A note on fully initial grammars

S. Vicolov*

We (negatively) solve two conjectures of Mateescu and Paun [3], then we give characterisations in terms of syntactic semigroup of some families of regular fully initial languages.

1 Definitions and notations

For a vocabulary V, we denote by $V^{*}\left(V^{+}\right)$the free monoid (semigroup) generated by V under the operation of concatenation; λ is the null element $\left(V^{+}=V^{*}-\{\lambda\}\right)$. The strings of V^{*} are called words. The length of a word $x \in V^{*}$ is denoted by $|x|$.

If we consider a Chomsky grammar $G=\left(V_{N}, V_{T}, S, P\right)$, then the usual language generated by G is defined by

$$
L(G)=\left\{x \in V_{T}^{*} \mid S \xlongequal{*} x\right\} .
$$

The fully initial language generated by G is

$$
L_{i n}(G)=\left\{x \in V_{T}^{*} \mid A \stackrel{*}{\Longrightarrow} x \text { for some } A \in V_{N}\right\} .
$$

The study of fully initial languages was proposed by S. Horvath and has been done in a series of papers [1], [2], [3], [4].

Clearly, $L(G) \subseteq L_{i n}(G)$. The family of fully initial languages generated by grammars of type $i, i=0,1,2,3$ is denoted by $\mathcal{F} \mathcal{L}_{i}$.

Usually, the right-linear and the left-linear grammars generate the same family of languages. For fully initial grammars this is not true, therefore we shall distinguish several classes of "type-3" grammars.

A grammar $G=\left(V_{N}, V_{T}, S, P\right)$ is called right-linear (left-linear) if $P \subseteq$ $V_{N} \times\left(V_{T}^{*} \cup V_{T}^{*} V_{N}\right)\left(P \subseteq V_{N} \times\left(V_{T}^{*} \cup V_{N} V_{T}^{*}\right)\right)$. We denote by $\mathcal{F} \mathcal{L}_{\text {rlin }}, \mathcal{F} \mathcal{L}_{l l i n}$ the corresponding families of fully initial languages. A grammar $G=\left(V_{N}, V_{T}, S, P\right)$ is called right-regular (left-regular) if $P \subseteq V_{N} \times\left(V_{T} \cup V_{T} V_{N}\right)\left(P \subseteq V_{N} \times\left(V_{T} \cup V_{N} V_{T}\right)\right)$. The corresponding families of fully initial languages are denoted by $\mathcal{F} \mathcal{L}_{\text {rreg }}, \mathcal{F} \mathcal{L}_{\text {lreg }} . \xi \mathcal{L}_{3}$ is, in fact, $\mathcal{F} \mathcal{L}_{\text {rlin }} \cup \mathcal{F} \mathcal{L}_{\text {llin }}$. Following [3] we shall consider the next families, too:

$$
\begin{aligned}
& \mathcal{F} \mathcal{L}_{\text {reg }}^{n}=\mathcal{F} \mathcal{L}_{\text {rreg }} \cap \mathcal{F} \mathcal{L}_{\text {lreg }} \\
& \mathcal{F} \mathcal{L}_{r e g}^{U}=\mathcal{F} \mathcal{L}_{\text {rreg }} \cup \mathcal{F} \mathcal{L}_{\text {lreg }}
\end{aligned}
$$

The sets of prefixes, suffixes and subwords of a given word x are denoted by $\operatorname{Init}(x), \operatorname{Fin}(x), \operatorname{Sub}(x)$, respectively, and these notations will be extended in the

[^0]natural way to languages. When considering only proper prefixes, suffixes and subwords, we shall write $\operatorname{Initp}(x), \operatorname{Finp}(x)$ and $\operatorname{Subp}(x)$, respectively.

Let L be a language of V^{+}. The congruence \sim_{L} defined over V^{+}by: $u \sim_{L} v$ if and only if, for every $x, y \in V^{*}, x u y \in L \Leftrightarrow x v y \in L$, is called the syntactic congruence of L. The syntactic semigroup of L is the quotient semigroup A^{+} / \sim_{L}.

For further details in syntactic semigroup theory, the reader is referred to [5].

2 Necessary conditions for the context- free case

We shall reproduce here the necessary conditions for a language to be in $\mathcal{F} \mathcal{L}_{2}$, which were considered in [3]. Finally we shall prove that two of the conjectures formulated there are not true.

Lemma 1 For each language $L \in \mathcal{F} \mathcal{L}_{2}, L \subseteq V^{*}$, there are two positive integers p, q such that each $z \in L,|z|>p$, can be written as $z=u v w x y, u, v, w, x, y \in V^{*}$, so that
(i) $|v w x| \leq q, \quad|v x|>0$,
(ii) for all $k \geq 0, u v^{k} w x^{k} y \in L$ and $v^{k} w x^{k} \in L$.

Definition 1 For a given language $L \subseteq V^{*}$, let

$$
\operatorname{Min}(L)=\{z \in L \mid \operatorname{Subp}(z) \cap L=\emptyset\}
$$

and define

$$
\begin{gathered}
R_{1}(L)=\operatorname{Min}(L) \\
R_{i}(L)=R_{i-1}(L) \cup \operatorname{Min}\left(L-R_{i-1}(L)\right), i \geq 2
\end{gathered}
$$

We say that L has property R if and only if all the sets $R_{i}(L), i \geq 1$, are finite.
Lemma 2 If $L \in \mathcal{F} \mathcal{L}_{2}$, then L has property R.
In [3] it is also proved that none of these conditions is sufficient for a language to be in $\mathcal{F} \mathcal{L}_{2}$, and one formulates the following conjectures:
(1) If L is a context-free language which fulfils the condition in Lemma 1 , then $L \in \mathcal{F} \mathcal{L}_{2}$.
(2) For arbitrary languages, the condition in Lemma 1 is stronger than property \boldsymbol{R}.

Proposition 1 Conjecture (2) is not true.
Proof. Consider the languages

$$
\begin{gathered}
L_{1}=\left\{c d^{n} a e^{k_{1}} b \ldots e^{k} n b \mid n \geq 0, k_{1}, \ldots k_{n} \geq 0\right\} \\
L=L_{1} \cup\left\{e^{n} b \mid n \geq 0\right\} \cup\left\{d^{n} a b^{n} \mid n \geq 0\right\}
\end{gathered}
$$

We shall prove that L fulfils the condition in Lemma 1. Let us take $p=2$ and $q=3$. For $z=e^{n} b$ or $z=d^{n} a b^{n}$ we clearly have all conditions in lemma fulfilled. If $z=c d^{n} a e^{k} 1 b \ldots e^{k} n b$, then $|z|>p$ implies $n \geq 1$. There are two cases.

1. For all $\dot{8}, 1 \leq \dot{i} \leq n, k_{i}=0$. Therefore $z=c d^{n} a b^{n}$. We take $u=c d^{n-1}, v=d, w=a, x=b, y=b^{n-1}$. It follows that $z=u v w x y,|v x|>$ $0,|v w x| \leq q, u v^{k} w x^{k} y=c d^{n-1} d^{k} a b^{k} b^{n-1} \in L$ and $v^{k} w x^{k}=d^{k} a b^{k} \in L$ for every $k \geq 0$.
2. There is an $\dot{8}, 1 \leq \dot{8} \leq n$, such that $k_{i} \geq 1$. We consider $u=$ $c d^{n} a e^{k} 1^{b} \ldots e^{s_{i}-1} b e^{t_{i}-1}, v=e, w=b, x=\lambda, y=e^{k_{i}+1} b \ldots e^{k} n$. Then $z=$ นขwxy, $|v x|>0,|\nu w x| \leq q, u v^{k} w x^{k} y=c d^{n} a e^{k} 1 b \ldots e^{k_{i}-1} b e^{k_{i}-1} e^{k} b e^{k i+1} b \ldots e^{k^{k}} b \in$ L and $v^{k} w x^{k}=e^{k} b \in L$ for all $k \geq 0$.

On the other hand, L does not observe property R. Indeed, it is clear that $R_{1}(L)=\{a, b\}$ and $R_{2}(L)=\{a, b, c a, e b, d a b\} . \operatorname{Min}\left(L-R_{2}(L)\right) \supseteq\left\{\left.c d^{n} a(e b)^{n}\right|_{n} \geq\right.$ 1\} since, for all $n \geq 1, z=c d^{n} a(e b)^{n}$ implies $z \in L-R_{2}(L), \operatorname{Subp}(z) \cap L_{1}=\theta$ and $\operatorname{Subp}(z) \cap\left(L-L_{1}\right)=\{a, b, e b\} \subseteq R_{2}(L)$. It follows that $R_{3}(L)$ is an infinite set.

In conclusion, L fulfils the condition in Lemma 1 without observing property R.

Proposition 2 Conjectire (1) is not true.
\mathbb{P} roof. We shall consider the same language L as in the above proof. Let $G=\left(V_{N}, V_{T}, S, P\right)$, where $V_{N}=\{A, B, C, S\}, V_{T}=\{a, b, c, d, e\}$ and $P=\{S \longrightarrow$ $c A, A \longrightarrow d A B, B \longrightarrow e B, A \longrightarrow a, B \longrightarrow b, S \longrightarrow B, S \longrightarrow C, C \longrightarrow d C b, C \longrightarrow$ a\}. It is easy to see that $L=L(G)$. Consequently, L is a context - free language which fulfils the condition in Lemma 1. L has not property R, therefore, according to Lemma 2, $L \notin \mathcal{F} \mathcal{L}_{2}$. In conclusion, the proposition is proved.

Remark $\mathbb{1}$ Note that $L_{i n}(G)=L \cup\left\{d^{n} a e^{k} b \ldots e^{k} n b \mid n \geq 0, k_{i} \geq 0,1 \leq i \leq n\right\}$.
Remark 2 The negative answer of these two conjectures raises another problem: a context-free language which satisfies simultaneously the condition in Lemma 1 and the condition R, is in $\mathcal{F} \mathcal{L}_{2}$?

Proposition \$ The condition R and the condition in Lemma 1 fulfilled in the same time, are not sufficient for a context-free language to be in $\overline{\mathcal{F}} \mathcal{L}_{2}$.

Proof. Consider the language

$$
L_{2}=\left\{c d^{n} a e^{k_{1}} b \ldots e^{k_{n}} b \mid n \geq 0, k_{1}, \ldots k_{n} \geq 0\right\} \cup\left\{d^{n} a b^{n} \mid n \geq 0\right\} \cup\{e, b\}^{+}
$$

Note that $L_{2}=L \cup\{e, b\}^{+}$, where L is the language used in the above proofs. L and $\{e, b\}^{+}$are context-free languages. Consequently, L_{2} is a context-free language, too. We have pointed out in the proof of Proposition 1 that L satisfies the condition in Lemma 1 ; it is easy to see that $\{e, b\}^{+}$also satisfies this condition. In conclusion, L_{2} fulfils the condition in Lemma 1.
L_{2} observes property R. Indeed, $R_{1}\left(L_{2}\right)=\{a, e, b\}$ and $R_{i}\left(L_{2}\right)=$ $\left\{c d^{n} a e^{k} 1 b \ldots e^{k} n^{n} \mid 0 \leq n \leq i-2,0 \leq n+k_{1}+\ldots+k_{n} \leq i-1\right\} \cup\left\{d^{n} a b^{n} \mid 0 \leq\right.$ $n \leq i-1\} \cup\left\{u \in\{e, b\}^{+},|u| \leq i\right\}, i \geq 2$.

The last equality can be obtained by induction. We denote by A_{i} the right term of the equality. It is clear that $R_{2}\left(L_{2}\right)=A_{2}$. Suppose that $R_{j}\left(L_{2}\right)=A_{j}$, for an arbitrary $j \geq 2$. We must show that $R_{j+1}\left(L_{2}\right)=A_{j+1}$. According to definition and to the above supposition we have $R_{j+1}\left(L_{2}\right)=R_{j}\left(L_{2}\right) \cup \operatorname{Min}\left(L_{2}-R_{j}\left(L_{2}\right)\right)=$ $A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$. Also using the inclusions $A_{j+1} \subseteq L_{2}$ and $R_{j+1}\left(L_{2}\right) \subseteq L_{2}$, we conclude that it is sufficient to prove that $z \in A_{j+1}$ iff $z \in A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$, for all $z \in L_{2}$. There are three cases.
(1) $z=c d^{n} a e^{k}{ }^{k} b \ldots e^{k} n^{n} . z \in A_{j+1}$ if $n \leq j-1$ and $n+k_{1}+\ldots+k_{n} \leq j$. Obviously, $\operatorname{Subp}(z) \cap L_{2}=\operatorname{Sub}\left(e^{k_{1}} b \ldots e^{k} n b\right) \cup\left\{d^{t} a b^{t} \mid 1 \leq n, k_{1}+\ldots+k_{t}=0\right\}$.

Suppose that $z \in A_{j+1}$. We obtain $\operatorname{Subp}(z) \cap L_{2} \subseteq\left\{u \in\{e, b\}^{+}| | u \mid \leq j\right\} \cup$ $\left\{d^{t} a b^{t} \mid t \leq j-1\right\} \subseteq A_{j}$. It follows that $z \in A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$.

Conversely, suppose that $z \in A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$. If $z \in A_{j}$, then $z \in A_{j+1}$. If $z \in \operatorname{Min}\left(L_{2}-A_{j}\right)$, we obtain $\operatorname{Subp}(z) \cap L_{2} \subseteq A_{j}$. This implies $\operatorname{Sub}\left(e^{k_{1}} b \ldots e^{k_{n}} b\right) \subseteq$ A_{j}. Hence $n+k_{1}+\ldots+k_{n} \leq j$ and $n \leq j$. If $n=j$, we have $k_{1}+\ldots+k_{n}=0$ and $d^{j} a b^{j} \in\left(\operatorname{Subp}(z) \cap L_{2}\right)-A_{j}$, which is a contradiction. Consequently, $n \leq j-1$ and $n+k_{1}+\ldots+k_{n} \leq j$.

Thus we proved that, in this case, $z \in A_{j+1}$ iff $z \in R_{j+1}\left(L_{2}\right)$.
(2) $z=d^{n} a b^{n} . z \in A_{j+1}$ iff $n \leq j . n \leq j$ iff $\operatorname{Subp}(z) \cap L_{2}=\left\{d^{k} a b^{k} \mid k \leq j-1\right\}(\subseteq$ $\left.A_{j}\right)$ iff $z \in A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$.
(3) $z \in\{e, b\}^{+} . z \in A_{j+1}$ iff $|z| \leq j+1$ iff $\operatorname{Subp}(z) \cap L_{2} \subseteq\left\{u \in\{e, b\}^{+}| | u \mid \leq\right.$ $j\}\left(\subseteq A_{j}\right)$ iff $z \in A_{j} \cup \operatorname{Min}\left(L_{2}-A_{j}\right)$.

In conclusion, L_{2} is a context-free language which satisfies both the condition in Lemma 1 and the condition R.

On the other hand, $L_{2} \notin \mathcal{F} \mathcal{L}_{2}$. Assume the contrary and consider a type-2 gram$\operatorname{mar} G=\left(V_{N}, V_{T}, S, P\right)$ such that $L_{i n}(G)=L_{2}$. Since $L_{2}=\left\{c d^{n} a e^{k}{ }^{1} b \ldots e^{k} n\right\} \mid n \geq$ $\left.0, k_{1}, \ldots, k_{n} \geq 0\right\} \cup\left\{d^{n} a b^{n} \mid n \geq 0\right\} \cup\{e, b\}^{+}$, we conclude that, for generating the strings of the form $c d^{n} a e^{k} b \ldots e^{k} n^{k} b$, we need derivations such as: $X \stackrel{*}{\Rightarrow} d^{j} X B^{j}, j \geq 1, X \in V_{N}, B \in V_{N}, B \xlongequal{*} e^{k} b, k \geq 1, X \stackrel{*}{\Rightarrow} w, w \in T_{T}^{+}$. It follows that $d^{j} w\left(e^{k} b\right)^{j} \in L_{i n}(G)-L_{2}$, which is a contradiction.

Thus, the proof is completed.

3 Characterizations of languages in $\mathcal{F} \mathcal{L}_{\text {rreg }}$, $\mathcal{F} \mathcal{L}_{\text {lreg }}, \quad \mathcal{F} \mathcal{L}_{\text {reg }}^{n}$

We shall consider here a characterization of these families in terms of the syntactic semigroup. For proving it we shall use the following lemma, presented in [3].

Lemma 3 (i) $L \in \mathcal{F} \mathcal{L}_{\text {rreg }}$ if and only if L is regular and $L=\operatorname{Fin}(L)$.
(ii) $L \in \mathcal{F} \mathcal{L}_{\text {lreg }}$ if and only if L is regular and $L=\operatorname{Init}(L)$.
(iii) $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{\cap}$ if and only if L is regular and $L=S u b(L)$.

We also shall use two well-known results in the theory of syntactic semigroups [5]:

Lemma 4 Let $L \subseteq V^{+} . L$ is regular if and only if its syntactic semigroup is finite.
Lemma 5 Let $L \subseteq V^{+}$be a language and denote by φ the canonical homomorphism $\varphi: V^{+} \longrightarrow V^{+} / \sim_{L}$. Then $V^{+}-L=\varphi^{-1}\left(\varphi\left(V^{+}-L\right)\right)$.

We shall consider below that $L, \operatorname{Fin}(L), \operatorname{Init}(L)$ and $\operatorname{Sub}(L)$ do not contain the null word λ.

Proposition 4 Let L be a language over V. Denote by S the syntactic semigroup of L, by φ the canonical homomorphism $\varphi: V^{+} \longrightarrow V^{+} / \sim_{L}=S$ and $P=\varphi(L)$. Then, we have:
(i) $L \in \mathcal{\mathcal { L } _ { \text { rreg } }}$ if and only if S is finite and $S(S-P) \subseteq S-P$.
(ii) $L \in \mathcal{F} \mathcal{L}_{\text {lreg }}$ if and only if S is finite and $(S-P) S \subseteq S-P$.
(iii) $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{n}$ if and only if S is finite, S has a zero, 0 , and $S-P=\{0\}$.

Proof. (i) According to Lemma 3, part (i), $L \in \mathcal{F} \mathcal{L}_{\text {rreg }}$ if and only if L is regular and $L=\operatorname{Fin}(L)$. Since we always have $L \subseteq \operatorname{Fin}(L)$, we deduce that $L=\operatorname{Fin}(L)$ is equivalent to "for all $u, v \in V^{+}, u v \in L \Longrightarrow v \in L^{n}$, statement which is also equivalent to "for all $u \in V^{+}$and $v \in V^{+}-L, u v \in V^{+}-L^{n}$, i.e. $V^{+}\left(V^{+}-L\right) \subseteq$ $V^{+}-L$. It follows from the last inclusion that $\varphi\left(V^{+}\left(V^{+}-L\right)\right) \subseteq \varphi\left(V^{+}-L\right)$ and hence $\varphi^{-1}\left(\varphi\left(V^{+}\left(V^{+}-L\right)\right)\right) \subseteq \varphi^{-1}\left(\varphi\left(V^{+}-L\right)\right)$. In turn, the last inclusion implies $V^{+}\left(V^{+}-L\right) \subseteq V^{+}-L$, since $V^{+}\left(V^{+}-L\right) \subseteq \varphi^{-1}\left(\varphi\left(V^{+}\left(V^{+}-L\right)\right)\right.$) and $\varphi^{-1}\left(\varphi\left(V^{+}-L\right)\right)=V^{+}-L$ (Lemma 5). Consequently, $V^{+}\left(V^{+}-L\right) \subseteq V^{+}-L$ if and only if $\varphi\left(V^{+}\right) \varphi\left(V^{+}-L\right) \subseteq \varphi\left(V^{+}-L\right)\left(\varphi\left(V^{+}\left(V^{+}-L\right)\right)=\varphi\left(V^{+}\right) \varphi\left(V^{+}-L\right)\right.$ since φ is homomorphism of semigroups) if and only if $S(S-P) \subseteq S-P$ (use $\varphi\left(V^{+}\right)=S$ and $\varphi\left(V^{+}-L\right)=S-P$, from Lemma 5). Thus we proved the equivalence between $L=F i n(L)$ and $S(S-P) \subseteq S-P$. Using the result in Lemma 4, too, we conclude the proof.
(ii) The proof is symmetrical.
(iii) Suppose that $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{n}$. According to Lemma 3, part (iii), L is regular and $\operatorname{Sub}(L)=L$. From the last equality it follows that ${ }^{n} u \notin L \Longrightarrow x u y \notin L$, for all $x, y \in V^{*}$ and $u \in V^{+\infty}$ (assuming the contrary, we have xuy $\in L$, hence $u \in \operatorname{Sub}(L)=L$, which is a contradiction to $u \notin L)$. Take u, v arbitrary in V^{+}such that $u \notin L$. From the above statement we obtain $u v \notin L, v u \notin L$ and: "xuy $\notin L, x u v y \notin L, x v u y \notin L$, for every $x, y \in V^{+\infty}$. Consequently $u \sim_{L} u v \sim_{L} v u$ and hence we have $\varphi(u)=\varphi(u v)=\varphi(v u)$, i.e. $\varphi(u)=\varphi(u) \varphi(v)=\varphi(v) \varphi(u)$. Since v is an arbitrary word of $V^{+}, \varphi(v)$ is an arbitrary element of $\varphi\left(V^{+}\right)=S$. Therefore we deduce that $\varphi(u)$ is a zero of S. A semigroup may contain only one zero. As u is arbitrary in $V^{+}-L$ and $\varphi\left(V^{+}-L\right)=S-P$, we conclude that $S-P$ contains only one element, which is the sero of S. Since L is regular, S is finite. Thus, one of the implications is proved.

Conversely, suppose that S is finite, S has a zero, 0 , and $S-P=\{0\}$. Clearly, ($S-P$) $S \subseteq S-P$ and $S(S-P) \subseteq S-P$. According to the parts (i) and (ii) of this Proposition, it follows that $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{n}$.

Corollary 1 Let L be a language of V^{+}whose syntactic semigroup is commutative. If $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{\cup}$, then in fact L is in $\mathcal{\mathcal { F }} \mathcal{L}_{\text {reg }}^{n}$.

Proof. $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{\mathrm{U}}$ implies $L \in \mathcal{F} \mathcal{L}_{\text {rreg }}$ of $L \in \mathcal{F} \mathcal{L}_{\text {lreg }}$. We use Proposition 4, parts (i), (ii), and we obtain $S(S-P) \subseteq S-P$ or $(S-P) S \subseteq S-P$. Since S is commutative, these inclusions hold simultaneously. Using again Proposition 4, parts (i), (ii), we conclude that $L \in \mathcal{F} \mathcal{L}_{\text {reg }}^{n}$.

References

[1] T. Balanescu, M. Gheorghe, Gh. Paun, On fully initial grammars with regulated rewriting, Acta Cybernetica, 9, 2(1989), 157-165.
[2] J. Dassow, On fully initial context-free languages, Papers on Automata and Languages (Ed. I. Peák), X(1988), 3-6.
[3] A. Mateescu, Gh. Paun, Further remarks on fully initial grammars, Acta Cybernetica, 9, 2 (1989), 143-156.
[4] Gh. Paun, A note on fully initial context-free languages, Papers on Automata and Languages, X (1988), 7-11.
[5] J.E. Pin, Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 5-24.

[^0]: *University of Bucharest, Faculty of Mathematics, Str. Academiei 14,70109 Bucuresti ROMANIA

