On the interaction between closure operations and choice functions with applications to relational databases^{*}

János Demetrovics[†] Gusztáv Hencsey[†] Leonid Libkin[‡] Ilva Muchnik[§]

Abstract

A correspondence between closure operations and special choice functions on a finite set is established. This correspondence is applied to study functional dependencies in relational databases.

1 Introduction

Having been introduced in connection with some topological problems, closure operations were applied in various branches of mathematics. In the last years they were successfully applied to study so-called *functional dependencies* (FDs for short) in relational databases. Now we recall some definitions and facts; they can be found in [DK],[DLM1].

Let $U = \{a_1, \ldots, a_n\}$ be a finite set of *attributes* (e.g. name, age etc.) and $W(a_i)$ the domain of a_i . Then a subset $R \subseteq W(a_i) \times \ldots \times W(a_n)$ is called a *relation over* U.

A functional dependency (FD) is an expression of form $X \longrightarrow Y$, $X, Y \subseteq U$. We say that FD $X \longrightarrow Y$ holds for a relation R if for every two elements of R with identical projections onto X, the projections of t hese elements onto Y also coincide. According to [Ar], the family \mathcal{F} of all FD's that hold for R satisfies the properties (F1)-F4):

 $\begin{array}{ll} (F1) & (X \longrightarrow X) \in \mathcal{F}; \\ (F2) & (X \longrightarrow Y) \in \mathcal{F} \text{ and } (Y \longrightarrow V) \in \mathcal{F} \text{ imply } (X \longrightarrow V) \in \mathcal{F}; \end{array}$

^{*}Research partially supported by HungarianNational Foundation for Scientific Research, Grant 2575.

[†]Computer and Automation Institute, P.O.Box 63, Budapest H-1518, Hungary; E-mail: h935dem**Q**ella.hu and h103hen**Q**ella.hu.

[‡]Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104, USA; E-mail: libkin**G**saul.cis.upenn.edu.

⁵24 Chestnut St., Waltham MA 02145, USA; E-mail: ilya**Q**darwin.bu.edu.

(F3)
$$(X \longrightarrow Y) \in \mathcal{F} \text{ and } X \subseteq V, W \subseteq Y \text{ imply } (V \longrightarrow W) \in \mathcal{F};$$

$$(F4) \qquad (X \longrightarrow Y) \in \mathcal{F} \text{ and } (V \longrightarrow W) \in \mathcal{F} \text{ imply } (X \cup V \longrightarrow Y \cup W) \in \mathcal{F}.$$

Conversely, given a family of FD's satisfying (F1)-(F4) (so-called full family), there is a relation R over U generating exactly this family of FD's, see [Ar] and also [BDFS] for a constructive proof.

We shall write a_i instead of $\{a_i\}$ throughout the paper. Let R be a relation over $U, X \subseteq U$ and put $L_R(X) = \{a \in U | X \longrightarrow a \text{ holds for } R\}$. Then L_R satisfies

(C1)
$$X \subseteq L_R(X);$$

$$(C2) X \subseteq Y \Longrightarrow L_R(X) \subseteq L_R(Y);$$

(C3)
$$L_R(L_R(X)) = L_R(X),$$

i.e. L_R is a closure operation. Note that the properties (C1)-(C3) may be concisely expressed as $X \subseteq L_R(Y)$ iff $L_R(X) \subseteq L_R(Y)$. Given a closure L (sometimes we shall omit the word "operation"), there is a relation R over U with $L = L_R$, see [De1].

A set $X \subseteq U$ is called *closed* (w.r.t. a closure L) if L(X) = X. Let Z(L) stand for the family of all closed sets w.r.t. L. Then

$$(S1) \qquad U \in Z($$

 $U \in Z(L),$ X, Y $\in Z(L)$ implies $X \cap Y \in Z(L),$ (S2)

i.e. Z(L) is a semilattice. Given a semilattice $Z \subseteq 2^U$ define $L(X) = \cap \{Y | X \subseteq Y\}$, $Y \in \mathbb{Z}$. Then L is a closure with $\mathbb{Z}(L) = \mathbb{Z}$. Therefore, we can think of semilattices providing an equivalent description of closures and full families of FD's.

A closure is an extensive operation $(X \subseteq L(X))$. The operations satisfying the reverse inclusion (called choice functions) were also widely studied in connection with the theory of rational behaviour of individuals and groups, see [AM], [Ai], [Mo]. We give some necessary definitions.

A mapping $C: 2^U \longrightarrow 2^U$ satisfying $C(X) \subseteq X$ for every $X \subseteq U$, is called a choice function. U is interpreted as a set of alternatives, X as a set of alternatives given to the decision-maker to choose the best and C(X) as a choice of the best alternatives among X.

There were introduced some conditions (or properties) to characterize the rational behaviour of a decision-maker. The most important conditions are the following (see [AM], [Ai], [Mo]):

Heredity (\underline{H} for short):

$$\forall X, Y \subseteq U : X \subseteq Y \Longrightarrow C(Y) \cap X \subseteq C(X);$$

Concordance (\underline{C} for short):

$$\forall X, Y \subseteq U : C(X) \cap C(Y) \subseteq C(X \cup Y);$$

Out casting (O for short):

$$\forall X, Y \subseteq U : C(X) \subseteq Y \subseteq X \Longrightarrow C(X) = C(Y);$$

Monotonicity (\underline{M} for short):

$$\forall X, Y \subseteq U : X \subseteq Y \Longrightarrow C(X) \subseteq C(Y).$$

Let P be a binary relation on U, i.e. $P \subseteq U \times U$. Let $C_P(X) = \{a \in X | (Ab \in X : (b, a) \in P)\}.$

One of the central results of the theory of choice functions states that a choice function can be represented as C_P for some P iff it satisfies <u>H</u> and <u>C</u>.

Given a closure operation L, we can define choice functions $C(X) = L(U-X) \cap X$ and C(X) = U - L(U - X). In Section 2 we characterize the choice functions of the second type as satisfying <u>M</u> and <u>O</u>. In the other sections we use this correspondence to transfer the properties of choice functions to closures and to apply them to the study of FD's. In Section 3 we use the logical representation of choice functions (see [VR],[Li1]) to construct a similar representation and characterization of closure operations.

In Section 4 new properties of closure operations are obtained and studied by new properties being added to \underline{M} and \underline{O} .

Finally, in the Section 5, we use choice functions to construct a structural representation for so-called *functional independencies* (cf. [Ja]) in the same way as closures were used to represent FD's.

2 The main correspondence

Let L be a closure operation. Define two choice functions associated with L as follows:

$$C_L(X) = L(U - X) \cap X,$$

$$C^{L}(X) = U - L(U - X), X \subseteq U.$$

Note that both C_L and C^L uniquely determine the closure L, in fact, $L(X) = X \cup C_L(U-X)$ and $L(X) = U - C^L(U-X)$. For every $X \subseteq U$ the sets $C_L(X)$ and $C^L(X)$ form a partition of X, i.e. $C_L(X) \cap C^L(X) = \emptyset$ and $C_L(X) \cup C^L(X) = X$.

Theorem 1 The mapping $L \longrightarrow C^L$ establishes a one-to-one correspondence between the closure operations and the choice functions satisfying <u>O</u> and <u>M</u>.

Proof. Let L be a closure operation. We prove that C^L satisfies <u>M</u> and <u>O</u>.

Let $x \in C^{L}(X)$ and $X \subseteq Y$. Then $x \notin L(U - X)$ and since $U - Y \subseteq U - X$, we have $x \notin L(U - Y)$, i.e. $x \in C^{L}(Y)$. Hence, C^{L} satisfies <u>M</u>.

Let $X \subseteq U$. Then L(L(U-X)) = L(U-X). Using $L(U-X) = U - C^{L}(X)$, we obtain that $U - C^{L}(U - (U - C^{L}(X))) = U - C^{L}(X)$, i.e. $C^{L}(C^{L}(X)) = C^{L}(X)$. Now let $C^{L}(X) \subseteq Y \subseteq X$; Since C^{L} satisfies $M, C^{L}(C^{L}(X)) \subseteq C^{L}(Y)) \subseteq C^{L}(X)$ and $C^{L}(X) = C^{L}(Y)$. Therefore, C^{L} satisfies Q.

Let C be a choice function satisfying \underline{O} and \underline{M} . Consider L(X) = U - C(U - X). We prove that L is a closure. Clearly, $X \subseteq L(X)$. If $X \subseteq Y$ and $x \in L(X)$, then $x \notin C(U-X)$ and $x \notin C(U-Y)$, i.e. $x \in L(Y)$. Since C satisfies O, C(C(U-X)) = C(U-X). Applying C(U-X) = U - L(X) we obtain L(L(X)) = L(X). Hence, L is a closure and $C^L = C$.

To finish the proof, note that the mapping $L \longrightarrow C^{L}$ is injective, because for two distinct closures L_{1} and L_{2} with $L_{1}(X) \neq L_{2}(X)$ one has $C^{L_{1}}(U-X) \neq C^{L_{2}}(U-X)$. The theorem is proved.

Let \mathcal{K} be a property of choice functions. We say that a choice function C satisfies $\overline{\mathcal{K}}$ if its complement \overline{C} satisfies \mathcal{K} . (The complementary function \overline{C} of C is defined as follows: $\overline{C}(X) = X - C(X)$ for $X \subseteq U$.)

Corollary 1 The mapping $L \longrightarrow C_L$ establishes one-to-one correspondence between the closure operations and the choice functions satisfying <u>H</u> and <u>O</u>.

Proof. It follows from the facts that C_L and C^L are complementary choice functions and that $\underline{H} = \overline{\underline{M}}, \underline{M} = \overline{\underline{H}}$, see [Ai].

3 On logical representation of closure operations and choice functions

The family of all choice functions on U equipped with the operations \cup, \cap and $\overline{}$, is a Boolean algebra. Logical representation of the choice functions was introduced in [VR] to show that this Boolean algebra is isomorphic to one consisting of tuples of n Boolean functions, each depending on at most n - 1 variables.

Let $U = \{a_1, \ldots, a_n\}, X \subseteq U$. Define

$$\beta_i(X) = \begin{cases} 1, & a_i \in X, \\ 0, & a_i \notin X, \end{cases}$$

$$egin{array}{rcl} eta^{i}(X) &=& (eta_{1}(X), \dots, eta_{i-1}(X), eta_{i+1}(X), \dots, eta_{n}(X)) ext{ and } \ eta^{Z}(X) &=& (eta_{i_{1}}(X), \dots, eta_{i_{k}}(X)) \end{array}$$

where $\{a_{i_1}, ..., a_{i_k}\} = U - Z$ and $i_1 < ... < i_k$.

Definition [VR]. A family $\langle f_1^C, \ldots, f_n^C \rangle$ of Boolean functions, each depending on n-1 variables, is called a first logical form of a choice function C if for every $a_i \in U$ and $X \subseteq U$:

$$a_i \in C(X)$$
 iff $a_i \in X$ and $f_i^C(\beta^i(X)) = 1$.

Definition [Li1]. A family $\langle f_{\emptyset}^{C}, \ldots, f_{U}^{C} \rangle$ of Boolean functions indexed by subsets of U, is called a second logical form of a choice function C if for every $Z, X \subseteq U$:

$$Z = C(X) ext{ iff } Z \subseteq X ext{ and } f_Z^C(eta^Z(X)) = 1.$$

Note that f_Z^C depends on n - |Z| variables.

Each logical form uniquely determines a choice function. By [VR], every tuple of Boolean functions, each depending on n-1 variables, is a first logical form of some choice function, moreover, $C \longrightarrow \langle f_1^C, \ldots, f_n^C \rangle$ is an isomorphism of Boolean algebras.

A family $\langle f_{\emptyset}, \ldots, f_U \rangle$, f_Z depends on n - |Z| variables, is a second logical form of some choice function iff for each $Z \subseteq U$ the set $\{f_Z(\beta^Z(X)) : Z \subseteq X\}$ contains a unique one.

Let L be an operation satisfying (C1), i.e. $X \subseteq L(X)$ for all $X \subseteq U$. We can introduce two logical forms as before.

Definition. A family $\langle f_1^L, \ldots, f_n^L \rangle$ of Boolean functions, each depending on at most n-1 variables, is called a first logical form of L if for every $a_i \in U$ and $X \subseteq U$:

$$a_i \in L(X)$$
 iff $a_i \in X$ or $f_i^L(\beta^i(X)) = 1$.

Let $Z = \{a_{i_1}, \ldots, a_{i_k}\}, i_1 < \ldots < i_k$, and $\beta_Z(X) = (\beta_{i_1}(X), \ldots, \beta_{i_k}(X)).$

Definition. A family $(f_{\emptyset}^L, \ldots, f_U^L)$ of Boolean functions indexed by subsets of U, f_Z^L depends on |Z| variables, is called second logical form of L if for every $Z, X \subseteq U$:

$$Z = L(X)$$
 iff $X \subseteq Z$ and $f_Z^L(\beta_Z(X)) = 1$.

We use these logical forms to characterize the closure operations among all the operations satisfying (C1).

Theorem 2 Let L satisfy (C1). Then L is a closure operation iff all the functions f_i^L , i = 1, ..., n; f_Z^L , $Z \subseteq U$, are monotonic.

Proof. Since $a_i \in L(X)$ iff $a_i \in X$ or $a_i \in C_L(U-X)$, we have $f_i^L(\beta^i(X)) = f_i^{C_L}(\beta^i(U-X))$, i.e. $\overline{f_i^L} = (f_i^{C_L})^*$, where f^* stands for the dual function. Analogously, we obtain that $\overline{f_L^Z} = (f_{U-Z}^{C^L})^*$ (note that f_L^Z and $f_{U-Z}^{C^L}$ depend on the same variables). Since $f_i^{C_L} = \overline{f_i^{C^L}}$ theorem 1 and the following facts imply the theorem: (1) C^L satisfies \underline{M} iff all the functions $f_i^{C^L}$, $i = 1, \ldots, n$, a re monotonic (cf. [VR]);

(2) C^L satisfies \underline{O} iff all the functions $\overline{f}_Z^{C^L}$, $Z \subseteq U$, are monotonic (cf. [Li1]). The theorem is proved.

Remark. A set of attributes $X \subseteq U$ is called a *candidate key* (w.r.t. a relation R) if $L_R(X) = U$ and for every $Y \subset X : L_R(Y) \neq U$. The problem of finding the candidate keys (or a candidate key) is one of the most important problems in the theory of relational databases, see e.g. [BDFS],[De2]. According to the previous theorem, the candidate keys are exactly the lower units of monotonic function $f_U^{L_R}$. Hence, we can apply a recognition algorithm for monotonic Boolean functions to construct an algorithm of finding the candidate keys. (Note that if we are given a set of FD's, we can calculate a value $f_U^{L_R}$ in polynomial time in the size of the set of FDs. However, the problem of finding all the candidate keys is NP-hard, see [BDFS]).

Some other aspects of the applications of recognition of monotonic Boolean functions to the study of choice functions satisfying \underline{M} and \underline{O} (and, hence, closure operations) can be found in [Li2].

4 On the properties of closures induced by the properties of choice functions

In this section we consider the closures for which choice functions C_L and C^L defined in Section 2 satisfy some additional properties. Note that in the theory of choice functions such properties are usually studied in some fixed combinations. These combinations explain the use of C_L and C^L . E.g., the property <u>C</u> (Concordance) is usually studied together with <u>H</u> (see [Ai], [AM], [Mo], [Li1]). Thus, studying this property we consider C_L (moreover, the property <u>C</u> implies monotonicity and there is no reason to consider C^L).

Property C. As it was mentioned, we consider the functions C_L .

Let L be a closure and \mathcal{F}_L a corresponding full family of FD's. Recall that an FD $X \longrightarrow Z$ is called *nontrivial* [De2], [DLM1] if $X \cap Z = \emptyset$. Let P_6 stand for the (Post) class consisting of conjunctions and constants, cf. [Po].

Proposition 1 Let L be a closure operation on U. The following are equivalent: 1) C_L satisfies the property C_i :

2) $L(X) \cap L(Y) - (X \cup Y) \subseteq L(X \cap Y)$ for all $X, Y \subseteq U$;

3) If $X \longrightarrow Z$ and $Y \longrightarrow Z$ are nontrivial FD's from \mathcal{F}_L , then $X \cap Y \longrightarrow Z \in \mathcal{F}_L$;

4) $(X \longrightarrow a) \in \mathcal{F}_L$ iff $U - \{a, b\} \longrightarrow a$ for all $b \notin X$, where $a \notin X$;

5) For all $i = 1, ..., n : f_i^L \in P_6$.

Proof. 1 \longrightarrow 2. Let C_L satisfy \underline{C} . Then for all $X, Y \subseteq U : C_L(U - X) \cap C_L(U - Y) \subseteq C_L(U - X \cap Y)$. Using $C_L(Z) = L(U - Z) \cap Z$ we obtain $L(X) \cap L(Y) - (X \cup Y) \subseteq L(X \cap Y) - (X \cap Y)$. Hence, 2 hold s.

 $2 \longrightarrow 3$. Let $X \longrightarrow Z$ and $Y \longrightarrow Z$ be nontrivial FD's from \mathcal{F}_L . Then so are $X \longrightarrow a$ and $Y \longrightarrow a$ for all $a \in Z$. Since $a \in L(X) \cap L(Y) - (X \cup Y)$, we have that $a \in L(X \cap Y)$, i.e. $X \cap Y \longrightarrow a \in \mathcal{F}_L$. Then by (F4) $X \cap Y \longrightarrow Z \in \mathcal{F}_L$.

 $3 \longrightarrow 1$. Let 3) hold and $a \in C_L(X) \cap C_L(Y)$, $X, Y \subseteq U$. Then $U - X \longrightarrow a \in \mathcal{F}_L$ and $U - Y \longrightarrow a \in \mathcal{F}_L$ and both FD's are nontrivial. Hence, $U - (X \cup Y) \longrightarrow a \in \mathcal{F}_L$ and $a \in L(U - (X \cup Y))$. Since $a \in (X \cup Y)$, we have $a \in C_L(X \cup Y)$. Therefore, C_L satisfies \underline{C} .

 $1 \longleftrightarrow 4$. Let $a \notin X$. Then $X \longrightarrow a \in \mathcal{F}_L$ iff $a \in C_L(U-X)$, and $U - \{a, b\} \longrightarrow a \in \mathcal{F}_L$ iff $a \in C_L(\{a, b\})$. Hence, 4) is equivalent to: $a \in C_L(Z)$ iff $a \in C_L(\{a, b\})$ for all $b \in Z$. According to [AM], [Mo] the last property holds iff C_L satisfies \underline{C} .

 $1 \leftrightarrow 5$. Since C_L satisfies \underline{H} , it satisfies \underline{C} iff all the functions $f_i^{C_L} i = 1, \ldots, n$ can be represented as \overline{f}^* , where $f \in P_6$, see [VR],[Li1]. Since $f_i^L = \overline{f_i^{C_L}}^*$, we have that C_L satisfies \underline{C} iff $f_i^L \in P_6$ for all *i*. The proposition is proved.

Property of submission. This property was introduced in [Li1] as a dual form of \underline{C} . We say that a choice function satisfies the submission property (\underline{S} for short) if

$$\forall X, Y \subseteq U : C(X \cap Y) \subseteq C(X) \cup C(Y).$$

Recall that a closure is called topological if $L(X \cup Y) = L(X) \cup L(Y)$ for all $X, Y \subseteq U$.

Let S_6 stand for the class of Boolean functions consisting of disjunctions and constants, cf. [Po].

Proposition 2 Let L be a closure operation. Then the following are equivalent:

- 1) C_L satisfies <u>S</u>;
- 2) L is a topological closure;
- 3) $X \longrightarrow a \in \mathcal{F}_L$ iff $b \longrightarrow a \in \mathcal{F}_L$ for some $b \in X_j$
- 4) For all $i = 1, ..., n : f_i^L \in S_6$.

Proof. $1 \longrightarrow 2$. Let C_L satisfy \underline{S} . Then for all $X, Y \subseteq U : L(X \cup Y) = X \cup Y \cup C_L(U - X \cup Y) = X \cup Y \cup C_L((U - X) \cap (U - Y)) \subseteq (X \cup C_L(U - X)) \cup (Y \cup C_L(U - Y)) = L(X) \cup L(Y)$. Since (C2) holds, $L(X) \cup L(Y) \subseteq L(X \cup Y)$, i.e. L is topological.

 $2 \longrightarrow 1$. Let L be topological. Then for all $X, Y \subseteq U : C_L(X \cap Y) = L(U - X \cap Y) \cap X \cap Y = L((U - X) \cup (U - Y)) \cap X \cap Y \subseteq (L(U - X) \cup L(U - Y)) \cap X \cap Y \subseteq (L(U - X) \cap X) \cup (L(U - Y) \cap Y)) = C_L(X) \cup C_L(Y)$, i.e. C_L satisfies <u>S</u>.

 $2 \leftrightarrow 3$. It was proved in [DLM2].

 $1 \leftrightarrow 4$. According to [Li1], C_L satisfies \underline{S} iff for all $i = 1, ..., n : (f_i^{C_L})^* \in S_6$, i.e. iff $f_i^L \in S_6$. The proposition is proved.

The topological closures are known to have simple matrix representations. Consider two binary relations P_L and T_L on U as follows:

 $(a_i, a_j) \in P_L$ iff every closed subset X (w.r.t. L) either contains a_j or does not contain a_i .

 $(a_i, a_j) \in T_L$ iff $a_j \in L(a_i)$.

For a closure L, P_L is a reflexive relation. Given a reflexive relation P suppose that L(X) is the intersection of all $Y \supseteq X$ such that for all $(a_i, a_j) \in P$ either $a_i \notin Y$ or $a_j \in Y$. Then L thus constructed is a topological closure with $P_L = P$, see [DLM2].

For a topological closure L, T_L is a transitive binary relation. Conversely, given a transitive binary relation T, define $L(X) = X \cup \{a \in U | \exists b \in X : (b, a) \in T\}$. Then L is a topological closure with $T_L = T$. Moreover, T_L is the minimal transitive binary relation containing P_L , see [DLM2]

It is known that the choice functions satisfying \underline{H} and \underline{S} can be represented by binary relation as follows [Li1]:

$$C^{P}(X) = \{a \in X | \exists b \in X : (b, a) \in P \Longrightarrow \exists c \notin X : (c, a) \in P \}.$$

Hence, P thus constructed can be considered as a representation of a topological closure with $C_L = C^P$.

Proposition 3 $C_L = C^{T_L}$ holds for any topological closure L.

Proof. Let $a \in X$. Since T_L is reflexive, $a \in C^{T_L}(X)$ iff for some $c \notin X$: $(c, a) \in T_L$, i.e. iff $a \in L(c)$. Since L is topological, the last is equivalent to $a \in L(U - X) \cap X$, i.e. $a \in C_L(X)$.

Property of multi-valued concordance. This property also has been introduced in [Li1] in order to be studied together with the property \underline{O} .

A subset of $U \times 2^U$ was called in [AM] a hyper-relation. We will call a hyperrelation correct [Li1] if for every $X \subseteq U$ there is a unique $Y \subseteq X$ such that for all $a \in X - Y$ the pairs (a, Y) belong to the hype r-relation.

Proposition 4 Let L be a closure operation. Then the following are equivalent:

- 1. C^L satisfies the property of multivalued concordance, i.e. if $Z = C^L(X) = C^L(Y)$ then $Z = C^L(X \cup Y)$;
- 2. For all $X, Y \subseteq U : L(X) = L(Y)$ implies $L(X) = L(X \cap Y)$;
- 3. For all $Z \subseteq U : f_Z^L \in P_6$;
- 4. For all $X \subseteq U : C^{L}(X) = Y$, where $(a, Y) \in D$ for all $a \in X Y$ and D is a correct hyper-relation.

Proof. The equivalence of 1 and 2 is evident. The equivalences $1 \leftrightarrow 3$ and $1 \leftrightarrow 4$ follow from [Li1].

5 Structural representation of functional independencies

Let R be a relation over U. We say that a functional independency (FID for short) $X \longrightarrow Y$ holds for R if there are two elements of R with coinciding projections onto X and distinct projections onto Y (i.e. FD $X \longrightarrow Y$ does not hold), see [Ja]. A review of properties of FID's can be found in [Ja]. In this section we construct the representations of FID's via operations on a power set and semilattices.

Let R be a relation and $\mathcal{F}I_R$ the family of all FID's that hold for R. A family $\mathcal{F}I$ of FID's is called *full* if for some relation R one has $\mathcal{F}I = \mathcal{F}I_R$.

Given a full family $\mathcal{F}I$, define for $X \subseteq U C_{\mathcal{F}I}(X) = \{a \in X | (U - X) \longrightarrow a \in \mathcal{F}I\}$. Conversely, given a choice function C, define a family of FID's $\mathcal{F}I_C$ as follows:

$$X \longrightarrow Y \in \mathcal{F}I_C \text{ iff } Y \subseteq C(U-X).$$

Let C be a choice function. Define $\mathcal{L}(C) = \{X \subseteq U | C(X) = X\}$. For a join-semilattice \mathcal{L} , $(\mathcal{L} \subseteq 2^U, \emptyset \in \mathcal{L}, X, Y \in L \Longrightarrow X \cup Y \in L)$ define $C_{\mathcal{L}}$ as follows:

$$C_{\mathcal{L}}(X) = \cup (Y|Y \subseteq X, Y \in \mathcal{L}).$$

Theorem 3 a) The mappings $\mathcal{F}I \longrightarrow C_{\mathcal{F}I}$ and $C \longrightarrow \mathcal{F}I_C$ establish mutually inverse one-to-one correspondences between full families of FID's and choice functions satisfying <u>M</u> and <u>O</u>.

b) The mappings $C \longrightarrow \mathcal{L}(C)$ and $\mathcal{L} \longrightarrow C_{\mathcal{L}}$ establish mutually inverse oneto-one correspondences between choice functions satisfying <u>M</u> and <u>O</u> and joinsemilattices.

Proof. a) Let $\mathcal{F}I = \mathcal{F}I_R$ be a full family of FID's. Then $a \in C_{\mathcal{F}I}(X)$ iff $a \notin L_R(U-X)$, i.e. $C_{\mathcal{F}I}(X) = U - L_R(U-X)$ and C satisfies \underline{O} and \underline{M} by theorem 1.

Let C satisfy O and M. Then $C = C^L$ for some closure L, and $X \longrightarrow Y \in \mathcal{F}I_C$ iff $Y \cap L(X) = \emptyset$, i.e. $(X \longrightarrow Y) \notin \mathcal{F}_L$. Hence $\mathcal{F}I_C$ is a full family. Moreover, $a \in C_{\mathcal{F}I_C}(X)$ iff $(U - X) \longrightarrow a \in \mathcal{F}I_C$ iff $a \in C(X)$. Part a is proved.

b) Let L be a closure. Then $\mathcal{L}(C^L) = \{X \subseteq U | C^L(X) = X\} = \{X \subseteq U | L(U - X) = U - X\} = \{X \subseteq U | U - X \in Z(L)\}$. Hence, part b follows from theorem 1 and the well-known correspondence bet ween (meet)-semilattices and closure operations, see [DK],[DLM1]. The theorem is proved.

The last question to be considered is as follows: when is a full family of FID's also a full family of FD's? In other words, when is a closure operation $L(X) = X \cup \{a \notin X | X \longrightarrow a \in \mathcal{F}I_R\}$?

Proposition 5 Let R be a relation over U. Then the following are equivalent:

1.
$$L(X) = X \cup \{a \notin X | X \longrightarrow a \in \mathcal{F}I_R\}$$
 is a closure operation;

2. There is $Z \subseteq U$ such that $L_R(X) = X \cup Z$ for all $X \subseteq U$.

Proof. Let $L(X) = X \cup \{a \notin X | X \longrightarrow a \in \mathcal{F}I_R\}$ be a closure. Then C^L satisfies \underline{H} (see theorem 1) and since C^L satisfies \underline{M} we have that for some $V \subseteq U : C^L(X) = X \cap V$ for all $X \subseteq U$, see [AM]. Therefore, for Z = U - V one has $L_R(X) = X \cup Z$.

Conversely, if L_R is as in 2, then $L(X) = X \cup \{a \notin X | X \longrightarrow a \in \mathcal{F}I_R\} = X \cup \{a \notin X | X \longrightarrow a \notin \mathcal{F}_R\}$ is obviously a closure operation. The proposition is proved.

References

- [Ai] M.A. Aizermann, New problems in the general choice theory (Review of a research trend), J. Social Choice and Welfare 2 (1985), 235-282.
- [AM] M.A. Aizerman and A.V. Malishevski, General theory of best variants choice: Some aspects, IEEE Trans. Automat. Control 26 (1981), 1030-1041.
- [Ar] W.W. Armstrong, Dependency structure of data-base relationship, Information Processing 74, North Holland, Amsterdam, (1974), 580-583.
- [BDFS] C. Beeri, M. Dowd, R. Fagin and R. Statman, On the structure of Armstrong relations for functional dependencies, J. ACM 31 (1984), 30-46.
- [De1] J. Demetrovics, Candidate keys and antichains, SIAM J. Alg. Disc. Meth. 1 (1980), 92.
- [De2] J. Demetrovics, On the equivalence of candidate keys with Sperner systems, Acta Cybernetica 4 (1979), 247-252.
- [DK] J. Demetrovics and G.O.H. Katona, Extremal combinatorial problems of database models, MFDBS 87, Springer LNCS 305 (1988), 99-127.
- [DLM1] J. Demetrovics, L.O. Libkin and I.B. Muchnik, Functional dependencies and the semilattice of closed classes, MFDBS 89, Springer LNCS 364 (1989), 136-147.
- [DLM2] J. Demetrovics, L.O. Libkin and I.B. Muchnik, Closure operations and database models (in Russian) to appear in Kibernetika, Kiew.
- [Ja] J. M. Janas, Covers for functional independencies, MFDBS 89, Springer LNCS 364(1989), 254-268.
- [Li1] L.O. Libkin, Algebraic methods for construction and analysis of the choice function classes (in Russian), Individual Choice and Fuzzy Sets, Trudy VNIISI, Moscow 14(1987), 46-53.

- [Li2] L.O. Libkin, Recognition of choice functions (in Russian), Automatika i Telemehanika, 1988, No. 10, p. 128-132. English Translation in: J. Automation and Remote Control.
- [Mo] H. Moulin, Choice functions over a finite set: A summary. IMA Preprint series, University of Minnesota, Minneapolis, 1984.
- [Po] E. Post, Two-valued Iterative Systems, 1941.
- [VR] T.M. Vinogradskaja and A.A. Rubchinski, Logical forms of choice functions (in Russian), Dokl. Akad. Nauk. SSR 254(1980), 1362-1366. English Translation in: Soviet Math. Dokl.

Received February 1, 1990.

秉