}, y_{j} \in X^{*}$.
Analogously, if $\bar{V}_{j} \neq \emptyset$ for all $i \geq 0$, we have the equality

$$
\begin{equation*}
\ldots x_{-2} x_{-1} w=\ldots y_{-1} y_{0} \tag{4}
\end{equation*}
$$

where $y_{0} \in X,|w|<\left|y_{0}\right| ; x_{i}, y_{j} \in X^{*}$.
If now $w \in W \cap X$ and (i) does not hold, for instance, $\bar{U}_{i} \neq \emptyset$ for all i. Then (3) together with the obvious equality $\ldots w w=\ldots w w$ show that X is not a Z-code.

If $w \in W-X$ and (ii) does not hold, i.e. $\bar{U}_{i}, \bar{V}_{j} \neq \emptyset$ for all $i, j \geq 0$. Then (3) and (4) will give rise to two distinct factorizations on X of some bi-infinite word: X is not a Z-code and the theorem follows.

Example 4 We use Theorem 2 to show that the language $X=\left\{a, c a b, c, b c^{+} d\right\}$ given in Example 3 is in fact a Z-code.

$$
\begin{aligned}
W & =\{c, b\} \\
\bar{U}_{0}(c, X) & =\{a b\}, \bar{U}_{1}(c, X)=c^{+} d X^{*}, \bar{U}_{2}(c, X)=\emptyset \\
\bar{V}_{0}(c, X) & =\emptyset \\
\bar{U}_{0}(b, X) & =c^{+} d, \bar{U}_{1}(b, X)=\emptyset
\end{aligned}
$$

Since $c \in W \cap X, b \in W-X, X$ is a Z-code.
In general Theorem 2 is not true for arbitrary languages, as shown in the following

Example 5 Consider $X=\left\{a^{i+2} b a^{i} b: i=0,1,2, \ldots\right\} \cup\left\{b a^{2 i+1} b: i=0,1,2, \ldots\right\} \subseteq$ $\{a, b\}^{*}$. Clearly, b is an overlap and for all $i \geq 0$, we have $a b \in \bar{U}_{i}(b, X), a^{2(i+1)} b \in$ $\bar{V}_{i}(b, X)$, i.e. $\bar{U}_{i}, \bar{V}_{j} \neq$ for all $i, j \geq 0$, but a simple verification ensures that X is a Z-code.

We should mention two other algorithms to verify whether a regular code X is a Z-code. Both of them consist in checking the emptiness problem for some automata (Devolder and Timmerman [4], Beal [2]) that has as well known a polynomial time complexity in the number of states of automata.

Using Theorem 2 we give alternative proofs of the results of M.P. Beal and A. Restivo. First, we prove
Corollary 1 (M.P. Beal [1]) Let X be a regular code. Then X is a Z-code if and only if it is a circular code.
Proof. First, observe that if X is a code then
(1) for any $w \in W \cap X: \bar{U}_{i}(w, X) \cap X^{*}=\emptyset$ and $\bar{V}_{i}(w, X) \cap X^{*}=\emptyset$ for all $i=0,1,2, \ldots ;$
(2) for any $w \in W-X: \bar{U}_{i}(w, X) \cap X^{*}=\emptyset$ or $\bar{V}_{i}(w, X) \cap X^{*}=\emptyset$ for all $i=0,1,2, \ldots$
that are trivially to be verified using Lemma 1 or its symmetrical version.
Let now X be a regular circular code, hence a code: (1) and (2) are satisfied.
Suppose that for some $w \in W \cap X$ we have, say, $\bar{U}_{i} \neq \emptyset$ for all $i=0,1,2, \ldots$ For any $N \geq 0$ there exist $u_{0}, u_{1}, \ldots, u_{N-1}, u_{N}$ such that $u_{1} \in u_{0}^{-1} X^{*}, \ldots, u_{N} \in$ $u_{N-1}^{-1} X^{*}$. Since X^{*} is of finite right index m, if we take N sufficiently large, we can find $i, j: 0 \leq i<j$, such that $u_{i}^{-1} X^{*}=u_{j}^{-1} X^{*}$ and $j-1$ is even. Consider the words

$$
u=u_{i+1} \ldots u_{j}, \quad v=u_{i+2} \ldots u_{j-1}
$$

it follows $u_{j} u_{i+1} \in X^{*}, v \in X^{*}$ and $u=u_{i+1} v u_{j} \in X^{*}$. By circularity of X we get $u_{j}, u_{i+1} \in X^{*}$, in particular, $u_{j} \in \widetilde{U}_{j} \cap X^{*} \neq \emptyset$ contradicting (1). Therefore for any $w \in W \cap X$ we have $\bar{U}_{i}=\emptyset$ for some i and analogously $\bar{V}_{j}=\emptyset$ for some j.

As for any $w \in W-X$, by the same way, we can conclude that either $\bar{U}_{i}=\emptyset$ for some i or $\bar{V}_{j}=\emptyset$ for some j.

By virtue of Theorem 2, X is a Z-code. The proof is completed.
We now deduce another statement concerning codes with bounded synchronization delay. Recall that a subset X of A^{*} is said to be a code with bounded synchronization delay provided it is a code and for some integer $p \geq 0$, for all $u, v \in X^{p}$, and for all $g, f \in A^{*}$,

$$
g u, v f \in X^{*}
$$

whenever

$$
g u v f \in X^{*} .
$$

The least number p satisfying this condition is the synchronization delay of X. The fact that every code with bounded synchronization delay is a Z-code is obvious; but the reverse conclusion is not always valid. A lot of interesting properties of these codes have been discovered, for example, in the finite case, these codes are exactly the very pure codes, i.e. circular codes (see [11], [12]). We nave the following

Corollary 2 (A. Restivo [11]) Let X be a regular subset of A^{+}, X is a code with bounded delay if and only if it is a Z-code satisfying $A^{*} X^{d} A^{*} \cap X=\emptyset$ for some positive integer d.

Proof. "Only if" part: first, the fact that each code with bounded synchronization delay is a Z-code is easy. Further, we show that $A^{*} X^{d} A^{*} \cap X=\emptyset$ for all d exceeding the right index of X. Suppose on the contrary that

$$
u x_{1} \ldots x_{d} v \in A^{*} X^{d} A^{*} \cap X
$$

for some $x_{1}, x_{2}, \ldots, x_{d} \in X$ and $u, v \in A^{*}$. Then, indeed, there exist i and $j, i<$ $j \leq d$, such that $u x_{1} \ldots x_{i} \equiv \equiv_{R} u x_{1} \ldots x_{j} \bmod X$ which implies that for all $k=$ $0,1,2, \ldots$:

$$
u x_{1} \ldots x_{i}\left(x_{i+1} \ldots x_{j}\right)^{k} \equiv_{R} u x_{1} \ldots x_{i}\left(x_{i+1} \ldots x_{j}\right)^{k+1} \bmod X
$$

and consequently

$$
u x_{1} \ldots x_{i}\left(x_{i+1} \ldots x_{j}\right)^{k} x_{j+1} \ldots x_{d} v \in X
$$

Hence the synchronization delay of X cannot be bounded.
Conversely, let X be a regular Z-code and $A^{*} X^{d} A^{*} \cap X=\emptyset$ for some positive integer d, hence $d \geq 2$. By Theorem 2, for all overlaps $w \in W, \bar{U}_{m}(w, X)=\emptyset$ or $\bar{V}_{e}(w, X)=\emptyset$, where m and e are the right and left index of X^{*}, respectively. We show that X is of bounded synchronization delay not greater than $p=(m+1) d$ (the value in [11] is $2(m+1) d$). If that is not so, there must exist some words $g, h \in A^{*}, x_{1}, \ldots, x_{p}, x_{p+1}, \ldots x_{2 p}, y_{1}, \ldots, y_{q} \in X$ such that

$$
\begin{equation*}
g x_{1} \ldots x_{p} x_{p+1} \ldots x_{2 p} h=y_{1} \ldots y_{q} \tag{1}
\end{equation*}
$$

'and for all $k=1,2, \ldots, q$

$$
g x_{1} \ldots x_{p} \neq y_{1} \ldots y_{k}
$$

Thus, it has to exist a unique positive integer $l \leq q$ such that

$$
y_{1} \ldots y_{l-1}<g x_{1} \ldots x_{p}<y_{1} \ldots y_{l}
$$

and the largest positive integer $i \leq p-1$ and the smallest positive integer $j \geq p+1$ satisfying

$$
\begin{equation*}
g x_{1} \ldots x_{i} \leq y_{1} \ldots y_{l-1}<g x_{1} \ldots x_{p}<y_{1} \ldots y_{l} \leq g x_{1} \ldots x_{j} \tag{2}
\end{equation*}
$$

(abusing language, we write for words $x, y, x \leq y, x<y$ to indicate that x is a prefix, a proper prefix of y, respectively). Since $y_{l} \notin A^{*} X^{d} A^{*}, j \leq d+p$ and $i \geq p-d$.

Further, if in (2) $g x_{1} \ldots x_{i}=y_{1} \ldots y_{l-1}$ and $g x_{1} \ldots x_{j}=y_{1} \ldots y_{l}$ then

$$
y_{i}=x_{i+1} \ldots x_{j}, \quad j-i \geq 2
$$

that is a contradiction with the fact that X is a code.
Alternatively, assume that $g x_{1} \ldots x_{j} \neq y_{1} \ldots y_{l}$ which gives rise to

$$
\begin{align*}
g x_{1} \ldots x_{j-1} w & =y_{1} \ldots, y_{l}, \tag{3.1}\\
x_{j} x_{j+1} \ldots x_{2 p} h & =w y_{l+1} \ldots y_{q}, \tag{3.2}
\end{align*}
$$

where $w \in W$ and $|w|<\left|y_{l}\right|,|w|<\left|x_{j}\right|$. Similarly, the case $g x_{1} \ldots x_{i} \neq y_{1} \ldots y_{l-1}$ gives rise to

$$
\begin{align*}
g x_{1} \ldots x_{i+1} & =y_{1} \ldots y_{l-1} w, \tag{4.1}\\
w x_{i+2} \ldots x_{2 p} h & =y_{l} y_{l+1} \ldots y_{q}, \tag{4.2}
\end{align*}
$$

where $w \in W$ and $|w|<\left|y_{i}\right|,|w|<\left|x_{i+1}\right|$.
We will show that (3.2) or (4.2) equally leads to $\bar{U}_{2 m}(w, X) \neq \emptyset$ and (3.1) or (4.1) - to $\bar{V}_{k}(w, X) \neq \emptyset$ with k abitrarily large, in particular $k \geq e$ that is quite a contradiction.

First, suppose that we have (3.2), setting

$$
u_{1}=x_{j+1} \ldots x_{j+d}, \ldots, u_{m}=x_{j+(m-1) d+1} \ldots x_{j+m d}
$$

and let $q(k)$ the smallest integer such that for $k=0,1, \ldots, m$

$$
\begin{equation*}
x_{j} u_{1} \ldots u_{k} \leq w y_{l+1} \ldots y_{q(k)} \tag{5}
\end{equation*}
$$

(for compactness, we set by convention that $x_{j} u_{1} \ldots u_{k}=x_{j}$ when $k=0$). Since $A^{*} X^{d} A^{*} \cap X=\emptyset, w<x_{j}$ and $u_{1}, \ldots, u_{m} \in X^{d}$, it follows $l+1 \leq q(0)<q(1)<\cdots<$ $q(m)$, Putting $v_{k}=y_{l+1} \ldots y_{q(k)}, k=0,1,2, \ldots, m$, by (5) and $A^{*} X^{d} A^{*} \cap X=\emptyset$ we get

$$
\begin{equation*}
x_{j} u_{1} \ldots u_{k} \leq w v_{k}<x_{j} u_{1} \ldots u_{k+1} \tag{6}
\end{equation*}
$$

for $k=1,2, \ldots, m-1$ and

$$
\begin{equation*}
w v_{k-1} \leq x_{j} u_{1} \ldots u_{k} \leq w v_{k} \tag{7}
\end{equation*}
$$

for $k=1, \ldots, m$.
It is easy to verify that (6), (7) together with $w<x_{j}$ yield

$$
\left(w v_{0}\right)^{-1}\left(x_{j} u_{1}\right) \in \bar{U}_{2}, \ldots,\left(w v_{m-1}\right)^{-1}\left(x_{j} u_{1} \ldots u_{m}\right) \in \bar{U}_{2 m},
$$

i.e. $\bar{U}_{2 m} \neq \emptyset$.

Likewise, since $i+2 \leq j$, (4.2) leads also to $\bar{U}_{2 m} \neq \emptyset$.
Now, as far as \bar{V}_{e} is concerned, we treat (3.1) and (4.1) as above, only in the symmetrical way. Directly, (3.1) or (4.1) cannot lead to $\bar{V}_{e} \neq \emptyset$, but we can "pump" them up to some equalities ${ }^{n}$ longn enough by proceeding as follows. Suppose, for example, that we have (4.1). Among $m+1$ numbers $1, d+1, \ldots, m d+1$ there must exist a, b such that $g x_{1} \ldots x_{a} \equiv_{R} g x_{1} \ldots x_{b} \bmod X^{*}$ with $a<b$. Note that $b-a \geq d \geq 2$ and $a, b \leq m d+1 \leq p-d+1 \leq i+1$. Further, for some integer $s \leq t \leq l$ we must have

$$
\begin{aligned}
y_{1} \ldots y_{b-1} u_{a} & =g x_{1} \ldots x_{a} \\
g x_{1} \ldots x_{a} v_{a} & =y_{1} \ldots y_{a} \\
u_{a} v_{a} & =y_{a}
\end{aligned}
$$

and

$$
\begin{aligned}
y_{1} \ldots y_{t-1} u_{b} & =g x_{1} \ldots x_{b} \\
g x_{1} \ldots x_{b} v_{b} & =y_{1} \ldots y_{t}, \\
u_{b} v_{b} & =y_{t},
\end{aligned}
$$

where $u_{a}, v_{a}, u_{b}, v_{b} \in A^{*}$. Hence $x_{a+1} \ldots x_{i+1} \in v_{a} X^{*} w$. From $g x_{1} \ldots x_{a} \equiv_{R}$ $g x_{1} \ldots x_{b} \bmod X^{*}$ it follows

$$
g x_{1} \ldots x_{a} \equiv_{R} g x_{1} \ldots x_{a}\left(x_{a+1} \ldots x_{b}\right)^{k} \bmod X^{*}
$$

for all $k=0,1,2, \ldots$ Since $g x_{1} \ldots x_{a} v_{a} \in X^{*}$ we have $g x_{1} \ldots x_{a}\left(x_{a+1} \ldots x_{b}\right)^{k} v_{a} \in$ X^{*}. Therefore

$$
\begin{equation*}
g x_{1} \ldots x_{a}\left(x_{a+1} \ldots x_{b}\right)^{k} x_{a+1} \ldots x_{i+1} \in X^{*} w \tag{8}
\end{equation*}
$$

where, as before, $|w|<\left|x_{i+1}\right|$.
Looking into (8) we see that the left-hand side of (4.1) is pumped up by a product of $k(b-a-1)$ words. We take k large enough to obtain a sufficiently "long" equality of the form (4.1). Now proceeding as is done for $\bar{U}_{2 m}$, we conclude that \bar{V}_{e} is nonempty. This contradiction with Theorem 2 completes the proof.

The regularity condition is essential for Theorem 3 to be valid. Indeed, consider the following

Example 6 The Z-code $X=\left\{a^{i+1} b a^{i} b: i=0,1,2, \ldots\right\} \subseteq\{a, b\}^{*}$ is not a regular language. It is not a code with bounded synchronization delay, although $A^{*} X^{2} A^{*} \cap$ $X=\emptyset$.
… Concluding, from [8] or [1] we deduce the following statement.
Theorem 3 Let $X=\{x, y\}(|x|>|y|)$ be a two-word language of A^{*} then X is not a Z-code if and only if one of the following assertions holds
(i) x or y is imprimitive;
(ii) x and y are conjugate;
(iii) $x y^{n}$ is imprimitive for some positive integer $n<\left|\frac{x}{y \mid}\right|+1$;
(iv) $x^{2} y$ is a square.

Proof. Obviously, if one of (i)-(iv) holds, X is not a Z-code.
Conversely, suppose that X is not a Z-code (thus not a circular code, not a very pure code) and besides x and y are primitive and not conjugate. We show that (iii) or (iv) must occur.

Indeed, by [8] or [1], $x^{*} y \cup x y^{*}$ contains an imprimitive word $u=v^{m}, m \geq 2$:

- if $u=x y^{n}$ then $(n-1)|y|$ cannot excceed $|v|-1$ otherwise by Fine and Wilf Theorem (see [9] or [5]) x and y are copower that contradicts the assumption. Thus $(n-1)|y|<|v|$, or $2(n-1)|y|<2|v| \leq|x|+n|y|=\left|x y^{n}\right|$ i.e. $|n|<\frac{|x|}{|y|}+1$;
- if $u=x^{n} y=v^{m}$ we can suppose $n \geq 2$. Further, if the inequality

$$
m \geq \frac{n+1}{n-1}
$$

holds, then $m(n-1)|x| \geq(n+1)|x| \geq n|x|+|y|=m|v|$. Therefore, $(n-1)|x| \geq|v|$, or, $n|x| \geq|x|+|v|$. Again by Fine and Wilf Theorem x, v and thus x, y are copower that contradicts the assumption. So, we always have $m<\frac{n+1}{n-1}$. Since $m, n \geq 2$ it follows $m=n=2$.

Acknowledgements The authors acknowledge their great indebtedness to the referees for their valuable comments and suggestions.

References

[1] E. Barbin Le Rest and M. Barbin Le Rest, Sur la combinatoire des codes à deux mots, Theoretical Computer Science 41 (1985), 61-81.
[2] M.P. Beal, "Codages, automates locaux et entropie," Publications du LITP (Paris), No. 38 (1988).
[3] J. Berstel and D. Perrin, "Theory of Codes", Academic Press, New York, 1985.
[4] J. Devolder and E. Timmerman, "Codes for Bi-infinite Words", Publications du LIFL (Lille), No I.T. 16 (1990).
[5] N.J. Fine and H.S. Wilf, Uniqueness Theorems for Periodic Functions, Proceedings of the American Mathematical Society 16 (1965), 109-114.
[6] S. Golomb and B. Gordon, Codes with Bounded Synchronization Delay, Information and Control 8 (1965), 355-372.
[7] G. Lallement, "Semigroups and Combinatorial Applications," John Wiley, New York, 1979.
[8] A. Lentin and M.P. Shützenberger, A Combinatorial Problem in the Theory of Free Monoids, "Combinatorial Mathematics and Its Applications," Proceedings of the Conference held at the University of North Carolina (R.C. Bose and T.A. Dowlings, eds.), Chapell Hill, pp. 128-144.
[9] M. Lothaire, "Combinatorics on Words," Addison-Wesley, Reading, Massachusetts, 1983.
[10] Nguyen Huong Lam and Do Long Van, On a Class of Infinitary Codes, Theoretical Informatics and Applications 24 (1990), 441-458.
[11] A. Restivo, A Combinatorial Property of Codes Having Finite Synchronization Delay, Theoretical Computer Science 1 (1975), 95-101.
[12] A. Restivo, On a Question of McNaughton and Papert, Information and Control 25 (1974), 93-101.

[^0]: *Institute of Mathematics, P.O.Box 631, 10000 Hanoi, Vietnam

