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On a special composition of tree automata 

B. Imreh't 

In the theory of finite automata it is an interesting problem to describe such 
systems from which any automaton can be built under a given composition and 
isomorphic embedding as representation. Such systems are called isomorphically 
complete with respect to the considered composition. In particular, it is important 
to characterize those compositions for which there are finite isomorphically com-
p i l e systems. In the works [l], [2] necessary conditions are given for the existence 
of finite isomorphically complete systems with respect to the classical automata 
and tree automata, respectively. In both cases it turned out that the existence of 
a finite isomorphically complete system yields the unboundedness of the feedback 
dependency of the composition. It is unknown yet whether this condition is suffi-
cient. So it is interesting to investigate such compositions for which there are finite 
isomorphically complete systems. In [4] such a composition was introduced. Here 
we generalize this notion of composition to tree automata and give a necessary and 
sufficient condition of the isomorphic completeness. For this reason we recall some 
notions from [3] and [5]. 

By a set of operational symbols we mean a nonempty union E = So |J Ei |J..., 
where E m (m = 0 ,1 , . . . ) are pairwise disjoint sets of symbols. For any m > 0, the 
set E m is called the set of m-ary operational symbols. It is said that the rank or 
arity of a symbol c r g E i s m i f c r S E m . Now let a set E of operational symbols 
and a set R of nonnegative integers be given. R is called the rank-type of E if for 
any integer m > 0, E m ^ 0 if and only if m S R. Next we shall work under a fixed 
rank-type R. 

Now let E be a set of operational symbols with rank-type R. By a E-algebra A 
we mean a pair consisting of a nonempty set A and a mapping that assigns to every 
operational symbol a 6 E an m-ary operation aA : A m —» A, where the arity of a is 
m. The set A is called the set of elements of A and aA is the realization of a in A. 
The mapping cr —• aA will not be mentioned explicitly, but we write A — (A, E). It 
is said that a E-algebra A is finite if A is finite, and it is of finite type if E is finite. 
By a tree automaton we mean a finite algebra of finite type. Finally, it is said that 
the rank-type of a tree automaton A = (A, E) is R if the rank-type of E is R. 

Now let us denote by UR the class of all tree automata with rank-type R. A 
composition of tree automata from UR can be represented as a network in which 
each vertex denotes a tree automaton and the actual operation of a tree automaton 
may depend only on those automata which have direct connection to the given one. 

In order to define this notion of composition let V denote an arbitrary nonempty 
fixed set of finite directed graphs. Let A = (A, E) € UR and AJ = (Ay, E J ) £ UR 
( j = 1 , . . . , n). Moreover, take a family ¥ of mappings 
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¥my : (Ax x . . . x A „ ) m x E m ( m e R , 1 < j < n) . 

It is said that the tree automaton A is a D-product of Aj ( j = 1 , . . . , n) with respect 
to 9 if the following conditions are satisfied: 

n 
(i) A = JJ Ay , 

i= i 

(ii) there exists a graph D — ( { 1 , . . . , n}, E) in D such that for any meR, 
j e { l , . . . , n } and 

( ( a n , . . . ),•••,(ami,•••,amn)) e A m 

the mapping is independent of the elements at, (t = 1 m) if (s, j) £ E, 

(iii) for any m € R, <r € E m and ( ( a u , . . . , a l n ) , . . . , ( o m i , . . . , a m „ ) ) e Am, 

aA((aii,..., a i „ ) , . . . , ( a m l , . . . , o m „ ) ) = (erf1 ( a n , . . . , a m i ) , . . . , cr*"(a ln,..., amn)) 
where 

ai = ^mj((aii,...,aln),...,(aml,...,amn),cr) (j = l,...,n) . 

We shall use the notation 

J=1 
for the product introduced above and sometimes we shall indicate only those vari-
ables of t/imy on which it may depend. 

Now let 8 be a system of tree automata from UR. It is said that B is isomor-
phically complete for UR with respect to the D-product if any tree automaton from 
UR can be embedded isomorphically into a P-product of tree automata from B. 

The first characterization of isomorphically complete systems of tree automata 
was given in [5] with respect to the Gluskov-type product, which can be defined 
considering the set of finite directed complete graphs as possible networks. Now 
taking the set of the n-dimensional hyper cubes (n = 2,3, . . . ) as possible networks, 
we prove that this cube-product is equivalent to the Gluskov-type product with 
respect to the isomorphic completeness. For this purpose we need some preparation. 

Let n > 2 be an arbitrary integer. Let us consider the n-dimensional hyper 
cube. The set of the vertices of this hyper cube is Sn = { ( s i , . . . , s „ ) : s,- G 
{0,1} it = l , . . . , n ) } . Define the mapping A„ on the set Sn as follows: for any 
vector ( s i , . . . , s „ ) 

n 

t=i 
Then A^ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2" } . 

Let us form the directed graph = ( {1 , . . . , 2"} , Vn), where for any 1 < t, j < 
2", (i,j) € Vn if and only if A"1^') is adjacent to A " 1 ^ ) . For any u € { 1 , . . . , 2 " } 
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let us denote by j i the set of all ancestors of u in D*. It is obvious that A~1(u) = 
( s i , . . . , sn ) is adjacent to a vertex ( r i , . . . , r„) if and only if there exists an index 
1 < t < n such that r,- = 1 — s,- and ry = ay if 1 < j < n and t ^ j. Therefore, 

= n, i.e. each vertex of D* has exactly n ancestors. On the other hand, it is 
easy to see that 

if 1 < u < 2 " - 1 , then u has one ancestor in the set { 2 n - 1 + 1 , . . . , 2 " } and n - 1 
ancestors in the set { l , . . . , 2 n - 1 } , 

if 2 n _ 1 < u < 2n, then u has one ancestor in the set { 1 , . . . , 2 '* - 1 } and n — 1 
ancestors in the set { 2 n _ 1 + 1 , . . . , 2 " } . 

Now let us suppose that n > 2 and consider the graphs £>* and £ > * _ T h e n 
using the above observation, one can prove the following equalities: 

(1) = jM \{u + 2n~1} if 1 < u < 2 n _ 1 and 

(2) = { w - 2 " _ 1 : u e ( 4 " ) \ { « - 2 n ~ 1 } ) } if 2 n _ 1 < u < 2" . 

Now we are ready to prove our statement. 

Theorem 0.1 Let P* = {£)* : n = 2 ,3 , . . . } . A system C C UR of tree automata 
is isomorphiealiy complete for UR with respect to the D* -product if and only if C 
contains a tree automaton A = which has two different states a, b and for 
any m € R, (ui,...,um) € {0|6}m/ " £ {ai&} there exists an m-ary operation 
i r e E with um ) = u. 

Proo f . If R = {0} , then the validity of our statement can be proved easily. Now 
let us suppose that R ^ {0} . Then the necessity follows from the work [5]. 

In order to prove the sufficiency, first let us define the sequence of matrices A ' 1 ' , 
as follows: 

A W = 

( 0 0\ 
0 1 
1 0 

VI 1 / 

A(»+ 1 ) _ /A<" ) A<»>\ f . 
À M ) ' — • 

where A ' " ' is defined by ai? } = 1 - (1 < t < 2 n + 1 ; 1 < < 2n) in the 
partitioned matrix. 

We shall show that for any n > 2 and 1 < u < 2" the n-tuples (a'™',..., ) 
(t = 1 , . . . , 2n) tire pairwise different, where {t'x,... , t „ } = 

We proceed by induction on n. The case n = 2 can be checked easily. Now let 
n > 2 and assume that the statement is valid for n — 1. Let 1 < ti < 2" be arbitrary 
and Ju^ = { t ' i , . . . , t „ } . Let us suppose that t„ < iw if v < w. If the desired n-
tuples are pairwise not different, then there are indices j, k with 1 < j < k < 2" 
such that 

(3) (aJJ a W ) = (aj>; « « ) . 
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Now we distinguish three cases. 
Case 1. Let us suppose that 1 < j < k < 2 n _ 1 . If 

1 < u < 2 " - 1 , then n — 1 ancestors of u are in the set { 1 , . . . , 2 " - 1 } and the nth 
ancestor is u + 2 n _ 1 . Therefore, by the ordering of in = u + 2 n _ 1 . Then, by 
(1), 4 n _ l ) = { » i , . . . , t „ _ i } and by the definition of A<"), 

( 4 r " « - ( - a < • £ . , > = 

( 4 : ! 4 i , ) = ( 4 ? r " 4 : ; . ' , 1 ) 
which contradicts our induction assumption. 

If 2n~1 < u < 2", then n - 1 ancestors of u are in the set {2n~ 1 + 1 , . . . , 2 " } 
and the nth ancestor is u — 2 " - 1 . Therefore, = u — 2n~1. Let wt = it - 2 r a _ 1 

(t = 2, . . . , n ) . Then by (2), j}"1^ — {w2,...,wn}. But then using the equality 
(3) and the definition of , we obtain that 

f a ( « - i ) a ("""1 ,t _ f . i « - ! ) a ( " _ 1 h laj«»3 > • • • > JWn t — \akw2 > • • • 1 akwn I 
which contradicts our induction assumption. 

Case 2. Assume that 2n~1 < j < k <2n. 
Let r = j - 2n~1, s = k - 2n~1. Then 1 < r < s < 2 " _ 1 . On the other 

hand, by the construction of A ( " - 1 ) , from (3) it follows that (4?,\ . . . , a ^ ' ) = 
(4? , >. . . , a'"]) which yields a contradiction in the same way as in Case 1. 

Case 3. Let us suppose that 1 < j < 2 n _ 1 < k < 2". 
If 1 < u < 2 " - 2 , then by (1), t„ = u + 2n~1, in-X = u + 2n~2 and J[un~2) = 

{ t ' i , . . . , t „ _ 2 } C {1 , . . . , 2 n ~ 2 } . Since t„ = u + 2 n _ 1 , by the definition of A( " ) 
and (3), we obtain «£> = a ^ = «£> = «£>. By (3), = a j ^ , which 
results that k / j +2n~l. Now let r = k - 2 " _ 1 . Then 1 < r < 2 n _ 1 . Since 
1 < u < 2n~2 and 2 " - 2 < i n _ i < 2n~1, by the construction of A i " - 1 ' , we obtain 
4 u = 47» = 1 - o ^ . But then a ^ = 1 - 4 ? ' . On the other KU ' « * rv— 1 J • TV — 1 rt n_ 1 

hand, 1 < u < 2n~2, u + 2 " - 2 = » „_ ! , aj"* = aft1, 1 < j,r < 2n~i yield that 
4 " ' = a ' " ' which is a contradiction. 

If 2n~2 < u < 2" " 1 , then on the bases of ( l ) and (2), t„ = u + 2 " _ 1 , t'j = 
u - 2 n _ 2 and {»2,- - , V - i } C { 2 n " 2 + l , . . . , ^ - 1 } . - But then, by (3) and the 
definition of A<"), 4 " ) = 4" ,> w h i c h y i e l d s k £ J + 2t n _ 1 ) . Let r = A; - 2 n _ 1 . 
By the construction of 4 u ' = 1 — 4 " \ a n d so, 4 " ' = 1 — ^ e 
other hand, by (3), aj^j = 4™', and so, by the construction of A '™ - 1 ' , 4?i = 4? i " 
Since »i + 2"~2 = u and 1 < j, r < 2 n _ 1 , by the construction of A ' " - 1 ' , we obtain 
that the last equality yields 4 " ' = 4 " ' which is a contradiction. 

If 2 n _ 1 < u < 2", then »! = u - 2 n _ 1 . Let twt_j = it - 2 " _ 1 (t = 2 , . . . , n) 
and wn = t'i + 2 n _ 1 = u. Then by (l) and. (2), j i " ' .= {wltK .. ,to„}. On the other 
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hand, by (3) and the definition of A ' " ) , we obtain the equality ( a ^ , . . . , a ) = 
I®!«!,' • • • iafcu?»)• Since 1 < t'i < 2 " - 1 , we have traced back the considered case to 
the above treated ones. 

Now let us suppose that C contains a tree automaton A = (A, E) satisfying the 
conditions of our Theorem with the elements a, 6. Without loss of generality we may 
assume that a = 0 and 6 = 1 . Furthermore, for any m 6 R, (ux , . . . , u m ) 6 {0, l } m , 
ti e { 0 , 1 } let us denote by crUl Um,u a n operational symbol from E m for which 

u i „ , u ( u i , . . . , " m ) = " holds. 
Now let B = ( {&i , . . . ,6 „ , } ,E ' ) be an arbitrary tree automaton. Choose an 

integer n > 2 such that to < 2". Let / i b e a one to one mapping of {6 i , . . . ,6a,} 
onto the first tw rows of the matrix defined by /i(6fc) = • • •, aj^L) (A: = 
1 , . . . , w). Denote by S the set {/¿(6k) : k = 1 , . . . , to}. Let 1 < u < 2" be arbitrary. 
We know that the n-tuples = 1. • • • > 2") are pairwise different, 
where { t ' i , . . . , t n } = j i n \ But then there is a one to one mapping ru for which 
ru ( a ' " ' , . . . , ) = bt (t = l , . . . ,u>). Let us consider these mappings ru for any 
1 < 2". ^ 

Take the £>*-product A = [ l / l x Dn)> w h e r e t h e family f of mappings 
is defined as follows: 

For any 0 # m e R, o e E'm, 1 < u < 2n and st = (a« i , . . . , «ta») G S 
= 1 , . . . , m ) , 

^ , m«(8 i , . . . , 8 m , a ) =tr . (») 

where a® ( ^ ( s i , - , , . . . , s 1 < n ) , . . . , ru(smil,..., s m i J ) = bk. 
If 0 6 R, o e E|, and n{oB) = ( o ^ , . . . , aj^l) , then 

^ m u ^ ) = 0"V) fc» 

For any m £ R, a € E', 1 < u < 2" and ( ( u n , . . . , u i 2 » ) , . . . ( u m i , . . . , u m 2 » ) ) 6 
{A2 }M \ SM, i m u is defined arbitrarily in accordance with the definition of the 
P*-product. 

It is easy to see that the mappings ^ma are well-defined, and so, we obtain a 
P*-product. On the other hand, one can prove that is an isomorphism of B into 
A. Therefore, {A} is an isomorphically complete system for UR with respect to the 
P*-product, which completes our proof. 

Remark . Characterization of the isomorphically complete systems with re-
spect to the Gluskov-type product (see [5]) is the same as the characterization 
in our Theorem. So this two kind of products are equivalent with respect to the 
isomorphically complete systems. 
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