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A Queuing Model for a Processor-Shared 
Multi-Terminal System Subject to Breakdowns 

B. Almasi* 

Abstract 
This paper deals with a non-homogeneous finite-source queuing model to 

describe the performance of a multi-terminal system subject to random break-
downs under PPS (Priority Processor-Sharing) service discipline. It can be 
viewed as a continuation of paper [l], which discussed a FIFO (First-ln, First-
Out) serviced queuing model subject to random breakdowns. All random 
variables are assumed to be independent and exponentially distributed. The 
system's behaviour can be described by a Markov chain, but the number of 
states is very large (it is a combinatorically increasing function of the number 
of terminals). The purpose of this paper is to give a recursive computational 
approach to solve the steady-state equations and to illustrate the problem in 
question using some numerical results. 

1 The Model 
This paper deals with a terminal system consisting of n terminals connected with a 
Central Processor Unit (CPU). The user at the terminal t thinks for random times 
and generates jobs to the CPU. The think times are assumed to be exponentially 
distributed with mean The required running times of jobs of terminal t are 
exponentially distributed random variables with mean (assuming, that the jobs 
use the whole capacity of the CPU). The jobs staying at the CPU are serviced in 
parallel using the PPS scheduling strategy (see [2,3]). Each terminal has a positive 
weight, denoted by w,• for terminal t(t = 1 , . . . , n), and if there are s(l < s < n) jobs 
at the CPU from the terminals j\,..., js then the job of the terminal jr(r = 1 , . . . , s) 
is serviced at rate 

"3 r 
E. t 

that is, the processing intensity is W}r(ji,..., jt)Hi, for the job of terminal jr. Let 
us suppose that the CPU is subject to random breakdowns stopping the whole 
system. The failure-free operation times of the CPU are exponentially distributed 
random variables with mean —. The restoration times of the CPU are exponentially 
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distributed with mean j . The busy terminals are also subject to random break-
downs not affecting the system's operation but stopping the work at the terminal. 
The failure-free operation times of busy terminals are supposed to be exponen-
tially distributed random variables with mean for terminal t. The repair times /1 
of terminal t are exponentially distributed random variables with mean j - . The 
breakdowns are serviced by a single repairman according to FIFO discipline among 
terminals and providing preemptive priority to the failure of CPU. We assume that 
each terminal sleeps while its job is serviced by the CPU, that is, the terminal is 
inactive while waiting at the CPU, and it cannot break down. All random variables 
involved here are assumed to be independent of each other. 

On the one hand this paper is a generalization of the non-homogeneous PS 
model discussed in [4] (which allowed only CPU failures], on the other hand it 
further generalizes the homogeneous model treated in [5] (which allowed both ter-
minal and CPU failures). This paper is the continuation of [l] where the FIFO 
discipline was discussed (instead of PPS) and we build a new non-homogeneous 
model and solve the steady-state equations recursively by using a similar compu-
tational approach as in [lj. In equilibrium the main performance of the system, 
such as the mean number of jobs residing at the CPU, the mean number of func-
tional terminals, the expected response time of jobs, and utilizations are obtained. 
Finally it is investigated - by using some numerical results - how breakdowns affect 
the performance characteristics and the results of [1] are compared with ours. 

2 The Mathematical Model and a Computa-
tional Approach 

Let us introduce the following random variables: 

f 1, if the CPU is failed at time t, 
0 otherwise. 

the failed terminals' indices at time t in order of their failure, 
or 0 if there is no failed terminal, 

the indices of jobs staying at the CPU at time t in lexicographically 
increasing order, or 0 if there is no job at the CPU. 

It is easy to see that the process 

M(t) = (X(t),Y(t),Z(t)), 

is a multi-dimensional Markov chain with 3 vector-components and with state space 

s = {(9l*i,---,*k]ji,---,3s), 9 = 0,1; k = 0, . . . , n ; a = 0 , . . . , n - k), 

where 

(»1, • • •, *fc) is a permutation of K objects from the numbers 1 n o r O , 
if k = 0, 

X(t) = 

Y{t) = 

Z[t) = 
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(ji,..., j,) is a combination of s objects from the remaining n — k numbers or 
0, if s = 0. 

The event (g;t ' i , . . . ,ik'>3h • • • >J«) denotes that the operating system is in state 
X(t) = q, there are k failed terminals with indices t i , . . . and there are s jobs 
with indices j\, at the CPU (tr ^ ji, r = 1 , . . . , k\ I = 1 , . . . , a). 

The reader can easily verify that the number of states is 

n k , 
n! 

d i m i S ) ^ ^ ^ 
fc=o »=o v ' 

Let us denote the steady-state distribution of (M(t ) , t > 0) by 

p(q;ii,---,ik]ji,..-,j.) = lim p(X( i ) = q;Y(t) = i1,...,ik;Z(t) = ji,...,j.), 
t—*oo 

which exists and is unique (see [6]) because of all the rates are assumed to be 
positive. For brevity let us introduce the following notation: 

K,r(q;ii,...,ik;3I,•••,}») = P(T,*i• • • • • *'FC;j'i,• • •,3>). r = l , . . . , s . 

Since we study the steady-state behavior of the Markov chain M(t), following [6], 
we can start with the statement 

Average rate of leaving state (9; t x , . . . , t'fc ; , . . . , j, ) = 

= Average rate of entering state (<7; 11, . . . , ; ji,..., j, ), 

that is, we can build the global balance equations for p(q*i,..., ]\,..., j,) by 
using the rules discussed in Section 1: 

s 

( a + r ç , + ( A r + 7 r ) ) p ( 0 ; ¿1, • • •, ù ; > • • •, j»)+Y1 k > ( 0 ; l'i> • • • > **'< n, •••, ] , ) = 
rjii'l,...,«», r = 1 
r^Jl J. 

+ H r ' li> • • • >**! Ji, • • •,3.) + K r ( 0 ; ù , . . . , . . . , r , . . . , ; , ) ) + 
r & l , ...,»* 
»•/j I,...,}', 

a 

+nkp{0;ii,.. .,ik-i\3i,- • • ,3.) + »1. • • • .ù; jï. • • -.ir-i.jr+i, -••,;«), 
r = 1 

for all» ! , . i l l - • - , y » ; k = 0 , . . . ,n;s = 0 , . . . ,n - A:, 
^p ( l ; » ! , . . . ,tfc; J i , . . . ,j.) = ap(0;t'i,...,ik]3I,••• ,3»), (2) 
for all » ! , . . . , t'/tiji,.. .,j,;k = 0 , . . . , n ; s = 0, . . . , n - A:, 

where the probabilities of meaningless events and coefficients are defined to be zero. 
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For k = 0 and s = 0 ijt (and jB) are not defined, so for example the element 
r/ikp (0 ; t ' i , . . . , t fc_i ; j i , • • • , ] , ) has no meaning, so it is defined to be zero, we have: 

n n n 

(a + , + 7 , ) )p( 0; 0; 0) = pp( 1; 0; 0) + £ W p(0 ; 0; t) + £ np(0; t"; 0). 
¿=i ¿=1 i = i 

The system of equations will be simpler if we substitute Equation (2) to Equation 
(1). Namely, we have 

(*U + £ (Ar+7r))p(0 ; t ' i , . . . , t ' f c ;yi j.) + 

r^ll,•••,]. 
8 

+ £ Ki'(0' j i » " - > j») = 
T = 1 

= £ (r<-p(°ir»«1»• • • . J i . • • • >;») + tfr(0;t'i,.• •.*kik,• • •.r,...,j,)) + 
r /M ifc 

t 
+ £ Ayrp(0;t'i,. . . . t ' f c j j i , . . . , > _ 1 , Jr+1, • • • ,y ,) , 

r = 1 

for all t'i » fc j j i , . . . ,y,; A: = 0 , . . . , n\ s = 0 , . . . , n - k, (3) 

Pp( 1; t ' i , . . . , tfc; , . . . , j , ) = ap(0; 11 , . . . , t'fc; j i , . . . , j , ) , (4) 
for all t 'x,. . . , t'fc; j\,..., y„; k = 0 , . . . , n; s = 0 , . . . , n - k. 

The purpose of this paper is to solve this system subject to the normalization 
condition 

1 n n — k 
£ £ £ p ( < ? > M = i, 
q=0 k=0 »=0 

where 

(u ifc)ev*(ii y.) €c;_ f c 

V* : The set of all (t ' i , . . . ,»*) (sis defined above), 
C'n_k : the set of all ( j i , . . . , j») (as defined above). 
Such a system of linear equations could easily be solved by standard compu-

tational methods, e.g., by Gauss- elimination. But we must not forget that the 
unknowns are probabilities and therefore - since the state space is very large - the 
round off errors may have considerable effect op them (see [7,8,9]) and when us-
ing computer programs to solve the system of equations, the whole matrix of the 
equations cannot be stored in a personal computer if n > 3. It is more efficient to 
use a recursive computational method to determine the steady-state probabilities, 
as described in the following section (first it was proposed by Tomko [10]). 
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3 The Recursive Solution 
Let Y_(m) be the vector of the stationary probabilities for the states where the 
operating system is working, there are k failed terminals, and s = m — k jobs are 
waiting at the CPU ((A: = 0 , . . . , m), m = 0 , . . . , n). That is, 

( p(0; 1 , . . . , m — 1, m; 0) \ 
p ( 0 ; l , . . . , m - l , m + 1 ;0) 

p(0 ;n , . . . ,n - m + 1;0) 
p(0; 1 , . . . , m - 1; m) 
p ( 0 ; l , . . . , m - l ; m + l ) 

p(0; n , . . . , n — m + 2; n — m + l) 

Y(m) = 

V p ( 0 ; 0 ; n - m + l , . . . , n ) 

In words, the elements of F(m) are written in lexicographically increasing order 
of indices 

1./ for k — m and s = 0, 
2./ for k = m — 1 and s = 1, 

m + 1./ for k = 0 and s = m. 

Similarly, let Z_(m) be the vector of stationary probabilities alike Y_(m), but 
for the states, where the CPU is failed. From the definition it is obivous that the 
dimension of r ( m ) and Z(m) is £7=0 ( „ J ^ ; , , -

Using these notations Equations (3), (4) can be written in matrix form as 

no) = qomi), 
yU\ = cU)Y(j + 1) + D(j)Y(j - 1), 

z(j) = F(j)Y(j), j = 0,... ,n. 

l , . . . , n - 1, 
(tttl 

The dimension of the matrices are / d(j) = Yll=o (n-))\,\/ : 

F(j) : d(j) x d(j), C(j) : d(j) x d(j + 1), D(j) : d(j)x'd(j - 1). 
The elements of all the matrices can be obtained from the Equations (3). (4). For 

example we can use Equation (4) to obtain the elements of matrix F(k + s)(k + s = 
0 , . . . , n) : The element p(l ; t ' i , . . . j\,..., j,) of Z(k + s) can be obtained from 
the element p(0;»'i,...,*jt; Ji j,) of Y(k + s) by multiplying it with j . That is, 
the matrix F(k + s) contains non-zero elements only in its main diagonal, and this 
non zero element is the constant value p 

Similarly, we can use the second line of Equation (3) to build the matrix C(A:-f-s), 
and the third line to determine the matrix D(k + s)(k + s = 0 , . . . , n). 

Applying these notations we can state our main result: 
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Theorem 3.1 The solution of the Equations (i)-(iv) can be given in the form 

m = F t i ) Y U ) , 3 = 0 , . . . , » , (5) 

where L(n) = D(n), L(j) = (I - C(j)L(j + l))"1!^'!, j = 1,..., n - 1, so the 
system of equations can be solved uniquely up to a multiplicative constant, which 
can be obtained from the normalization condition. 

Proof . As a starting point of our proof we can observe that equation (iv) is 
identical with the second equation of (5). 
In virtue of equation (iii) 

H(n) = L(n)Y(n - 1). 

Assuming that Y_(j + 1) = L(j + l)Y(y), from (ii) we have 

Y(j) = C(j)L(j + l )H( j ) + DV)Y(j - 1). 

By simple calculation we obtain that 

(/ - C(j)L(j + l))Y(j) = D(j)Y(3 - 1), 

YU) = (/- C(j)L(j + 1 ))-lDU)W ~ 1). 

w ) = m w - 1 ) . 

which completes the proof. 
Now we can start the recursion with any initial value denoted by y ' (0 ) 

and the non-normalized p'[q]ii, • • •,ik) 3h • • • > 3») elements of Yl(ro), Zl_(m)[m = 
0 , . . . ,n ) , can be obtained. We can calculate the steady-state probabilities from 
YIX171)i (m = 0 , . . . , n), by using the normalization condition as follows 

Y(m) = S ) 
Z)?=o o S«=o 53ji,...,y,ec*_. p'(9;*i.- • • i tfcl3i> • • • 13») 

YLi 

Z(m) = 
¥№ 

Z)g=o Sfc=o S , = o P'(9>*I> • • • i*fcî3h • • •,3») 
£X 
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4 Performance Measures 
We derive the steady-state characteristics from the steady-state probabilities be-
cause the model is too complicated to derive the characteristics directly from the 
parameters (n, a, ft,...). Some of these characteristics will be calculated in Table 
1-5 (for n = 4 and n = 3) as examples. We can use these numerical results to 
investigate how parameters influence the characteristics. 

We employ the following usual notation: S(i,j) = 1, if t = j, (and 0 otherwise). 
The steady-state characteristics: 

(i) Mean number of jobs residing at the CPU 

1 n n—k 
= E E E aP(*> k ' 3)" 

»'=0 k=0 «=0 

(ii) Mean number of functional terminals 

1 n n - f c 

=n - E E E fcp(*> k< *)• 
i=0 k=0 »=0 

(iii) Mean number of busy terminals 

n n — k nb = E E (n ~ k ~ s)p(0, k> 
k=0 «=0 

(iv) Utilization of repairman 

n n—k n n—k Ur = E E p(l, *>«) + E E k>3)-
k=0»=0 k=l»=0 

(v) Utilization of CPU 
n —1n~ k 

ucpv = E Ep(°'fc>s)-
fc=0 « = 1 

(vi) Utilization of terminal t"/t = 1 , . . . , n / 

n n—k k a 

fi = E E E Ei1 ~ *(*»*'•) - *(»'. *))p(°;»i. • • • .«'*; n, • • -,}.)• 
k=0 » = 0 r = l o = l 

(vii) Expected response time of jobs for terminal »/» = 1 , . . . , » / 

_ _ E ? J o E ' = i ^ ( t " . i r ) p ( g ; » i , • • • J i , - - ] ' . ) 
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5 Numerical Results 
The algorithm described above was implemented on an IBM PC/AT in FORTRAN. 
We show several examples to illustrate how breakdowns influence the characteris-
tics. The running times were at about 50 seconds for n = 4 (Table 1-3), and 2 
seconds for n = 3 (Table 4-5). If we compare these results to the ones described in 
[1,10] we can see how scheduling strategy influences the characteristics. 

Case 1. Failure free system (See [10]). 

n = 4 a = 0.0001 ß = 9999.0 
nj = 2.195 fig = 4.0 UCPU = 0.906 

t A i Mi 1i n U>i Ui Ti 
1 0.500 0.900 0.0001 9999.0 1.0 0.429 2.658 
2 0.400 0.700 0.0001 9999.0 1.0 0.423 3.405 
3 0.300 0.600 0.0001 9999.0 1.0 0.452 4.045 
4 0.200 0.500 0.0001 9999.0 1.0 0.500 4.998 

Table 1. 

This case will be the starting point of our investigation. It can be used to test 
the results and to approximate a failure-free system described in [10]. The differ-
ence between these results and the ones in [10] is less than 0.01 for all calculated 
characteristics. The difference can be derived from the different calculating circum-
stances (e.g. different computer and programming language). On the other hand 
this case only approximates a failure-free system. 

Case 2. Terminal failure. 

n = 4 a = 0.0001 ß = 9999.0 
n ) = 1.253 ng --= 2.58 UCPU = 0.666 

t A< li Ti W I UI TI 
1 0.500 0.900 0.3200 0.4500 1.0 0.283 2.133 
2 0.400 0.700 0.1700 0.3400 1.0 0.335 2.602 
3 0.300 0.600 0.2200 0.5000 1.0 0.336 3.138 
4 0.200 0.500 0.1600 0.3000 1.0 0.373 3.842 

Table 2. 

In this example we can see how terminal failures influence the performance 
measures. The response times and the number of good terminals are less than in 
Case 1. That is, the system works as if there were less terminals. 
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Case 3. CPU failure. 

n = 4 a = 0.25 ß = 0.45 
ny = 2.195 na = = 4.0 UCpu = 0.583 

t A< Pi 7 i Ti Wi U{ Ti 
1 0.500 0.900 0.0001 9999.0 1.0 0.276 4.135 
2 0.400 0.700 0.0001 9999.0 1.0 0.272 5.296 
3 0.300 0.600 0.0001 9999.0 1.0 0.290 6.292 
4 0.200 0.500 0.0001 9999.0 1.0 0.321 7.775 

Table 3. 

If we compare these results with Case 1, it can be seen, that the failure of the 
CPU increases the response times and decreases the utilizations, as one can expect. 

It seems, that the FIFO (see in [l]) and the PS discipline gives nearly the same 
results investigating the influence of terminal breakdowns. We got greater CPU 
utilization in this model than in 111 (for each case). This is the reason why this 
model is more sensible to the CPU breakdowns (see the response times in Case 3). 

Case 4. PPS system (see [3]). 

n = 3 a = 0.0001 ß = 9999.0 
ny = 1.028 ng = 3.0 UCPU = 0.675 

t Ai Y-I 7 i n U>I U{ Ti 
1 0.200 0.400 0.0001 9999.0 1.0 0.508 4.831 
2 0.200 0.600 0.0001 9999.0 5.0 0.666 2.498 
3 0.200 0.800 0.0001 9999.0 125.0 0.796 1.277 

Table 4. 

This case can be used to test the algorithm (and the computer program) dis-
cussed above. A failure-free PPS system (described in [3]) is approximated by this 
example. The results are exactly the same as in [3]. 

Case 5. PPS system with CPU failure. 

n = 3 a = 0.1000 ß = 0.7000 
ny = 1.028 n g = 3.0 UCPU = 0.591 

i A, Pi 7 i n Wi Ui Ti 
1 0.200 0.400 0.0001 9999.0 1.0 0.445 5.521 
2 0.200 0.600 0.0001 9999.0 5.0 0.583 2.855 
3 0.200 0.800 0.0001 9999.0 125.0 0.696 1.459 

Table 5. 

This case shows, that the more a terminals uses the CPU (or the CPU's queue) 
the more the response time increases with the CPU failure. 
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Case 6. PPS system for n = 5. 

n = 5 a = 0.1000 ß = 0.7000 
ny = 2.278 NG = 4.3 UCPU = 0.777 

i M» 1 i n OJi Ui Tf 
1 0.200 0.400 0.1000 0.7000 1.0 0.217 15.6472 
2 0.300 0.700 0.0700 0.6000 5.0 0.319 5.836 
3 0.250 0.650 0.1500 0.4500 50.0 0.418 2.951 
4 0.220 0.600 0.1000 0.7600 15.0 0.406 4.706 
5 0.400 0.800 0.1200 0.4400 125.0 0.442 1.747 

Table 6. 

The program was run for n = 5 in this case. This was the largest n value that 
could be used. The running time was at about 4 minutes. 

References 
[1] B. Almási and J. Sztrik, A Queueing Model for a Non-Homogeneous Terminal 

System Subject to Breakdowns, Computers and Mathematics with Applications 
(to appear). 

[2] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems, Aca-
demic Press, London, (1980). 

[3] J. Sztrik, A probability model for priority processor-shared multiprogrammed 
computer systems, Acta Cybernetica 7, 329-340 (1986). 

[4] J. Sztrik, On the heterogeneous machine interference with limited server's 
availability, European Journal of Op. Res. 28, 321-328 (1987). 

[5] J. Sztrik and T. Gál, A recursive solution of a queueing model for a multi-
terminal system subject to breakdowns, Performance Evaluation 11, 1-7 
(1990). 

[6] R. Goodman, Introduction to Stochastic Models, Benjamin/Cummings, Cali-
fornia, (1988). 

[7] S.S. Lavenberg, Ed., Computer Performance Modelling Handbook, Academic 
Press, New York, (1983). 

[8] P.M. Snyder and W.J. Stewart, Explicit and iterative approaches to solving 
queueing models, Oper. Res. 88, 183-202 (1985). 

[9] H.C. Tijms, Stochastical Modelling and Analysis, A Computational Approach, 
Wiley and Sons, New York, (1986). 

[10] L. Csige and J. Tomkó, The machine interference for exponentially distributed 
operating and repair times, Alk. Mat. Lapok 8, 107-124 (in Hungarian) (1982). 

Received September 29, 1992. 


