On the interaction between closure operations and choice functions with applications to relational databases*

János Demetrovics ${ }^{\dagger}$ Gusztáv Hencsey ${ }^{\dagger}$ Leonid Libkin ${ }^{\ddagger}$ Ilya Muchnik ${ }^{\text {s }}$

Abstract

A correspondence between closure operations and special choice functions on a finite set is established. This correspondence is applied to study functional dependencies in relational databases.

1 Introduction

Having been introduced in connection with some topological problems, closure operations were applied in various branches of mathematics. In the last years they were successfully applied to study so-called functional dependencies (FDs for short) in relational databases. Now we recall some definitions and facts; they can be found in [DK], [DLM1].

Let $U=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set of attributes (e.g. name, age etc.) and $W\left(a_{i}\right)$ the domain of a_{i}. Then a subset $R \subseteq W\left(a_{i}\right) \times \ldots \times W\left(a_{n}\right)$ is called a relation over U.

A functional dependency (FD) is an expression of form $X \rightarrow Y, X, Y \subseteq U$. We say that FD $X \longrightarrow Y$ holds for a relation R if for every two elements of R with identical projections onto X, the projections of t hese elements onto Y also coincide. According to $[A r]$, the family \mathcal{F} of all FD's that hold for R satisfies the properties (F1)-F4):

$$
\begin{equation*}
(X \longrightarrow X) \in \mathcal{F} \tag{F1}
\end{equation*}
$$

(F2) $\quad(X \longrightarrow Y) \in \mathcal{F}$ and $(Y \longrightarrow V) \in \mathcal{F}$ imply $(X \longrightarrow V) \in \mathcal{F} ;$

[^0]\[

$$
\begin{align*}
& (X \longrightarrow Y) \in \mathcal{F} \text { and } X \subseteq V, W \subseteq Y \text { imply }(V \longrightarrow W) \in \mathcal{F} ; \tag{F3}\\
& (X \longrightarrow Y) \in \mathcal{F} \text { and }(V \longrightarrow W) \in \mathcal{F} \text { imply }(X \cup V \longrightarrow Y \cup W) \in \mathcal{F} . \tag{F4}
\end{align*}
$$
\]

Conversely, given a family of FD's satisfying (F1)-(F4) (so-called full family), there is a relation R over U generating exactly this family of FD's, see [Ar] and also [BDFS] for a constructive proof.

We shall write a_{i} instead of $\left\{a_{i}\right\}$ throughout the paper. Let R be a relation over $U, X \subseteq U$ and put $L_{R}(X)=\{a \in U \mid X \longrightarrow a$ holds for $R\}$. Then L_{R} satisfies
(C1) $\quad X \subseteq L_{R}(X)$;
(C2) $\quad X \subseteq Y \Longrightarrow L_{R}(X) \subseteq L_{R}(Y)$;
(C3) $\quad L_{R}\left(L_{R}(X)\right)=L_{R}(X)$,
i.e. L_{R} is a closure operation. Note that the properties (C1)-(C3) may be concisely expressed as $X \subseteq L_{R}(Y)$ iff $L_{R}(X) \subseteq L_{R}(Y)$. Given a closure L (sometimes we shall omit the word "operation"), there is a relation R over U with $L=L_{R}$, see [De1].

A set $X \subseteq U$ is called closed (w.r.t. a closure L) if $L(X)=X$. Let $Z(L)$ stand for the family of all closed sets w.r.t. L. Then

$$
\begin{align*}
& U \in Z(L), \tag{S1}\\
& X, Y \in Z(L) \text { implies } X \cap Y \in Z(L), \tag{S2}
\end{align*}
$$

i.e. $Z(L)$ is a semilattice. Given a semilattice $Z \subseteq 2^{U}$ define $L(X)=\cap\{Y \mid X \subseteq Y$, $Y \in Z\}$. Then L is a closure with $Z(L)=Z$. Therefore, we can think of semilattices providing an equivalent description of closures and full families of FD's.

A closure is an extensive operation $(X \subseteq L(X))$. The operations satisfying the reverse inclusion (called choice functions) were also widely studied in connection with the theory of rational behaviour of individuals and groups, see $[\mathrm{AM}],[\mathrm{Ai}],[\mathrm{Mo}]$. We give some necessary definitions.

A mapping $C: 2^{U} \longrightarrow 2^{U}$ satisfying $C(X) \subseteq X$ for every $X \subseteq U$, is called a choice function. U is interpreted as a set of alternatives, X as a set of alternatives given to the decision-maker to choose the best and $C(X)$ a s a choice of the best alternatives among X.

There were introduced some conditions (or properties) to characterize the rational behaviour of a decision-maker. The most important conditions are the following (see $[\mathrm{AM}],[\mathrm{Ai}],(\mathrm{Mo}])$:
Heredity (\underline{H} for short):

$$
\forall X, Y \subseteq U: X \subseteq Y \Longrightarrow C(Y) \cap X \subseteq C(X)
$$

Concordance (\underline{C} for short):

$$
\forall X, Y \subseteq U: C(X) \cap C(Y) \subseteq C(X \cup Y)
$$

Out casting (\underline{O} for short):

$$
\forall X, Y \subseteq U: C(X) \subseteq Y \subseteq X \Longrightarrow C(X)=C(Y)
$$

Monotonicity (\underline{M} for short):

$$
\forall X, Y \subseteq U: X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)
$$

Let P be a binary relation on U, i.e. $P \subseteq U \times U$. Let $C_{P}(X)=\{a \in X \mid(A b \in$ $X:(b, a) \in P)\}$.

One of the central results of the theory of choice functions states that a choice function can be represented as C_{P} for some P iff it satisfies \underline{H} and C.

Given a closure operation L, we can define choice functions $C(X)=L(U-X) \cap$ X and $C(X)=U-L(U-X)$. In Section 2 we characterize the choice functions of the second type as satisfying \underline{M} and \underline{O}. In the other sections we use this correspondence to transfer the properties of choice functions to closures and to apply them to the study of FD's. In Section. 3 we use the logical representation of choice functions (see [VR],(Lil]) to construct a similar representation and characterization of closure operations.

In Section 4 new properties of closure operations are obtained and studied by new properties being added to M and \underline{O}.

Finally, in the Section 5, we use choice functions to construct a structural representation for so-called functional independencies (cf. [Ja]) in the same way as closures were used to represent FD's.

2 The main correspondence

Let L be a closure operation. Define two choice functions associated with L as follows:

$$
\begin{gathered}
C_{L}(X)=L(U-X) \cap X \\
C^{L}(X)=U-L(U-X), X \subseteq U
\end{gathered}
$$

Note that both C_{L} and C^{L} uniquely determine the closure L, in fact, $L(X)=$ $X \cup C_{L}(U-X)$ and $L(X)=U-C^{L}(U-X)$. For every $X \subseteq U$ the sets $C_{L}(X)$ and $C^{L}(X)$ form a partition of X, i.e. $C_{L}(X) \cap C^{L}(X)=\emptyset$ and $C_{L}(X) \cup C^{L}(X)=X$.

Theorem 1 The mapping $L \longrightarrow C^{L}$ establishes a one-to-one correspondence between the closure operations and the choice functions satisfying \underline{O} and \underline{M}.

Proof. Let L be a closure operation. We prove that C^{L} satisfies M and \underline{O}.
Let $x \in C^{L}(X)$ and $X \subseteq Y$. Then $x \notin L(U-X)$ and since $U-Y \subseteq U-X$, we have $x \notin L(U-Y)$, i.e. $x \in C^{L}(Y)$. Hence, C^{L} satisfies \underline{M}.

Let $X \subseteq U$. Then $L(L(U-X))=L(U-X)$. Using $L(U-X)=U-C^{L}(X)$, we obtain that $U-C^{L}\left(U-\left(U-C^{L}(X)\right)=U-C^{L}(X)\right.$, i.e. $C^{L}\left(C^{L}(X)\right)=C^{L}(X)$. Now let $C^{L}(X) \subseteq Y \subseteq X$; Since C^{L} satisfies $\left.M, C^{L}\left(C^{L}(X)\right) \subseteq C^{L}(Y)\right) \subseteq C^{L}(X)$ and $C^{L}(X)=C^{L}(Y)$. Therefore, C^{L} satisfies \underline{O}.

Let C be a choice function satisfying \underline{O} and \underline{M}. Consider $L(X)=U-C(U-X)$. We prove that L is a closure. Clearly, $X \subseteq L(X)$. If $X \subseteq Y$ and $x \in L(X)$, then $x \notin C(U-X)$ and $x \notin C(U-Y)$, i.e. $x \in L(Y)$. Since C satisfies $O, C(C(U-X))=$ $C(U-X)$. Applying $C(U-X)=U-L(X)$ we obtain $L(L(X))=L(X)$. Hence, L is a closure and $C^{L}=C$.

To finish the proof, note that the mapping $L \longrightarrow C^{L}$ is injective, because for two distinct closures L_{1} and L_{2} with $L_{1}(X) \neq L_{2}(X)$ one has $C^{L_{1}}(U-X) \neq$ $C^{L_{2}}(U-X)$. The theorem is proved.

Let \mathcal{K} be a property of choice functions. We say that a choice function C satisfies \bar{K} if its complement \bar{C} satisfies K. (The complementary function \bar{C} of C is defined as follows: $\bar{C}(X)=X-C(X)$ for $X \subseteq U$.)

Corollary 1 The mapping $L \longrightarrow C_{L}$ establishes one-to-one correspondence between the closure operations and the choice functions satisfying \underline{H} and \underline{O}.

Proof. It follows from the facts that C_{L} and C^{L} are complementary choice functions and that $\underline{H}=\underline{\bar{M}}, \underline{M}=\underline{\bar{H}}$, see $[\mathrm{Ai}]$.

3 On logical representation of closure operations and choice functions

The family of all choice functions on U equipped with the operations U, \cap and ${ }^{-}$, is a Boolean algebra. Logical representation of the choice functions was introduced in [VR] to show that this Boolean algebra is isomorphic to one consisting of tuples of n Boolean functions, each depending on at most $n-1$ variables.

Let $U=\left\{a_{1}, \ldots, a_{n}\right\}, X \subseteq U$. Define

$$
\begin{gathered}
\beta_{i}(X)= \begin{cases}1, & a_{i} \in X \\
0, & a_{i} \notin X\end{cases} \\
\beta^{i}(X)=\left(\beta_{1}(X), \ldots, \beta_{i-1}(X), \beta_{i+1}(X), \ldots, \beta_{n}(X)\right) \text { and } \\
\beta^{z}(X)=\left(\beta_{i_{1}}(X), \ldots, \beta_{i_{k}}(X)\right)
\end{gathered}
$$

where $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}=U-Z$ and $i_{1}<\ldots<i_{k}$.
Definition [VR]. A family $\left\langle f_{1}^{C}, \ldots f_{n}^{C}\right\rangle$ of Boolean functions, each depending on $n-1$ variables, is called a first logical form of a choice function C if for every $a_{i} \in U$ and $X \subseteq U$:

$$
a_{i} \in C(X) \text { iff } a_{i} \in X \text { and } f_{i}^{C}\left(\beta^{i}(X)\right)=1
$$

Definition [Li1]. A family $\left\langle f_{0}^{C}, \ldots, f_{U}^{C}\right\rangle$ of Boolean functions indexed by subsets of U, is called a second logical form of a choice function C if for every $Z, X \subseteq U:$

$$
Z=C(X) \text { iff } Z \subseteq X \text { and } f_{Z}^{C}\left(\beta^{z}(X)\right)=1
$$

Note that f_{Z}^{C} depends on $n-|Z|$ variables.
Each logical form uniquely determines a choice function. By [VR], every tuple of Boolean functions, each depending on $n-1$ variables, is a first logical form of some choice function, moreover, $C \longrightarrow\left\langle f_{1}^{C}, \ldots, f_{n}^{C}\right\rangle$ is an isomorphism of Boolean algebras.

A family $\left\langle f_{\emptyset}, \ldots, f_{U}\right\rangle, f_{Z}$ depends on $n-|Z|$ variables, is a second logical form of some choice function iff for each $Z \subseteq U$ the set $\left\{f_{Z}\left(\beta^{Z}(X)\right): Z \subseteq X\right\}$ contains a unique one.

Let L be an operation satisfying (C1), i.e. $X \subseteq L(X)$ for all $X \subseteq U$. We can introduce two logical forms as before.

Definition. A family $\left\langle f_{1}^{L}, \ldots, f_{n}^{L}\right\rangle$ of Boolean functions, each depending on at most $n-1$ variables, is called a first logical form of L if for every $a_{i} \in U$ and $X \subseteq U:$

$$
a_{i} \in L(X) \text { iff } a_{i} \in X \text { or } f_{i}^{L}\left(\beta^{i}(X)\right)=1
$$

Let $Z=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}, i_{1}<\ldots<i_{k}$, and $\beta_{Z}(X)=\left(\beta_{i_{1}}(X), \ldots, \beta_{i_{k}}(X)\right)$.
Definition. A family $\left(f_{\emptyset}^{L}, \ldots f_{U}^{L}\right)$ of Boolean functions indexed by subsets of U, f_{Z}^{L} depends on $|Z|$ variables, is called second logical form of L if for every $Z, X \subseteq U$:

$$
Z=L(X) \text { iff } X \subseteq Z \text { and } f_{Z}^{L}\left(\beta_{Z}(X)\right)=1
$$

We use these logical forms to characterize the closure operations among all the operations satisfying (C1).

Theorem 2 Let L satisfy (C1). Then L is a closure operation iff all the functions $f_{i}^{L}, i=1, \ldots, n ; f_{Z}^{L}, Z \subseteq U$, are monotonic.

Proof. Since $a_{i} \in L(X)$ iff $a_{i} \in X$ or $a_{i} \in C_{L}(U-X)$, we have $f_{i}^{L}\left(\beta^{i}(X)\right)=$ $f_{i}^{C_{L}}\left(\beta^{i}(U-X)\right)$, i.e. $\overline{f_{i}^{L}}=\left(f_{i}^{C_{L}}\right)^{*}$, where f^{*} stands for the dual function. Analogously, we obtain that $\overline{f_{Z}^{L}}=\left(f_{U-Z}^{G^{L}}\right)^{*}$ (note that f_{Z}^{L} and $f_{U-Z}^{C^{L}}$ depend on the same variables). Since $f_{i}^{C_{\Sigma}}=\overline{f_{i}^{C^{\Sigma}}}$ theorem 1 and the following facts imply the theorem: (1) C^{L} satisfies \underline{M} iff all the functions $f_{i}^{C^{L}}, i=1, \ldots, n$, a re monotonic (cf. [VR]);
(2) C^{L} satisfies Q iff all the functions $\vec{f}_{Z}^{C^{L}}, Z \subseteq U$, are monotonic (cf. [Li1]). The theorem is proved.

Remark. A set of attributes $X \subseteq U$ is called a candidate key (w.r.t. a relation $R)$ if $L_{R}(X)=U$ and for every $Y \subset X: L_{R}(Y) \neq U$. The problem of finding the candidate keys (or a candidate key) is one of the most important problems in the theory of relational databases, see e.g. [BDFS],[De2]. According to the previous theorem, the candidate keys are exactly the lower units of monotonic function $f_{U}^{L_{R}}$. Hence, we can apply a recognition algorithm for monotonic Boolean functions to construct an algorithm of finding the candidate keys. (Note that if we are given a set of FD's, we can calculate a value $f_{U}^{L_{R}}$ in polynomial time in the sige of the set of FDs. However, the problem of finding all the candidate keys is NP-hard, see [BDFS]).

Some other aspects of the applications of recognition of monotonic Boolean functions to the study of choice functions satisfying \underline{M} and \underline{O} (and, hence, closure operations) can be found in [Li2].

4 On the properties of closures induced by the properties of choice functions

In this section we consider the closures for which choice functions C_{L} and C^{L} defined in Section 2 satisfy some additional properties. Note that in the theory of choice functions such properties are ussually studied in some fixed combinations. These combinations explain the use of C_{L} and C^{L}. E.g., the property \underline{C} (Concordance) is usually studied together with \underline{H} (see [Ai], [AM],[Mo],[Li1]). Thus, studying this property we consider C_{L} (moreover, the property \underline{C} implies monotonicity and there is no reason to consider C^{L}).

Property C. As it was mentioned, we consider the functions C_{L}.
Let L be a closure and \mathcal{F}_{L} a corresponding full family of FD's. Recall that an FD $X \longrightarrow Z$ is called nontrivial [De2], [DLM1] if $X \cap Z=\emptyset$. Let P_{6} stand for the (Post) class consisting of conjunctions and constants, cf. [Po].

Proposition 1 Let L be a closure operation on U. The following are equivalent:

1) C_{L} satisfies the property $C_{\text {; }}$
2) $\quad L(X) \cap L(Y)-(X \cup Y) \subseteq L(X \cap Y)$ for all $X, Y \subseteq U$;
3) If $X \longrightarrow Z$ and $Y \longrightarrow Z$ are nontrivial $F D$'s from \mathcal{F}_{L}, then $X \cap Y \longrightarrow$ $Z \in \mathcal{F}_{L}$;
4) $(X \longrightarrow a) \in \mathcal{F}_{L}$ iff $U-\{a, b\} \longrightarrow a$ for all $b \notin X$, where $a \notin X$;
5) For all $i=1, \ldots, n: f_{i}^{L} \in P_{6}$.

Proof. $1 \longrightarrow 2$. Let C_{L} satisfy \underline{C}. Then for all $X, Y \subseteq U: C_{L}(U-X) \cap$ $C_{L}(U-Y) \subseteq C_{L}(U-X \cap Y)$. Using $C_{L}(Z)=L(U-Z) \cap Z$ we obtain $L(X) \cap$ $L(Y)-(X \cup Y) \subseteq L(X \cap Y)-(X \cap Y)$. Hence, 2 hold s.
$2 \longrightarrow 3$. Let $X \longrightarrow Z$ and $Y \longrightarrow Z$ be nontrivial $F D$'s from \mathcal{F}_{L}. Then so are $X \longrightarrow a$ and $Y \longrightarrow a$ for all $a \in Z$. Since $a \in L(X) \cap L(Y)-(X \cup Y)$, we have that $a \in L(X \cap Y)$, i.e. $X \cap Y \longrightarrow a \in \mathcal{F}_{L}$. Then by (F4) $X \cap Y \longrightarrow Z \in \mathcal{F}_{L}$.
$3 \longrightarrow 1$. Let 3) hold and $a \in C_{L}(X) \cap C_{L}(Y), X, Y \subseteq U$. Then $U-X \longrightarrow a \in$ \mathcal{F}_{L} and $U-Y \longrightarrow a \in \mathcal{F}_{L}$ and both FD's are nontrivial. Hence, $U-(X \cup Y) \longrightarrow$ $a \in \mathcal{F}_{L}$ and $a \in L(U-(X \cup Y))$. Since $a \in(X \cup Y)$, we have $a \in C_{L}(X \cup Y)$. Therefore, C_{L} satisfies \underline{C}.
$1 \longleftrightarrow 4$. Let $a \notin X$. Then $X \longrightarrow a \in \mathcal{F}_{L}$ iff $a \in C_{L}(U-X)$, and $U-\{a, b\} \longrightarrow$ $a \in \mathcal{F}_{L}$ iff $a \in C_{L}(\{a, b\})$. Hence, 4) is equivalent to: $a \in C_{L}(Z)$ iff $a \in C_{L}(\{a, b\})$. for all $b \in Z$. According to $[\mathrm{AM}],[\mathrm{Mo}]$ the last property holds iff C_{L} satisfies \underline{C}.
$1 \longleftrightarrow 5$. Since C_{L} satisfies \underline{H}, it satisfies \underline{C} iff all the functions $f_{i}^{C_{\Sigma}}{ }_{i}=1, \ldots, n$ can be represented as \bar{f}^{*}, where $f \in P_{6}$, see $\left.\mid \mathrm{VR}\right],[\operatorname{Li1}]$. Since $f_{i}^{L}=\overrightarrow{f_{i}^{C_{L}}}$, we have that C_{L} satisfies \underline{C} iff $f_{i}^{L} \in P_{6}$ for all i. The proposition is proved.

Property of submission. This property was introduced in [Li1] as a dual form of \underline{C}. We say that a choice function satisfies the submission property (\underline{S} for short) if

$$
\forall X, Y \subseteq U: C(X \cap Y) \subseteq C(X) \cup C(Y)
$$

Recall that a closure is called topological if $L(X \cup Y)=L(X) \cup L(Y)$ for all $X, Y \subseteq U$.

Let S_{6} stand for the class of Boolean functions consisting of disjunctions and constants, cf. [Po].

Proposition 2 Let L be a closure operation. Then the following are equivalent:

1) C_{L} satisfies \underline{S};
2) L is a topological closure;
3) $X \longrightarrow a \in \mathcal{F}_{L}$ iff $b \longrightarrow a \in \mathcal{F}_{L}$ for some $b \in X$;
4) For all $i=1, \ldots, n: f_{i}^{L} \in S_{6}$.

Proof. $1 \longrightarrow 2$. Let C_{L} satisfy \underline{S}. Then for all $X, Y \subseteq U: L(X \cup Y)=$ $X \cup Y \cup C_{L}(U-X \cup Y)=X \cup Y \cup C_{L}((U-X) \cap(U-Y)) \subseteq\left(X \cup C_{L}(U-X)\right) \cup$ $\left(Y \cup C_{L}(U-Y)\right)=L(X) \cup L(Y)$. Since (C2) holds, $L(X) \cup L(Y) \subseteq L(X \cup Y)$, i.e. L is topological.
$2 \longrightarrow 1$. Let L be topological. Then for all $X, Y \subseteq U: C_{L}(X \cap Y)=L(U-X \cap$ $Y) \cap X \cap Y=L((U-X) \cup(U-Y)) \cap X \cap Y \subseteq(L(U-X) \cup L(U-Y)) \cap X \cap Y \subseteq$ $(L(U-X) \cap X) \cup(L(U-Y) \cap Y))=C_{L}(X) \cup C_{L}(Y)$, i.e. C_{L} satisfies \underline{S}.
$2 \longleftrightarrow 3$. It was proved in [DLM2].
$1 \longleftrightarrow 4$. According to [Lil], C_{L} satisfies \underline{S} iff for all $i=1, \ldots, n:\left(f_{i}^{C_{L}}\right)^{*} \in S_{6}$, i.e. iff $f_{i}^{L} \in S_{6}$. The proposition is proved.

The topological closures are known to have simple matrix representations. Consider two binary relations P_{L} and T_{L} on U as follows:
$\left(a_{i}, a_{j}\right) \in P_{L} \quad$ iff every closed subset X (w.r.t. L) either contains a_{j} or does not contain a_{i}.
$\left(a_{i}, a_{j}\right) \in T_{L} \quad$ iff $a_{j} \in L\left(a_{i}\right)$.
For a closure L, P_{L} is a reflexive relation. Given a reflexive relation P suppose that $L(X)$ is the intersection of all $Y \supseteq X$ such that for all $\left(a_{i}, a_{j}\right) \in P$ either $a_{i} \notin Y$ or $a_{j} \in Y$. Then L thus constructed is a topological closure with $P_{L}=P$, see [DLM2].

For a topological closure L, T_{L} is a transitive binary relation. Conversely, given a transitive binary relation T, define $L(X)=X \cup\{a \in U \mid \exists b \in X:(b, a) \in T\}$. Then L is a topological closure with $T_{L}=T$. Moreover, T_{L} is t he minimal transitive binary relation containing P_{L}, see [DLM2]

It is known that the choice functions satisfying \underline{H} and \underline{S} can be represented by binary relation as follows [Li1]:

$$
C^{P}(X)=\{a \in X \mid \exists b \in X:(b, a) \in P \Longrightarrow \exists c \notin X:(c, a) \in P\}
$$

Hence, P thus constructed can be considered as a representation of a topological closure with $C_{L}=C^{P}$.

Proposition $3 C_{L}=C^{T_{L}}$ holds for any topological closure L.
Proof. Let $a \in X$. Since T_{L} is reflexive, $a \in C^{T_{L}}(X)$ iff for some $c \notin X$: $(c, a) \in T_{L}$, i.e. iff $a \in L(c)$. Since L is topological, the last is equivalent to $a \in L(U-X) \cap X$, i.e. $a \in C_{L}(X)$.

Property of multi-valued concordance. This property also has been introduced in [Lil] in order to be studied together with the property \underline{O}.

A subset of $U \times 2^{U}$ was called in [AM] a hyper-relation. We will call a hyperrelation correct [Li1] if for every $X \subseteq U$ there is a unique $Y \subseteq X$ such that for all $a \in X-Y$ the pairs (a, Y) belong to the hype r-relation.

Proposition 4 Let L be a closure operation. Then the following are equivalent:

1. C^{L} satisfies the property of multivalued concordance, i.e. if $Z=C^{L}(X)=$ $C^{L}(Y)$ then $Z=C^{L}(X \cup Y)$;
2. For all $X, Y \subseteq U: L(X)=L(Y)$ implies $L(X)=L(X \cap Y)$;
3. For all $Z \subseteq U: f_{Z}^{L} \in P_{6}$;
4. For all $X \subseteq U: C^{L}(X)=Y$, where $(a, Y) \in D$ for all $a \in X-Y$ and D is a correct hyper-relation.

Proof. The equivalence of 1 and 2 is evident. The equivalences $1 \longleftrightarrow 3$ and $1 \longleftrightarrow 4$ follow from [Li1].

5 Structural representation of functional independencies

Let R be a relation over U. We say that a functional independency (FID for short) $X \longrightarrow Y$ holds for R if there are two elements of R with coinciding projections onto X and distinct projections onto Y (i.e. FD $X \longrightarrow Y$ does not hold), see [Ja]. A review of properties of FID's can be found in [Ja]. In this section we construct the representations of FID's via operations on a power set and semilattices.

Let R be a relation and $\mathcal{F} I_{R}$ the family of all FID's that hold for R. A family $\mathcal{F} I$ of FID's is called full if for some relation R one has $\mathcal{F} I=\mathcal{F} I_{R}$.

Given a full family $\mathcal{F} I$, define for $X \subseteq U C_{f I}(X)=\{a \in X \mid(U-X) \longrightarrow a \in$ $\mathcal{F} I$. Conversely, given a choice function C, define a family of FID's $\mathcal{F} I_{C}$ as follows:

$$
X \longrightarrow Y \in \mathcal{F} I_{C} \text { iff } Y \subseteq C(U-X)
$$

Let C be a choice function. Define $\mathcal{L}(C)=\{X \subseteq U \mid C(X)=X\}$. For a join-semilattice $\mathcal{L},\left(\mathcal{L} \subseteq 2^{U}, \emptyset \in \mathcal{L}, X, Y \in L \Longrightarrow X \cup Y \in L\right)$ define $C_{\mathcal{L}}$ as follows:

$$
C_{\mathcal{L}}(X)=U(Y \mid Y \subseteq X, Y \in \mathcal{L})
$$

Theorem 3 a) The mappings $\mathcal{F} \longrightarrow C_{\mathcal{F} I}$ and $C \longrightarrow \mathcal{F} I_{C}$ establish mutually inverse one-to-one correspondences between full families of FID's and choice functions satisfying \underline{M} and \underline{O}.
b) The mappings $C \longrightarrow \mathcal{L}(C)$ and $\mathcal{L} \longrightarrow C_{\mathcal{L}}$ establish mutually inverse one-to-one correspondences between choice functions satisfying \underline{M} and \underline{O} and joinsemilattices.

Proof. a) Let $\mathcal{F} I=\mathcal{F} I_{R}$ be a full family of FID's. Then $a \in C_{\mathcal{F} I}(X)$ iff $a \notin L_{R}(U-X)$, i.e. $C_{\ni I}(X)=U-L_{R}(U-X)$ and C satisfies \underline{O} and \underline{M} by theorem 1.

Let C satisfy O and M. Then $C=C^{L}$ for some closure L, and $X \longrightarrow Y \in \mathcal{F} I_{C}$ iff $Y \cap L(X)=\emptyset$, i.e. $(X \longrightarrow Y) \notin \mathcal{F}_{L}$. Hence $\mathcal{F} I_{C}$ is a full family. Moreover, $a \in C_{\mathcal{F} I_{C}}(X)$ iff $(U-X) \longrightarrow a \in \mathcal{F} I_{C}$ iff $a \in C(X)$. Part a is proved.
b) Let L be a closure. Then $\mathcal{L}\left(C^{L}\right)=\left\{X \subseteq U \mid C^{L}(X)=X\right\}=\{X \subseteq U \mid L(U-$ $X)=U-X\}=\{X \subseteq U \mid U-X \in Z(L)\}$. Hence, part b follows from theorem 1 and the well-known correspondence bet ween (meet)-semilattices and closure operations, see [DK],[DLM1]. The theorem is proved.

The last question to be considered is as follows: when is a full family of FID's also a full family of FD's? In other words, when is a closure operation $L(X)=$ $X \cup\left\{a \notin X \mid X \longrightarrow a \in \mathcal{F} I_{R}\right\} ?$

Proposition 5 Let R be a relation over U. Then the following are equivalent:

1. $L(X)=X \cup\left\{a \notin X \mid X \longrightarrow a \in \mathcal{F} I_{R}\right\}$ is a closure operation;
2. There is $Z \subseteq U$ such that $L_{R}(X)=X \cup Z$ for all $X \subseteq U$.

Proof. Let $L(X)=X \cup\left\{a \notin X \mid X \longrightarrow a \in \mathcal{F} I_{R}\right\}$ be a closure. Then C^{L} satisfies \underline{H} (see theorem 1) and since C^{L} satisfies \underline{M} we have that for some $V \subseteq$ $U: C^{L}(X)=X \cap V$ for all $X \subseteq U$, see $[\mathrm{AM}]$. Therefore, for $Z=U-V$ one has $L_{R}(X)=X \cup Z$.

Conversely, if L_{R} is as in 2, then $L(X)=X \cup\left\{a \notin X \mid X \longrightarrow a \in \mathcal{F} I_{R}\right\}=$ $X \cup\left\{a \notin X \mid X \longrightarrow a \notin \mathcal{F}_{R}\right\}$ is obviously a closure operation. The proposition is proved.

References

[Ai] M.A. Aizermann, New problems in the general choice theory (Review of a research trend), J. Social Choice and Welfare 2 (1985), 235-282.
[AM] M.A. Aizerman and A.V. Malishevski, General theory of best variants choice: Some aspects, IEEE Trans. Automat. Control 26 (1981), 1030-1041.
|Ar] W.W. Armstrong, Dependency structure of data-base relationship, Information Processing 74, North Holland, Amsterdam, (1974), 580-583.
[BDFS] C. Beeri, M. Dowd, R. Fagin and R. Statman, On the structure of Armstrong relations for functional dependencies, J. ACM 31 (1984), 30-46.
[De1] J. Demetrovics, Candidate keys and antichains, SIAM J. Alg. Disc. Meth. 1 (1980), 92.
[De2] J. Demetrovics, On the equivalence of candidate keys with Sperner systems, Acta Cybernetica 4 (1979), 247-252.
[DK] J. Demetrovics and G.O.H. Katona, Extremal combinatorial problems of database models, MFDBS 87, Springer LNCS 305 (1988), 99-127.
[DLM1] J. Demetrovics, L.O. Libkin and I.B. Muchnik, Functional dependencies and the semilattice of closed classes, MFDBS 89, Springer LNCS 364 (1989), 136-147.
[DLM2] J. Demetrovics, L.O. Libkin and I.B. Muchnik, Closure operations and database models (in Russian) to appear in Kibernetika, Kiew.
[Ja] J. M. Janas, Covers for functional independencies, MFDBS 89, Springer LNCS 364(1989), 254-268.
[Li1] L.O. Libkin, Algebraic methods for construction and analysis of the choice function classes (in Russian), Individual Choice and Fuszy Sets, Trudy VNIISI, Moscow 14(1987), 46-53.
[Li2] L.O. Libkin, Recognition of choice functions (in Russian), Automatika i Telemehanika, 1988, No. 10, p. 128-132. English Translation in: J. Automation and Remote Control.
[Mo] H. Moulin, Choice functions over a finite set: A summary. IMA Preprint series, University of Minnesota, Minneapolis, 1984.
[Po] E. Post, Two-valued Iterative Systems, 1941.
[VR] T.M. Vinogradskaja and A.A. Rubchinski, Logical forms of choice functions (in Russian), Dokl. Akad. Nauk. SSR 254(1980), 1362-1366. English Translation in: Soviet Math. Dokl.

Received February 1, 1990.

[^0]: *Research partially supported by HungarianNational Foundation for Scientific Research, Grant 2575.
 ${ }^{\dagger}$ Computer and Automation Institute, P.O.Box 63, Budapest H-1518, Hungary; E-mail: h935dem Cella.hu and h103hen Qella.hu.
 ${ }^{\ddagger}$ Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104, USA; E-mail: libkinOsaul.cis.upenn.edu.
 ${ }^{5} 24$ Chestnut St., Waltham MA 02145, USA; E-mail: ilyaOdarwin.bu.edu.

