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Abstract 

Iteration theories are a basic underlying structure in many investigations 
in theoretical computer science. The paper, contains some remarks on the 
aximatization of iteration theories. 

Iteration theories were defined in [BEWl] and [BEW2] as the variety genera-
ted by pointed iterative theories, which are iterative theories with the operation 
of iteration made totally defined in an essentially unique way, cf. [E]. Evidence 
gathered since that time indicates that iteration theories are the basic underlying 
stucture whenever one is interested in solving .fixed point equations (see [BÉs2], 
[BÉs3], [BÉs4], [BÉs5], [BÉsT] and [St2] for some recent results). One axiomatiza-
tion of iteration theories was given in [Esl]. The purpose of the present note is to 
present a "scalar axiomtization", one which involves as much as possible morphisms 
1 —• p. An application of this axiomatization appears in [BÉs5]. We assume the 
reader is familiar with algebraic theories as defined e.g. in [E], jBÉsl], or [Ésl]. A 
preiteration theory is an algebraic theory with an operation of iteration subject to 
no particular condition. Recall that iteration maps a morphism / : n —• n + p to 
/ t : n - p . 

1. Theorem [Ésll A preiteration theory is an iteration theory if and only if it 
satisfies the following identities. 
1.1. Left zero identity 

(0„ © / ) t = / , f : n - * p 
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1.2. Right zero identity 

( / © 0 , ) t = / t © 0 „ / : n —» n + p 
1.3. Dual pairing identity 

</,?)t = (At.fo-ipeipMMfct.lp», f :n-*n + m + p, g.m-+n + m + p 
where p = (Om © 1„, 1„ © Om) is the block transposition n + m —• m + n and 

h. = / • (1„ © 0P) (g • (p © l p ) ) t , 0n © l p ) : n n + p 
1.4. Commutative identity 

(lm • P • f • (pi © lp), • • •, mm • p • f • (pm © l p ) ) t = p • (/ • (p © l p ) ) t 
where f:n—tm + p,p:m—*nis surjective base, and where each pi : m m is 
base with p,- • p = p. 

2. The above identities have a number of consequences. In particular, the 
following identities hold in any iteration theory. 
2.1. Fixed point identity 

/ . < / t , l p ) = / t , f : n ^ n + p 

2.2. Pairing identity 

</.»>* = </*•(**. lp),**), / : n - n + m + p, ? : m - n + m + p 

where k = g • ( / t , l m + p ) 
2.3. Permutation identity 

(p / ( p " 1 ® l p ) ) t = P " / t , / : n —+ n + p 
where p : n - » n i s a base permutation. 

3. Remark The permutation identity is a special case of the commutative identity. 
The fact that the fixed point identity is implied by the conditions 1.1-1.4 was only 
recognized in [i)s3]. A stronger statement, following a suggestion of a referee, is 
proved in Lemma 5 below. For the pairing identity we mention the following result. 

4. Lemma Let T be a preiteration theory which satisfies the permutation identity. 
Then the pairing identity holds in T if and only if the dual pairing identity holds. 

Proof. We only prove that the dual pairing identity is implied by the pairing identity 
and the permutation identity. Let f : n n + m + p, g:m—>n + m + p and, as 
before, denote by p the block transposition n + m —* m + n. By the permutation 
identity and the pairing identity we have 

{f,g)] = ( p p - M / . f f M p e i p M p - 1 ® ^ ) ) 1 

= P (P_1 • (f,g) -(p©ip))t 

- p - ( < 7 - ( p © l p ) , / ' ( p © l p ) ) t 

= p - U i r ^ i p j j t . ^ i ^ f c t ) 

= ( ^ . ( f f - i p e i p H ^ ^ . i p ) } , 
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where 

k = f • (p © 1 P ) • ({g • (p © l p ) ) t , l „ + p ) 

= / • ( l » ® O p , ( 0 - ( p © l p ) ) t , O „ © l p ) . 

The proof is complete. 

Besides that presented in Theorem 1, several equivalent axiomatizations of ite-
ration theories are known. The following results are taken from [Stl],[CSt] and 
[6s2j. 

5. Lemma [CSt] Let T be a preiteration theory which satisfies the left zero 
identity 1.1, the dual pairing identity 1.3 and the permutation identity 2.3. Then 
the fixed point identity 2.1 holds in T. 

Proof. Let / : n —• n + p and define g = (0„ © / , 1„ © 0 n + p ) . Using 1.1 and 1.3 
we obtain 

( l n © 0 „ ) - g t = ( ( 0 n © / ) { l n ® 0 p , ( 0 f l © l „ © 0 p ) t , 0 „ © l p ) ) t 

= ( (On©/) ( l „©Op, l n f f iO p ,O n f f i lp ) ) t 

= / t . 

Similarly, by 1.1 and 2.2, 

( i » © o n ) - f f t = ^ „ © / ^ . ( ( ( ^ © O n + p j - a O n e / j t . i ^ j t . i , , ) 

= / ( ( ( l „ © O n + p ) ( / , l n + p ) ) t , l p ) 

= f (fhp)-

The proof is completed using Lemma 4. 

6. Theorem [Stll, [CSt] A preiteration theory is an iteration theory if and only 
if the following nold. 
6.1. Parameter identity 

{f • (1„ © ff))t = / t • g, / : n - » n + p , g : p - » i 

6.2. Composition identity 

/ • ( ( f f - ( / , 0 m f f i l p } )
i
, l p ) = ( / - < f f , 0 B f f i l p » t I f:n->m + p, g : m n + p 

6.3 Double dagger identity 

(/•(<lr»,ln) ©lP))t = /tt, f : n - n + n + p 

6.4. The commutative identity 1.4. 

7. Theorem [Es2l A preiteration theory is an iteration theory if and only if the 
following identities nold. 
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7.1. The special left zero identity, i.e. 1.1 with n = 1. 
7.2. The special parameter identity, i.e. 6.1 with n = 1. 
7.3. The special dual pairing identity 1.3 with m = 1. 
7.4. Special permutation identity 

/ t • ((g • </t, i 1 + p ) ) t , i p ) = ( / . ( i , © 0 p ) (g • (p © l p ) ) t , Oi © l p ) ) t 

where f,g:l—*l + l + p and p : 2 —• 2 + p is the nontrivial base permutation. 
7.5. Special commutative identity 

l m • < l m • P • / (Pi ® l p ) , • • •, mrn • p • f • (pm © l p ) ) t = I n • ( / • (p ® l p ) ) ^ 

where f •. n m + p, p : m n is a monotone surjective base morphism, and 
where each p,- : m —• m is base with pi • p— p. 

8. Remark In addition to 7.1-7.5, the special fixed point identity 2.1 with n = 1 
was also required in [£)s2]. This is however already implied, for taking / = Oi © h 
and g = ls+p = l i © 0 i + p in the special permutation identity we obtain 

/*•<(»•</*. l i + p ^ . l p ) = (0 i©fc) t - ( ( l 9 + p - ( (0 1 ©A)t > l 1 + p))t | i p ) 

and 

( / • (lx © O p , (g • (p © l p ) ) t , O i © l p » t = 

= ((Oi © h) • (lx © O p , ( 0 X © l x © 0 p ) t , O x © l p » t 

= ((Oi © h) • ( l i © O p , l i © 0 P , O i © l p ) ) t 

= h t 

by 7.1. Thus h • {/it, l p ) = /it. 

We note that it is enough to require the special parameter identity ( / • ( l i © 
g))t = / t • g in Theorem 7 only for / : 1 -+ 1 + p and base g : p —• q, cf. [£s2]. A 
result closely related to Theorem 7 was found independently in [CU], see also [Ca], 
As a part of the proof of Theorem 7, the following result was established in [6s2]. 
A scalar preiteration theory is an algebraic theory with iteration defined on scalar 
morphisms / : 1 —* 1 + p. 

9. Theorem j£s2] Let T be a scalar preiteration theory satisfying the special 
parameter identity and the special permutation identity. Extend the definition of 
iteration by the special dual pairing identity, i.e. let o|+ p = 0P and for / : n —• 
n + 1 + p and g : 1 —• n + 1 + p, 

( / , = (^t, (g • (p ® lp))^ • C»t, lp)) 

with p and h as in 1.3. Then T becomes a preiteration theory in which the identities 
1.1-1.3, 2.1 and 2.3 hold. 
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10. Corollary The preiteration theory of Theorem 9 also satisfies the parameter 
identity 6.1, the composition identity 6.2 and the double dagger identity 6.3. 

Proof. It is proved in [6sl] that any preiteration theory T in which 1.1-1.3 and 2.3 
hold satisfies the parameter identity. By the main result of [BlSsl], T satisfies any 
identity valid for flowchart schemes. Therefore the double dagger identity holds 
in T. A direct proof, starting with o = ( / , 1„ © 0„+p), f : n —• n + n + p, may 
be obtained by a calculation similar to that given below (cf. [Stl]). Now for the 
composition identity. Given / : n —• m + p and g : m —• n + p, define 

a = ( 0 „ © /, g • ( 1 „ © 0 m © l p ) ) : n + m - » n + m + p . 

The pairing identity 2.2, which holds in T by Lemma 4, and the left zero identity 
1.1 imply 

( l „ © 0 m ) o t = ( 0 n © / ) t • {(<7 • ( 1 „ © 0 m © l p ) • { ( 0 „ © l m + p ) ) t , l p ) 

= / • { ( < / • ( I n © 0 m © l p ) • ( / , i m + P ) ) t , 1 P ) 

= / • ( ( f f - ( / , 0 m © l p ) ) t > l p ) . 

By the dual pairing identity 1.3 and the left zero identity again, 

( l n © 0 m ) • a t = 

= ( K © /) • (In © Op, {g • (1„ © 0 m © l p ) • (p © l p ) ) t , 0„ © l p ) ) t 

= ((o n w wp, I vim 
© 3 ) t , 0 „ © l p ) ) t 

= (/• ( s r ,0»©lp»^ > 

where p denotes the block transposition n + m —• m + n. 
Except for 7.5, the axiomatization given in Theorem 7 is based on scalar itera-

tion, for the special dual pairing identity can be thought of as a definition of vector 
iteration (together with 0P = 0p which is already forced by the theory identities). 
Nevertheless both sides of the special permutation identity can be expressed in 
terms of scalar iteration. Below we present another axiomatization of this sort. 
11. Theorem Let T be a scalar preiteration theory such that the special parameter 
identity, the special composition identity 6.2 with n = m = 1, and the special double 
dagger identity 6.3 with n = 1 hold. If iteration is extended by the special dual 
pairing identity then T becomes a preiteration theory satisfying the identities 1.1 
- 1.3, 2.1 and 2.3. Moreover, T satisfies the parameter identity, the composition 
identity and the double dagger identity. 

Proof. We show that the special fixed point identity and the special permutation 
identity hold in T. For the special fixed point identity just take g = 11 @ 0P = l i+ p 
in the special composition identity 

/ • ( ( f f - < / , 0 i f f i l p ) ) t , l p ) = ( / - < f f > 0 i ® l p » t . 
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For the special permutation identity first we prove that 

( H / t , i i + p » 1 = ( ( » ( p e i p n t ^ / t . O x e i p j j t , 11.1 
where p : 2 —• 2 is the nontrivial base permutation. We use the special parameter 
identity and the special double dagger identity. 

( ( < r ( p © i p ) ) t . < / t ) 0 l © i p ) ) t = 

= ( « / ( p e i p J i i i a ^ . O i e i p ) ) ) ^ 
= (g • (p © lp ) • <l i © 0 1 + p , 0 i © / t , 02 © l p ) ) t t 

= ( i - < 0 i © / t , l i © 0 i + p i 0 a © l p » ^ 

= (9 • <0i © / t , l x © 0 1 + p , 0 2 © l p > • « l x , l x ) © l p ) ) t 

= (ff • <0x © ft, l x © Ox+p, 0 2 © l p ) • ( l x © 0 P ) l x © Op, Ox © l p ) ) t 

= ( j r < / t , l I + p » t 

Next, by the special composition identity, 

•<((fl-(P®li»)) t-</ t .Oi®lp»t> lp> = ( / t ( ( g ( p © l p ) ) t ) O i © l p ) ) t . 11.2 
Finally, we observe that 

( /• ( lx©Op, ( ! 7 . ( p©lp ) ) t ) Oi®lp ) ) t = ( / t . ( ( ? . ( p © i p ) ) t ) o 1 © l p ) ) t . n . 3 

Indeed, by the special parameter identity and the special double dagger identity, 

( / t . ( ( f f . ( p © l p ) ) t ) 0 i © l p ) ) t = 

= ( / - ( l i ©<(!T (P ® Ip ) ) * . Ox © l p ) ) ) t t 

= ( / ' <lx © O x + p , O x © (g • (p © l p ) ) t , 0 2 © l p ) ) t t 

= ( / " (lx © O x + p , O x © (g • (p © l p ) ) t , 0 2 © l p ) • « l x , l x ) © l p ) ) t 

= ( / • ( l x © O p , {g • (p © l p ) ) t , Ox © l p ) ) t . 

The proof is now easily completed. By 11.1-11.3, 

( / • (lx © 0 P I {g • (p © l p ) ) t , O x © l p ) ) t = ( / t . ( ( g . ( p © i p ) ) t , 0 l © l p ) ) t 

= / t - ( ( ( f f - ( p e i p ) ) t . { / t , 0 1 f f i l p ) ) t , l p > 

= / t ( ( g ( / t , l x + P ) ) t , l p ) . 

Theorem 11 implies Theorem 2, Chapter 13 in [C] for matrix theories, see also 
[B£s5]. A consequence of Theorem 11 and the previous results is given below. 

12. Theorem A preiteration theory is an iteration theory if and only if the 
special parameter identity, the special composition identity, the special double dag-
ger identity, the special dual pairing identity and the special commutative identity 
hold. 
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It is interesting to compare Theorem 12 with the following result, essentially 
taken from [£s2j. 

13. Theorem [f&s2] A preiteration theory is an iteration theory if and only if the 
special left zero identity, the special parameter identity, the special pairing identity 
and the following variant of the commutative identity hold: 

l m ( l m p / ( p i © l p ) , . . . , m m p / ( p m 8 1 p ) ) t = l m p ( / ( p © l p ) ) t 13.1 

where / , p and pi,i = 1 , . . . , m, are as in the commutative identity 1.4. 

14. Remark By Lemma 4, the dual pairing identity 1.3 can be replaced by the 
pairing identity 2.2 in Theorem 1. Similarly, we may use the special pairig identity 
2.2 with m = 1 (or n = 1) in Theorems 7, 9, 12 and 13. In Theorems 7, 9, 11 and 
13 one can also use the special symmetric pairing identity 

( / l i 7)t = (fct.fct), 

where fin —• n + l + p, g : l — • n + 1 + p, and where h and k are defined as in 
1.3 and 2.2. In Theorem 12, instead of the special commutative identity, we may 
require 13.1 for monotone surjective p : m —• n. 

Let T be a preiteration theory such that the the parameter identity, the per-
mutation identity and the dual pairing identity (or pairing identity) hold. Suppose 
that 

/ • (a © lp) = a • $ 
for / : n —> n + p, g : m —• m + p and an injective base morphism a : n —» m. It is 
a routine calculation to prove that 

/ t = a • gt. 

A preiteration theory has a weak functorial dagger if 

/•(p©lp) = p - 9 = > / t =p . f l ft 14.1 

for all / : n —• n + p, g : m m + p and surjective base morphism p : n —• m. It is 
known that the commutative identity holds in any preiteration theory with weak 
functorial dagger, cf. [¿si]. Most known iteration theories have weak functorial 
dagger. The existence of an iteration theory not satisfying 14.1 was pointed out in 
[&4]. 

15. Proposition Let T be a preiteration theory such that the parameter identity, 
the permutation identity and the dual pairing (or pairing) identity hold. Then T 
has weak functorial dagger if and only if 14.1 holds with m = 1. 

Proof. Since the permutation identity holds in T, it suffices to prove 14.1 for 
monotone surjective base morphisms p : n —* m. Our argument uses induction on 
m. The basis case m = 1 holds by assumption. Supposing the statement holds for 
m > l , l e t / : n — * n + p, g : m + l — t m + l + p and p : n —• m + 1 be such that 

/ • ( P © l p ) = P 9 , 1 5 . 1 
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where p: n —* m + l i s a monotone surjective base morphism. We can write 

/ = (/1./2), /1 : " l - » n + p, /2 : «2 n + p 
g = (ffi.to), ffx:m-»m+l + p, < f t : l - » m + l + p 
p = pi © P2, px : —• m, p2 : n2 —• 1 

where px and P2 are monotone surjective base morphisms with 

/<(pi©P2©lp) = Pift, » = 1,2. 15.2 

The induction hypothesis and the parameter identity yield 

/l-(P2©lp) = Pl'ffl- 1 5 3 

Now let h = /2 • {/J, ln2+P) : n2 —• n2 + p and k = g2 • (rf, li+P> : 1 1 + p. We 
have 

M p 2 © l P ) = 1 5 4 

Indeed, 

/» •(P2©lp) = /2 • (/J, l„,+p) • (P2 © lp) 

= /2 (/J (p 2 ©lp) ,P2f f i lp) 

= /2 (Pi ffi,P2©lp), 
by 15.3, 

= /2 • (p i®P2©lp ) - ( f f i . l i+p ) 

= P2 -92 (gi,li+p) 
= P2 • k, 

by 15.4. From 15.4, by the induction hypothesis, we obtain 

ht=p 2 . f c t . 15.5 

The proof is completed by using the pairing identity. 

/ t = ( f j • (/it, l p ) , /it) 

= { / J • (P2 • fct, l p ) , p 2 • fct), 

by 15.5, 

= (fl " (P2 © lp) • lp),P2 • k^) 
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by 15.3, 

= (pi ® P2) • (ffi • lp), fct) 

= pg^-

An equivalent statement is proved independently in |B]. Proposition 15 also appears 
in [ B £ S 4 ] . 

16. Corollary An iteration theory has weak functional dagger if and only if 16.1 
/ • (p © l p ) = p • g =• l n • ft = pt for all / : n —• n + p, g : 1 —• 1 + p with n > 1, 
where p is the unique base morphisms n —> 1. 

By an example given in [6s4], it is not possible to impose an upper bound 
on the integer n appearing in 16.1. Nevertheless it is enough to require 16.1 for 
any infinite set of integers n. Combining Corollary 16 with Theorems 1, 5, 6, or 
11, one obtains axiomatizations of the quasivariety of iteration theories with weak 
functorial dagger studied under the name of strong iteration theories in [Stl]. Thus 
we have e.g. the following statement. 

17. Corollary A preiteration theory is an iteration theory with weak functorial 
dagger if and only if it satisfies 16.1 and the special parameter identity, the special 
composition identity, the special double dagger identity and the special dual pairing 
identity. 

Finally we mention some simplifications of the commutative identity. It is imp-
licit in Lemmas 1.1 and 3.2 in [£sl] that the commutative identity reduces to the 
special case that each Pi is a bijective base morphism or that each one is an aperio-
dic base morphism. Similarly, it suffices to require the special commutative identity 
in Theorems 7 and 12 above in one of these two cases. However it is not known if 
it is enough to require the commutative identity for n = 1. 

Open problem Find an essential simplification of the commutative identity. 
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