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A note on fully initial grammars 

S. Vicolov* 

We (negatively) solve two conjectures of Mateescu and Paun [3], then we give 
characterizations in terms of syntactic semigroup of some families of regular fully 
initial languages. 

1 Definitions and notations 
For a vocabulary V, we denote by V* (V + ) the free monoid (semigroup) generated 
by V under the operation of concatenation; A is the null element ( V + =V* — {A}). 
The strings of V* are called words. The length of a word x £ V* is denoted by |z|. 

If we consider a Chomsky grammar G = (Vjy, Vr ,S,P), then the usual language 
generated by G is defined by 

L{G) = {zS =^>z}. 

The fully initial language generated by G is 

Lin(G) = { i £ x for some A € Vjy). 

The study of fully initial languages was proposed by S. Horváth and has been 
done in a series of papers [1], [2], [3], [4]. 

Clearly, L(G) C Lin(G). The family of fully initial languages generated by 
grammars of type t,t = 0,1,2,3 is denoted by 7 Li. 

Usually, the right-linear and the left-linear grammars generate the same fam- . 
ily of languages. For fully initial grammars this is not true, therefore we shall 
distinguish several classes of "type-3" grammars. 

A grammar G = (Vj<f,Vr,S,P) is called right-linear (left-linear) if P C 
VN x {V* uV'VtfKP C VN x (V^ uVjvV^)). We denote by f £r I i f t , 7Lllin the corre-
sponding families of fully initial languages. A grammar G = (Vn,Vt, S, P) is called 
right-regular (left-regular) if P C VN x [VT U VTVN){P CVNX jVTuVNVT)). The 
corresponding families of fully initial languages axe denoted by fCrreg, 7Lireg-7 
is, in fact, ICrlin u 7Cuin- Following [3] we shall consider the next families, too: 

7L?eg = 7Í rreg n 7Clrcg 

7£?reg = 7Í rrcg U 7Clreg-

The sets of prefixes, suffixes and subwords of a given word x are denoted by 
Init(z) , Fin(z), Sub(z), respectively, and these notations will be extended in the 
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natural way to languages. When considering only proper prefixes, suffixes and 
subwords, we shall write Initp(x), Finp(z) and Subp(x), respectively. 

Let £ be a language of V+. The congruence defined over V+ by: u t; 
if and only if, for every x, y G V*,xuy G L O xvy G L, is called the syntactic 
congruence of L. The syntactic semigroup of £ is the quotient semigroup A+ / 

For further details in syntactic semigroup theory, the reader is referred to [5]. 

2 Necessary conditions for the context- free case 
We shall reproduce here the necessary conditions for a language to be in 7£.2, 
which were considered in [3]. Finally we shall prove that two of the conjectures 
formulated there are not true. 

Lemma 1 For each language L G 7£2, L Q V*, there are two positive integers p, q 
such that each z G L, \z\ > p, can be written as z = uvwxy,u,v,w,x,y G V*, so 
that 

(i) \vwx\ < q, |tix| > 0, 

(ii) for all k > 0, uvkwxky G L and ufcti)x* G L. 

Def in i t ion 1 For a given language L Ç V*, let 

Min(£) = {ze L|Subp(z) n L = 0} 
and define 

R^L) = Min(£) 

Ri(L) = Ri-i{L) U Min(L - t' > 2. 

We say that L has property R if and only if all the sets Ri(L),i > 1, are finite. 

L e m m a 2 If L G 7£2, then L has property R. 

In [3] it is also proved that none of these conditions is sufficient for a language 
to be in 7£2, and one formulates the following conjectures: 

(1) If £ is a context-free language which fulfils the condition in Lemma 1, then 
L e 7£2. 

(2) For arbitrary languages, the condition in Lemma 1 is stronger than property 

R. 

P r o p o s i t i o n 1 Conjecture (£) is not true. 

P r o o f . Consider the languages 
h = {cdnae''1b... e""b\n > 0 ,ku...kn> 0}, 

L = Li U {e"6|n > 0 } U { « T a r i n > 0 } . 

We shall prove that L fulfils the condition in Lemma 1. Let us take p = 2 and 
q = 3. For z = enb or z = dnabn we clearly have all conditions in lemma fulfilled. 
If z = cdnae xb ...e nb, then \z\ > p implies n > 1. There are two cases. 
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1. For all ¿,1 < i < n,ki = 0. Therefore z = cdnabn. We take 
is = = d,w = a,x — b,y — bn~1. It follows that z = uvwxy,\vx\ > 
0, |vtux| < q,uvkwJey = c<Fl~1dkabkbn~1 E L and t/fctuxfc = dkabk E L for every 
fc> 0. 

2. There is an ¿, 1 < i < n, such that ki > 1. We consider u = 
cdnae1b...ei~1bei~1,v = e,w = b,x = X,y = e"i+1b.. .e"nb. Then z = 
uvwxy, |ui| > 0, |utux| < g, uv kwa*y = cdnae H...e ^be * ekbei+1b. ..enb E 
L and vkwxk = ekb E L for all k > 0. 

On the other hand, L does not observe property R. Indeed, it is clear that 
Ri(L) = {0,6} and R2{L) = {a.b,ca,eb,dab}. Min(L - ^ ( L ) ) 2 fcdno(e6)"|re > 
1} since, for all 71 > 1, z = cdna(eb)n implies z E L — RiiL), Subp(z) D Li = 0 and 
Subp(z) n (L — Li) = {a, b, eb} C i?2(L). It follows that Rs(L) is an infinite set. 

¿1 conclusion, L fulfils the condition in Lemma 1 without observing property 
R. 

Proposition 2 Conjecture (1) is not true. 

Proof . We shall consider the same language L as in the above proof. Let 
G = (VN,VT,S,P), where VN = {A,B,C,S},VT = {a,6,c ,d,e} and P = {S —• 
cA,A —• dAB,B —• eB,A —• a.B —• b,S —• B,S —> C,C —• dCb,C —• 
a}. It is easy to see that L = L(G). Consequently, L is a context - free language 
which fulfils the condition in Lemma 1. L has not property R, therefore, according 
to Lemma 2, L & f ti- In conclusion, the proposition is proved. 

R e m a r k 1 Note that Lin(G) = L U {dnaeklb... eknb\n > 0 , ^ > 0,1 < i < n} . 

R e m a r k 2 The negative answer of these two conjectures raises another problem: a 
context-free language which satisfies simultaneously the condition in Lemma 1 and 
the condition R, is in 7£2 ? 

P r o p o s i t i o n S The condition R and the condition in Lemma 1 fulfilled in the 
same time, are not sufficient for a context-free language to be in 7£i-

Proo f . Consider the language 

L2 = {ccTaeklb ... e"nb\n >0,ku...kn>0}u {cPaft"]« > 0} U {e, b}+. 

Note that L2 = LU {e, b}+, where L is the language used in the above proofs. L 
and {e, b}+ are context-free languages. Consequently, L2 is a context-free language, 
too. We have pointed out in the proof of Proposition 1 that L satisfies the condition 
in Lemma 1; it is easy to see that {e, 6}+ also satisfies this condition. In conclusion, 
L2 fulfils the condition in Lemma 1. 

L2 observes property R. Indeed, RI(L2) = {a,e, 6} and RI(L2) = 

{cdnaeklb...e"nb\0 < n < % - 2,0 < n + fci + . . . + fc„ < i - 1} U {¿"ob"!© < 
n < i - 1} U { « E {e, b}+, |u| < »'}, i > 2. 

The last equality can be obtained bv induction. We denote by AI the right term 
of the equality. It is clear that R2(L2) = A2. Suppose that RJ(L2) = A}-, for an 
arbitrary j > 2. We must show that R}-+I(L2) = AJ+i. According to definition 
and to the above supposition we have R]+I(L2) = R}(L2) U Min(L2 — iZy(L2)) = 
AJ U Min(L2 — Ay). Also using the inclusions Ay+i C L2 and R}+I(L2) C L2, we 
conclude that it is sufficient to prove that z E Ay+i iff z E AJ U Min(L2 — Ay), for 
all z E L2. There are three cases. 
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(1) z = cdnae"lb... enb. z G Ay+i if n < j - 1 and n + ki + ... + kn < j. 
Obviously, Subp(z) nln= Sub(e4 l6.. . e*n6) U { ¿ « a t « ! ! < n, ki + . . . + kt = 0 } . 

Suppose that z G Ay+ 1 . We obtain Subp(z) n L2 Q { " G {e,6}+||u| < / } U 
{cPatflt < j - 1} C Ay. It follows that z G Ay U MinfLg - Ay). 

Conversely, suppose that z G Ay U Min(2^ — Ay). If z G Ay, then z G AJ + \. If 
z G Min(i2 — Ay), we obtain Subp(z)nlq Q Ay. This implies Sub(e 1b...e nb) C 
Ay. Hence n + k1 + ... + kn < j and n< j. If n = / , we have A:i + . . . + kn = 0 and 
d3ab3 G fSubp(z) n L?) — Ay, which is a contradiction. Consequently, n < j — 1 
and n + hi + ... + kn < j. 

Thus we proved that, in this case, z G Ay+i iff z G iZy+i(Z^). 

(2) z = dnabn. z G Ay + 1 iff n < j. n < j iff Subp(z) nl^ = {dkabk\k < j - 1}(C 
Ay) iff z G Ay U Min(L2 - Ay). 

(3) z G {e,b}+.z G Ay+i iff |z| < j + 1 iff Subp(z) n L^ C {u G { e , 6 } + | |u| < 
j } ( C Ay) iff z G Ay U Min(L2 - Ay). 

In conclusion, L2 is a context-free language which satisfies both the condition 
in Lemma 1 and the condition R. 

On the other hand, L2 $ 7 L2. Assume the contrary and consider a type-2 gram-
mar G = {VN,VT, S, P) such that Lin[G) = i 2 . Since L2 = {cdnaehlb... e*n6|n > 
0, Jfci,..., kn > 0 } U {d"afcn|n > 0 } U { e ,6 } + , we conclude that, for gener-
ating the strings of the form cdnae x 6 . . . e nb, we need derivations such as: 
X ==> d3XB3, j > 1,X G VN,B G Vs, B ==>ekb,k > l,X^> w,w G 7$. It fol-
lows that d3w(ekb)3 G Lin(G) — L2l which is a contradiction. 

Thus, the proof is completed. 

3 Characterizations of languages in JL, 
7 £*lreg, f & 

rregi 

reg 

We shall consider here a characterization of these families in terms of the syntactic 
semigroup. For proving it we shall use the following lemma, presented in [3]. 

Lemma 3 (i) L G 7Crreg if and only if L is regular and L = Fin(L). 
(ii) L G Till reg »/ only if L is regular and L = Init(L). 
(Hi) L G 7£.^eg if and only if L is regular and L = Sub(L). 

We also shall use two well-known results in the theory of syntactic semigroups 
[5]: 

Lemma 4 Let L C V+. L is regular if and only if its syntactic semigroup is finite. 

Lemma 5 Let L C V+ be a language and denote by <p the canonical homomor-
phism <p: V+ — • V + / ~L. Then V+ - L = - £)). 

We shall consider below that L, Fin(L), Init(L) and Sub(i) do not contain the 
null word A. 
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Proposition 4 Let L be a language over V. Denote by S the syntactic semigroup 
of L, by <p the canonical homomorphism <p : V + —• V+/ ~x,= S and P = <p(L). 
Then, we have: 

(i) L £ iCrreg if and only if S is finite and S{S - P) C S - P. 
(ii) L € Ttwtg if and only if S is finite and (S - P)S C S - P. 
(Hi) L £ fLrcg if and only if S is finite, S has a zero, 0, and S - P = {0} . 

Proof, (i) According to Lemma 3, part (i), L £ 7Crrcg if and only if L is regular 
and L = Fin(L). Since we always have L C Fin(L), we deduce that L = Fin(L) 
is equivalent to "for all u,v £ V+, uv £ L => v € L", statement which is also 
equivalent to "for all u £ V+ and v £ V+ - L, uv € V + - L", i.e. V + ( V + - L) C 
V+ - L. It follows from the last inclusion that <p(V+(V+ - L)) C <p{V+ - L) 
and hence <p~1(<p(V+ (V+ — L))) C <p~1(<p(V+ — L)). In turn, the last inclusion 
impUes V+(V+ - L) C V+ - L, since - L) C ¥>-1(<p(V+{V+ - L))) and 
<p-1{<p{V+-L)) = V+-L (Lemma5). Consequently, V+{V+-L) C V + - L i f a n d 
only if p(V+)p(V+-L) C <p{V+-L){<p(V+{V+-L)) = <p{V+)<p(V+-L) since <p 
is homomorphism of semigroups) if and only if S(S — P) C S — P (use <p(V+) = S 
and <p{y+ — L) = S — P, from Lemma 5). Thus we proved the equivalence between 
L = Fm(L) and S(S — P) C S — P. Using the result in Lemma 4, too, we conclude 
the proof. 

(ii) The proof is symmetrical. 
(iii) Suppose that L £ According to Lemma 3, part (iii), L is regular 

and Sub(L) = L. From the last equality it follows that *u & L => xuy £ L, 
for all x, y £ V* and u £ V + " (assuming the contrary, we have xuy £ L, hence 
u £ Sub(L) = L, which is a contradiction to u ^ I ) . Take u,v arbitrary in 
V + such that u L. FVom the above statement we obtain uv £ L,vu £ L and: 
" xuy £ L,xuvy L, xvuy £ L, for every x, y £ V+". Consequently u UV VU 
and hence we have p(u) = v?(uu) = i-e. <p(u) = p(u)y>(u) = <p[v)<p(u). 
Since v is an arbitrary word of V+, <p(v) is an arbitrary element of <p{V+) = S. 
Therefore we deduce that <p(u) is a zero of S. A semigroup may contain only one 
zero. As u is arbitrary in V+ — L and <p{V+ — L) = S — P, we conclude that S — P 
contains only one element, which is the zero of 5. Since L is regular, S is finite. 
Thus, one of the implications is proved. 

Conversely, suppose that S is finite, S has a zero, 0, and S — P = {0} . Clearly, 
(5 - P)S C 5 - P and S(S - P) C S - P. According to the parts (i) and (ii) of 
this Proposition, it follows that L £ T 

Corollary 1 Let L be a language ofV+ whose syntactic semigroup is commutative. 
If Le ?Lurcg, then in fact L is in 7Z?eg. 

Proof. L € ft^eg implies L £ TJLrreg of L £ 7Lireg- We use Proposition 4, 
parts (i), (ii), and we obtain S{S - P) C 5 - P or (5 - P)S C S - P. Since 5 
is commutative, these inclusions hold simultaneously. Using again Proposition 4, 
parts (i), (ii), we conclude that L £ 7C^eg. 
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