On minimal and maximal clones

L. Szabó* ${ }^{*}$

1 Introduction

A composition closed set of finitary operations on a fixed universe A containing all projections is a clone. For example the set J of all projections and the set \mathbf{O} of all operations on A are clones. The clones, ordered by inclusion, form an algebraic lattice L with least element J and greatest element O. For $|A|=2, L$ is the well-known countable Post lattice [5], but already for $|A|>2$ there are 2^{No} clones. For A finite L has finitely many coatoms, called maximal clones, and they are fully known $([7],[8])$. On the other hand L has finitely many atoms, called minimal clones, and are fully known only for $|A| \leq 3([3],[5])$. It is also known (see e.g. [6]) that the meet of all maximal clones is J , and the join of all minimal clones is 0 .

The aim of the present paper is to show that in general there are three maximal clones with meet J and there are three minimal clones with join \mathbf{O}; moreover, for a prime element universe, two maximal clones, resp., two minimal clones have the above properties.

2 Preliminaries

Let A be a fixed universe with $|A| \geq 2$. For any positive integer n let $O^{(n)}$ denote the set of all n-ary operations on A (i.e. maps $A^{n} \rightarrow A$) and let $\mathbf{O}=\bigcup_{n=1}^{\infty} \mathbf{O}^{(n)}$. For $1 \leq i \leq n$ let e_{i}^{n} denote the n-ary i-th projection (trivial operation). Further let $\mathbf{J}=\left\{e_{i}^{n} \mid 1 \leq i \leq n<\infty\right\}$. The operations in $\mathbf{O} \backslash \mathbf{J}$ are called nontrivial operations. By a clone we mean a subset of O which is closed under superpositions and contains all projections. The set of clones ordered by inclusion form a lattice L in which every meet is the set-theoretical intersection. For $F \subseteq \mathbf{O}$ denote by $[F]$ the clone generated by F, and instead of $[\{f\}]$ we write $[f]$.

A minimal clone, resp., a maximal clone is an atom, resp., a dual atom of L. It is well-known that L is an atomic and dually atomic algebraic lattice, and has finitely many minimal clones and maximal clones. Furthermore, the intersection of all maximal clones is J, and the minimal clones generate \mathbf{O} (see e.g. [6]). The maximal clones are fully known and was given by I. G. Rosenberg ([7], [8]). For $|A|=2, L$ is the well-known Post lattice [5]. Considering the Post lattice we immediately see that for two element set there are three maximal clones with intersection J and the intersection of two maximal clones cannot be J. Moreover, there are three minimal clones with join \mathbf{O} and the join of two minimal clones cannot be \mathbf{O}.

[^0]A subset $F \subseteq O$ as well as the algebra (A, F) is primal or complete if the clone generated by F (i.e. the set of all term functions of (A, F)) is equal to $O ; F$ as well as the algebra (A, F) is functionally complete if F together with all constant operations is primal.

A ternary operation f on A is a majority function if for all $x, y \in A$ we have $f(x, x, y)=f(x, y, x)=f(y, x, x)=x ;$. f is a Mal'tsev function if $f(x, y, y)=$ $f(y, y, x)=x$ for all $x, y \in A$. An n-ary operation t on A is said to be an i-th semi-projection ($n \geq 3,1 \leq i \leq n$) if for all $x_{1}, \ldots, x_{n} \in A$ we have $t\left(x_{1}, \ldots, x_{n}\right)=$ x_{i} whenever at least two elements among x_{1}, \ldots, x_{n} are equal. We are going to formulate Rosenberg's Theorem ([7], [8]) which is the main tool in proving our results. First, however, we need some further definitions.

Let $n, h \geq 1$. An n-ary operation $f \in \mathbf{O}^{(n)}$ is said to preserve the h-ary relation $\rho \subseteq A^{h}$ if ρ is a subalgebra of the h-th direct power of the algebra $(A ; f)$. Then the set of operations preserving ρ forms a clone, which is denoted by Pol ρ. We say that a relation ρ is a compatible relation of the algebra (A, F) if $F \subseteq$ Pol ρ. A binary relation is called nontrivial if it is distinct from the identity relation and from the full relation.

An h-ary relation ρ on A is called central if $\rho \neq A^{h}$ and there exists a non-void proper subset C of A (called the center of ρ) such that
(a) $\left(a_{1}, \ldots, a_{h}\right) \in \rho$ whenever at least one $a_{i} \in C(1 \leq i \leq h) ;$
(b) ρ is totally symmetric, i.e. $\left(a_{1}, \ldots, a_{h}\right) \in \rho$ implies $\left(a_{1 \pi}, \ldots, a_{h \pi}\right) \in \rho$ for every permutation ϕ of the indices $1, \ldots, h$;
(c) ρ is totally reflexive, i.e. $\left(a_{1}, \ldots, a_{h}\right) \in \rho$ if $a_{i}=a_{j}$ for some $i \neq j(1 \leq i, j \leq h)$.

Let $h \geq 3$. A family $T=\left\{\Theta_{1}, \ldots, \Theta_{m}\right\}(m \geq 1)$ of equivalence relations on A is called h-regular if each $\Theta_{i}(1 \leq i \leq m)$ has exactly h blocks and $\Theta_{T}=\Theta_{1} \cap \ldots \cap \Theta_{m}$ has exactly h^{m} blocks (i.e. the intersection $\bigcap_{i=1}^{m} B_{i}$ of arbitrary blocks B_{i} of $\Theta_{i}(i=1, \ldots, m)$ is nonempty). The relation determined by T is

$$
\begin{gathered}
\lambda_{T}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: a_{1}, \ldots, a_{h}\right. \text { are not pairwise incongruent } \\
\text { modulo } \left.\Theta_{i} \text { for all } i(1 \leq i \leq m)\right\} .
\end{gathered}
$$

Note that h-regular relations are both totally reflexive and totally symmetric.
Now we are in a position to state Rosenberg's Theorem:
Theorem A (I. G. Rosenberg [7],[8]). A subset of O is a maximal clone if and only if it is of the form Pol ρ for a relaton ρ of one of the following six types:

1. a bounded partial order;
2. a binary relation $\{(a, a \pi) \mid a \in A\}$ where π is a permutation of A with $|A| / p$ cycles of the same length p (p is a prime number);
3. a quaternary relation $\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{4} \mid a_{1}+a_{2}=a_{3}+a_{4}\right\}$ where $(A ;+)$ is an elementary abelian p-group (p is a prime number);
4. a nontrivial equivalence relation;
5. a central relation;
6. a relation determined by an h-regular family of equivalence relations.

Moreover, a finite algebra $\mathbf{A}=(A, F)$ is primal if and only if $F \subseteq$ Pol ρ for no relation ρ of any of the above six types.

3 Results

From now on A is supposed to be the set $\{0, \ldots, k-1\}$ with $k>2$.
Theorem 3.1 There exist three maximal clones such that their intersection is J . Moreover, if k is a prime number then there are two maximal clones such that their intersection is J .

Proof. For any $a \in A$ define a binary relation ρ_{a} on A as follows:

$$
\rho_{a}=\{(x, y) \mid x=a \text { or } y=a \text { or } x=y\}
$$

Observe that ρ_{a} is a central relation with center $\{a\}$. Choose two fixed point free permutation σ and τ on A of prime orders such that $\{\sigma, \tau\}$ generates a transitive permutation group on A. If k is a prime number then we can choose σ and τ with $\sigma=\tau$. Then, by Theorem $A, \operatorname{Pol} \rho_{a}(a \in A), \operatorname{Pol} \sigma$ and $\operatorname{Pol} \tau$ are maximal clones. Put $F=$ Pol $\rho_{0} \cap$ Pol σ Polr. We show that $F=\mathrm{J}$.

Consider the algebra $\mathbf{A}=(A ; F)$. Then ρ_{0} is a compatible relation, σ and τ are automorphisms of \mathbf{A}. Therefore, by the choice of σ and τ, Aut A is transitive, which implies that every operation of \mathbf{A} is surjective. Moreover, if $\pi \in A u t A$ then

$$
\rho_{0 \pi}=\left\{(x \pi, y \pi) \mid(x, y) \in \rho_{0}\right\}
$$

is also a compatible relation of \mathbf{A}. Therefore, by the transitivity of Aut \mathbf{A}, we have that ρ_{a} is a compatible relation of \mathbf{A} for every $a \in A$. From this it follows that for every distinct $a, b \in A$

$$
\rho_{a b}=\rho_{a} \cap \rho_{b}=\{(a, b),(b, a)\} \cup\{(x, x) \mid x \in A\}
$$

is also a compatible relation of \mathbf{A}.
It is well-known that if a surjective operation preserves a central relation then it preserves its center (see e.g. [9]). Thus we have that every operation in F is idempotent. Suppose that A has a nontrivial operation. Then it has either a nontivial binary operation or a majority function or a Mal'tsev function or a nontrivial semi-projection among its term functions (see e.g. [4]).

First consider the case when \mathbf{A} has a nontrivial binary term function f. Let $a, b \in A$ be arbitrary distinct elements. Then from $(a, b) ;(b, b) \in \rho_{a b}$ we have that $(f(a, b), b)=(f(a, b), f(b, b)) \in \rho_{a b}$, implying that $f(a, b)=a$ or $f(a, b)=b$. Suppose that $f(a, b)=a$ and choose an arbitrary element $c \in A$ with $c \neq a, b$. Then $(a, a),(b, c) \in \rho_{b c}$ implies that $(f(a, c), a)=(f(a, c), f(a, b)) \in \rho_{b c}$ and $f(a, c)=a$. This fact together with the transitivity of Aut \mathbf{A} shows that f is the first projection, a contradiction. If $f(a, b)=b$ then a similar argument yields that f is the second projection.

Now let d be a majority term function of A, and let $a, b, c \in A$ be pairwise different elements. Then $d(a, b, c)$ is different from two of the elements a, b, c, say from a and b. Then $(a, a),(b, a),(c, c) \in \rho_{b}$ implies that $(d(a, b, c), a)=$ $(d(a, b, c), d(a, a, c)) \in \rho_{b}$, a contradiction.

If t is a Mal'tsev function among the term functions of A, then for any two distinct elements $a, b \neq 0,(a, 0),(0,0),(0, b) \in \rho_{0}$ implies that $(a, b)=$ $\left(t(a, 0,0),(t(0,0, b)) \in \rho_{0}\right.$, a contradiction.

Finally, let l be a nontrivial n-ary first semi-projection among the term functions of A. Since l is not the first projection, there are $a, a_{2}, \ldots, a_{n} \in A$ such that $l\left(a_{1}, a_{2}, \ldots, a_{n}\right)=b \neq a$. Choose $c \in A$ with $c \neq a, b$. Then $(a, c),\left(a_{2}, a\right), \ldots,\left(a_{n}, a\right) \in \rho_{a}$ implies that $(b, c)=\left(l\left(a, a_{2}, \ldots, a_{n}\right), l(c, a, \ldots, a)\right) \in$ $\rho_{a}, ~ a ~ c o n t r a d i c t i o n . ~ T h i s ~ c o m p l e t e s ~ t h e ~ p r o o f . ~$
Theorem 3.2 There exist three minimal clones such that their join is O. Moreover, if k is a prime number then there are two minimal clones such that their join is 0 .

Proof. First consider the case when k is a prime number and let σ be the permutation ($01 \ldots k-1$) on A. Clearly, $[\sigma]$ is a minimal clone. Define a ternary operation f on A as follows:

$$
f(x, y, z)=\max (\min (x, y), \min (x, z), \min (y, z))
$$

for all $x, y, z \in A$. Then f is a majority function and $[f]$ is a minimal clone (see e.g. [6]). We show that f together with σ generates 0 . Put $F=\{f, \sigma\}$.

Taking into consideration Theorem A, we have to show that $F \subseteq$ Pol ρ for no relation of any of the types (1)-(6). Since σ generates a transitive permutation group, it is easy to show that it cannot preserve a relation of type (1) and (5). Moreover, making use of the fact that k is a prime number, one can show easily that σ do not preserve a relation of type (4). Furthermore, f being a majority function - as it is well-known (see e.g. [4]) - do not preserve a relation of type (3) and (6). Finally suppose that ρ is a relation of type (2) determined by a permutation π with $F \subseteq \operatorname{Pol} \rho$. Then π is an automorphism of the algebra $\mathbf{A}=(A ; F)$. Since π and σ commute we have that π is a power of σ, and then σ is also a power of π (k is prime). Hence σ is an automorphism of A. Therefore, we have that $1=f(0,1,2)=f((k-1) \sigma, 0 \sigma, 1 \sigma)=f(k-1,0,1) \sigma=1 \sigma=2$, a contradiction. This completes the proof when k is a prime number.

Now suppose that k is not a prime, and let p be a prime number such that $k / 2<p<k$. Consider the permutations $\sigma=(01 \ldots p-1)$ and $\tau=(k-p \quad k-$ $(p-1) \ldots k-1)$ on A. Clearly, $[\sigma]$ and $[\tau]$ are minimal clones. Define a ternary operation d on A as follows:

$$
d(x, y, z)= \begin{cases}x, & \text { if } x=y \\ z, & \text { otherwise }\end{cases}
$$

Then d is the well-known dual discriminator, which generates a minimal clone (see e.g. $\{2 \mid)$. We show that σ and τ together with d generate O. Put $F=\{d, \sigma, \tau\}$.

Again, by Theorem A, we have to show that $F \subseteq \operatorname{Pol} \rho$ for no relation of any of the types (1)-(6). Suppose that $F \subseteq \operatorname{Pol} \rho$ for a relation of one of the type (1)-(6). It is known that $\{d\}$ is a functionally complete set (see e. g. [1]). Therefore $d \notin$ Pol ρ if Pol ρ contains all constant operations. Hence ρ is of type (2) or a unary central relation. Since $[\sigma]$ and $[r]$ generate a transitive permutation group, they do not preserve a unary central relation.

Finally suppose that ρ is a relation of type (2) determined by a permutation π. Observe that if π is of order q then π is the product of k / q cycles of the same length q. Moreover, since k is not a prime number, we have $q \leq k / 2$. Then π commutes with σ and. r. Let $0 \pi=i$. If $i>p-1$ then for all $j \in\{0,1, \ldots, p-1\}$ we have $j \pi=0 \sigma^{j} \pi=0 \pi \sigma^{j}=i \sigma^{j}=i$, showing that π is not injective, a contradiction. Hence $i<p$, and for all $j \in\{0,1, \ldots, p-1\}$ we have $j \pi=0 \sigma^{j} \pi=0 \pi \sigma^{j}=i \sigma^{j}=$ $0 \sigma^{i} \sigma^{j}=0 \sigma^{j} \sigma^{i}=j \sigma^{i}$ showing that π contains the cycle σ^{i} of length p. Therefore we have $p=q \leq k / 2$, a contradiction. This completes the proof.

Problem 1 Find all natural numbers k for which there exist two maximal clones on the set $\{0, \ldots, k-1\}$ such that their intersection is J .

Problem 2 Find all natural numbers k for which there exist two minimal clones on the set $\{0, \ldots, k-1\}$ such that their join is 0 .

References

[1] B. Csákány, Homogeneous algebras are functionally complete, Algebra Universalis 11 (1980), 149-158.
[2] B. Csákány and T. Gavalcová, Finite homogeneous algebras. I, Acta Sci. Math. 42 (1980), 57-65.
[3] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (1980), 227-238.
[4] P. P. Pálfy, L. Szabó and A. Szendrei, Automorphism groups and functonal completeness, Algebra Universalis 15 (1982), 385-400.
[5] E. L. Post, The two-valued iterative systems of mathematical logic, Ann. Math. Studies 5, Princeton Univ. Press, 1941.
[6] R. Pöschel and L. A. Kalouznin, Functionen- und Relationenalgebren, VEB Deutscher Verlag d. Wissenschaften, Berlin, 1979.
[7] I. G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken (Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen), Rospravy Ceskoslovenske Akad. Vexd Ǩada Mat. Pŕrod. Věd 80 (1970), 9-93.
[8] I. G. Rosenberg, Completeness properties of multiple-valued logic algebras, in: Computer Science and Multiple-Valued Logic, Theory and Applications (ed. D. C. Rine), North-Holland (1977); pp. 144-186.
[9] I. G. Rosenberg, Functional completeness of single generated or surjective algebras, in: Finite Algebra and Multiple-Valued Logic (Proc. Conf: Szeged, 1979), Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland, Amsterdam, 1981; pp. 635-652.

[^0]: *Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary
 ${ }^{\dagger}$ Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 1813 and 1903.

