
An Error-Recovering Form of DCGs*

JUKKA PAAKKI

Nokia Research Center
P.O.Box 156, 02101 Espoo, Finland

KARI TOPPOLA

Department of Computer Science, University of Helsinki
Teollisuuskatu 23, 00510 Helsinki, Finland

Abstract

In this paper an alternative implementation of Prolog's Definite Clause Grammars (DCGs)
is presented. The DCG variant is based on the context-free grammar class LL(1) and it solves some
of the problems with parsing programming languages using conventional DCGs, such as nondeter-
minism and intolerance to syntax errors.

1. DCGs and Context-Free Grammars

The programming language Prolog has been connected to parsing right from
its very birth: the first real implementation of the logic programming idea [Col 73]
was actually developed for processing (i.e. parsing) natural languages. Since then,
several special notations especially for parsing have been introduced in Prolog, the
most popular one being the Definite Clause Grammars (DCGs) [PeW80]. DCGs
can be considered as an executable form of context-free grammars that have tradi-
tionally been the leading notation in specifying the syntax of programming languages.

Informally, a context-free grammar consists of a finite set of nonterminal symbols,
à finite set of terminal symbols, and a finite set of productions of the form

A—~S1,S2,...,SB(nz~=0)

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages and
Software Tools, Szeged, Hungary, August 8—11,1989.

3 Acta Cybernetica IX/3

212 J. Paakki, K. Toppola

where A is a nonterminal symbol, and each 5,- is either a nonterminal or a terminal
symbol. A context-free grammar represents all the syntactically legal sentences
(programs) of the language. A sentence can be derived from the grammar by begin-
ning with a symbol string consisting of the designated start symbol and by repeatedly
replacing a nonterminal in the symbol string with the right-hand side of a production
for that nonterminal, until the string contains only terminal symbols; that terminal
string is a sentence of the language. The language defined by the context-free grammar
consists of exactly those sentences that can be derived from the start symbol.

As an example, simple arithmetic expressions can be defined with the following
context-free grammar where the set of nonterminal symbols is {expr, term, factor,
number}, the set of terminal symbols is {" + ", "*", "(" , ")", "0", "1", "2", "3",
"4", "5", "6", "7", "8", "9"}, and the start symbol is expr:

expr -—• expr, " -I-", term
expr —• term
term —- term, "*", factor
term —- factor
factor -— "(",expr,")"
factor — number
n u m b e r - - "0"
number ----- "1"
number - "2"
number---— "3"
number — "4"
number - - "5"
number - — "6"
n u m b e r - - " 7 "
number — "8"
number "9"

DCGs, as a notation, resemble much context-free grammars. In a DCG, non-
terminal symbols are represented by Prolog terms and terminal symbols by Prolog
lists. For example, the context-free grammar given above can be modified into
Quintus Prolog [Qui 86] simply by terminating each production with a period.

2. DCGs and Language Processing

The DCG facility is in most Prolog dialects implemented with a transformation
from DCG into ordinary Prolog. The transformation is straightforward: each non-
terminal is translated into a predicate with two extra arguments (representing the
input symbol list before and after processing the corresponding nonterminal), and
each terminal is translated into a call for a special built-in predicate (corresponding
to advancing the input pointer to the next input symbol).

As an example, the DCG for simple arithmetic expressions outlined in chapter 1
would be translated into the following Prolog program (for clarity, we present the
terminals explicitly, instead of using their ASCII codes):

An Error-Recovering Form of DCGs 213

expr(S0, S) :— expr(S0, Sl),shift(Sl,' + ', S2),term(S2, S).
expr(S0, S) : - term (SO, S).
term (SO, S) : - term(S0, SI), shift (SI, '*', S2), factor(S2, S). .
term (SO, S) : - factor(S0, S).
factor (SO, S) : - shifc(S0,'(', SI), expr(Sl, S2), shift (S2,')', S).
factor (SO, S) : - riumber(SO, S).
number (SO, S) : - shift(S0, '0', S).
number (SO, S) : - shift (SO, '1', S).
number (SO, S) : - shift (SO, '2', S).
number (SO, S) : - shift (SO, '3', S).
number (SO, S) : - shift (SO, '4', S).
number(S0, S):— shifc(S0, '5', S).
number (SO, S) : - sh i f t (SO,'6', S).
number (SO, S) : - shift (SO, '7', S).
number (SO, S):— shift(S0, '8', S).
number(S0, S):— shift(S0, '9', S).

Here shift is the built-in scanning predicate:

shift([Z| £], X, S).

It can be interpreted as "removing symbol X from input stream [AIS], producing
stream S".

Sentences of a language are recognized by a parsing process. Most parsing
strategies lay some restrictions on the underlying context-free grammar of the lan-
guage: for instance ambiguous grammars are usually forbidden. Conventionally
a DCG is applied, i.e. the input program is "parsed", by executing the corresponding
ordinary Prolog program. The operational semantics of Prolog thus implies that a
DCG implemented this way produces a top-down, left-to-right, recursive descent,
backtracking parser. This characterization in terms of normal Prolog brings but
some problems with DCGs when considering practical parsing of programming
languages:

(1) the order of alternative productions for a nonterminal has great significance
on the speed of the parser (parsing is nondeterministic),

(2) left-recursive grammars cannot be handled,
(3) no recognition or recovery of syntax errors is provided, and
(4) lexical analysis cannot be interleaved with parsing (since the source program

is represented as a list of symbols); this leads to two passes over the source
program for parsing it.

On the other hand, reducing DGCs into ordinary Prolog makes them more
general than context-free grammars:

(i) grammar symbols can have an arbitrary number of arguments, and
(ii) procedure calls can be embedded within productions.

. These additional features make DCGs closely related with attribute grammars
[Knu 68]: arguments can be considered as "attributes" and procedure calls as "se-
mantic rules". - -

As an example, our DCG for arithmetic expressions can be revised in such a
way that the value of an expression is evaluated during parsing. Note that the original

3«

214 J. Paakki, K. Toppola

version is left-recursive; we have to remove left-recursion and for instance replace
it with right-recursion in order to make the DCG correctly executable. The argu-
ments represent the values of the subexpressions, and procedure calls are enclosed
in {...}.

expr(Val) — - term (VI), " + ", expr(V2), {Val is V1+V2}.
expr(Val) •• - term (Val).
term (Val) -- factor(VI), "*", term(V2), {Val is V1*V2}.
term (Val) - - factor (Val).
factor (Val) -- "(", expr(Val),")".
factor (Val) • — number (Val).
number (0) • — "0".
number (1) -— "1".
number (2) • - "2".
number(3) •
number (4) -- "4".
number (5) -— "5".
number (6) -— "6".
number (7) -— "7".
number (8) --— "8".
number(9) •• • - "9".

3. A More Practical Form of DCGs

We have implemented the DCG formalism in a way that is more related to the
parsing theory of context-free grammars. Most notably, we have tried to remove
the shortcomings (1)—(3) of the conventional DCG implementation strategy discussed
in the previous chapter. The initial idea was to support primarily syntax error hand-
ling, but the resulting system was expected to contribute to other parsing aspects
as well, such as efficiency. In the sequel we shall briefly present the main charac-
teristics of the system.

Determinism

Since the normal execution model in Prolog is a complete depth-first traversal
of the search tree, it was a natural choice to retain the top-down parsing strategy
in our DCG facility as well. However, the general backtracking mechanism of Prolog
contradicts the standard parsing principles in language processing: conventional
DCGs parse the input program nondeterministically, while traditionally deterministic
parsing is preferred. Nondeterministic parsing also torpedos syntax error handling
since it makes hard to connect a recognized error to the erroneous grammar symbol.
Moreover, nondeterministic parsing (although being a more general approach than
deterministic one) is rarely actually needed in the context of programming languages
because most programming languages are designed to be deterministically parsable.

Because of these reasons, we have based our DCG implementation on the
context-free grammar class LL(/), i.e. parsing is a top-down left-to-right process

An Error-Recovering Form of DCGs •215

using a lookahead of length J. This choice makes our notation more restricted than
the conventional one; the resulting formalism is rather related to one-pass attribute
grammars or affix grammars [Kos 71] than to general attribute grammars.

Left recursion

Since our system can only process LL(/) grammars, left recursion is still for-
bidden. However, the system provides some relief in this restriction by automatically
eliminating left-recursion from the original grammar, when asked. It also provides
two other grammar transformations: left factoring, and elimination of useless pro-
ductions. All these transformations have been implemented according to [ASU 86].

One shortness in these grammar transformations is that they are applied merely
to the context-free part of the DCG; if the original grammar makes use of symbol
arguments or procedure calls, these have to be updated on the transformed grammar
by the user. The reason for excluding the semantic aspects from the DCG transfor-
mations is that a well-known result with attribute grammars shows that in' general
it is impossible to transform even an L-attributed grammar into an equivalent
LL-attributed form [GiW 78] (preserving the level of semantic information during
the transformation); thus an automatic semantic conversion would be doomed to
failure.

Error recovery

Because we have based our implementation on deterministic parsing, we can
employ standard syntax error handling techniques instead of just giving up, as is
the case with the conventional DCG implementation. Our error recovery method is
a combination of panic mode and phrase-level methods, as described in [WeM 80].

The idea is to always keep the parser in synchron with the input stream. This
means that when detecting an error, the parser skips symbols in the input, until a
symbol is found that matches the current state of the parser. The parser and the
input are synchronized both at entry and at exit of each nonterminal under parse.
Synchronization is based on the FIRST and FOLLOW sets of nonterminals (see
e.g. [ASU 86]).

The principle of error handling can be illustrated by giving as an example a
procedure for parsing nonterminal A with production A-*B:

procedure A (Followers);
begin

if not (Next in FIRST (A)) then begin
Error ...;
Skipto (FIRST (A)+Followers);

end;
if Next in FIRST (A) then begin

B; — parse the right-hand side
if not (Next in Followers) then begin

Error ...;
Skipto (Followers);

end
end

end.

216 J. Paakki, K. Toppola

Here the set Followers includes all the symbols in
FOLLOW^) + (FOLLOW(XJ + FOLLOW(XJ + . . . + FOLLOW(Xn)), « > = 0 ,

where the symbols Xt represent the nonterminals on the path from A to the root in
the underlying parse tree, i.e. all the nonterminals which have been entered but not
yet exited. The FOLLOW^) sets guarantee that within any underlying parse tree
a lower-level nonterminal cannot inadvertently skip over a token which a higher-

• level nonterminal expects to deal with.
Next represents the current input token, Error emits an appropriate error

message, and Skipto(.S) skips the input stream until a token in set S is found.
; Because of the interactive nature of working with a Prolog interpreter, we have

enriched this automatic form of recovery with the possibility for local correction'.
Vif requested, the parser always halts when detecting an error and asks the user to
correct the current erroneous token. The available operations are replacement,
•insertion, and deletion.

We demonstrate the system by giving in the Appendix an example session.

Our deterministic error-recovering DCG notation has been implemented using
a meta-interpreter (see e.g. [StS 86]) that "interprets" the input grammar. Thus the
solution is different from the conventional implementation where a DCG is first
translated into ordinary Prolog and after that executed by a standard Prolog inter-
preter or compiler. The difference can be characterized more explicitly by sketching
in Figures 1 and 2 the conventional implementation strategy and the metainterpreter
strategy, respectively.

In our implementation the grammar is transformed into an internal representa-
tion of the DCG interpreter. This interpreter (a Prolog program) parses the source
program by recursively applying a universal parser predicate with the current gram-
mar symbol as parameter. The interpretation follows the principles discussed in
chapter 3.

4. Implementation

Tile G
Prolog interpreter

s — > a,b. consult(G)
a — > CPl-
b — > [q].

s(S0,S):-a(SO,SI),p(Sl,S).
a(S0,S):-shift(SO,p,S).
b(S0,S):-shift(SO,q,S).

read(P,S)

c p / U -

File S

Figure 1. Conventional implementation of DCGs

An Error-Recovering Form of DCGs •217

File G

s — > a,b.
a — > CP! -b — > [qj-

read qr(G)

read_source(P)

Prolog Interpreter

DCG interureisr

s > a,b.
a — > CP] -
b --> i q i -

[p - q]

parse.

pq

File S

Figure 2. Meta-interpreter implementation of DCGs

In order to support lexical analysis, the system includes a standard scanner
(read_source) that can be used for reading the source program and for converting
it into a list of tokens. The lexical analyzer makes the conversion assuming "normal"
patterns of "ordinary" token classes, such as identifiers, numbers, and. operators.
In case the lexical form of the source language does not match the assumptions
made by the system, the user must either modify the standard analyzer or supply
an analyzer of her/his own.

The system is embedded in Quintus Prolog [Qui 86], and it is described in more
detail in [Top 89].

5. Experiences

Our DCG variant has been applied to several toy examples, such as arithmetic
expressions. In these simple cases the system is superior to the conventional imple-
mentation: all the syntactic errors can be uncovered quite rapidly and even corrected
on-the-fly. The automatic transformations free the user to some extent from artificial
grammar constructions, such as right recursion.

Since the design of the system stems from practical problems with using Prolog
for parsing, we have tested it in a more realistic case as well. The syntax of the prog-
ramming language Edison [Bri 82] was specified as a DCG which was then executed
both using our system and using Quintus Prolog. The efficiency of these parsers was
analyzed and the results are given in Tables 1 and 2. The length of the source programs
is indicated by lines, our system by Meta-DCG, and Quintus Prolog by Quintus-
DCG. For Quintus Prolog we have assigned two figures, the first one being for the
compiled parser and the second one for the interpreted parser. All the figures for
our system are for the compiled parser. The tests have been carried out in a VAX/8800
under VMS,

218 J. Paakki, K. Toppola

Table. 1. Execution time of DCGs (seconds of cpu time)

lines Quintus-DCG Meta-DCG

1 0 0 . 0 1 / 0 . 1 7 . 8
6 0 0 . 0 6 / 0 . 7 8 8 . 4

1 0 0 0 . 0 8 / 0 . 8 1 0 1 . 8

TABLE 2. MEMORY CONSUMPTION OF D C G S (KBYTES)

LINES QUINTUS-DCG M E T A - D C G

1 0 5 9 4 / 6 6 0 1 3 6 8
6 0 6 5 4 / 8 9 9 4 7 4 2

1 0 0 6 5 4 / 8 9 9 4 8 7 5

As can be noticed, the meta-interpreter implementation unfortunately resulted
in drastic loss of efficiency when compared to the conventional implementation by
translation into ordinary Prolog. Even for relatively small Edison programs (less
than 100 lines) the meta-interpreter was far too slow for practical consideration, and
for source programs larger than 100 lines the Quintus Prolog system might run out
of memory. Also parser initialization (loading the meta-interpreter, reading the
DCG, checking the LL(7) property) took clearly more time than in the conventional
case (reading the DCG, converting it into Quintus Prolog).

The main reason to this unfortunate inefficiency lies certainly in meta-interpre-
tation. On one hand the program is quite complex and on the other hand the DCG
is represented as data; thus no optimizations on the grammar can be done by the
Prolog system as is the case with the conventional implementation. One part of the
difference can be explained by the fact that our system has to check for syntactic
correctness of the source program which task is totally outside the normal DCG
model.

The primary goal of the system, automatic syntactic error recovery, has been
reached to the extent that seems to be normal for this technique ([Har 77], [Pem 80]).
The quality of error handling was analyzed by parsing syntactically erroneous Edison
programs with the system. In ordinary cases the parser was able to find most of the
actual errors, but on the other hand it reported quite many nonexistent errors (in
some extreme cases the number of extraneous error messages was even larger than
the number of actual error messages). When recovering from an error, the parser
also skips some' portion of the source program which in Edison's case is typically
the whole incoirect structure (expression, statement, etc.). In the correction mode
the amount of omitted text is usually smaller since user-supplied corrections can
locally turn an invalid structure into a legal one.

6. Discussion and Future Work

This work shares some of the contributions with previous research on parsing
and Prolog. Deterministic parsing with Prolog based on LL(7) grammars is discussed
in [Abr 86], some systems circumvent the problems with left-recursion by employing
bottom-up parsing (e.g. BUP [MTK 86], AID [Nil 86]), etc. However, as far as we

An Error-Recovering Form of DCGs •219

know the automatic error handling mechanism is unique in our system. Also the
DCG transformations (albeit merely on the context-free part of the grammar) are
something new. We emphasize the methodological aspect in our system; of course
the same tasks could be carried out by the user as well (we have produced yet another
Edison parser as a DCG with explicit error handling [Paa 89]) but that would signi-
ficantly lower the conceptual level of the DCG notation.

Restricting the implementation on LL(i) grammars with FIRST and FOLLOW
sets imposes some problems compared with the conventional implementation (be-
sides reducing the set of accepted grammars). In our DCG variant it is not sensible
to make use of terminal variables, as in

number—[C], (is_number(C)}.

This would include variable C in FIRST (number), and the consequence would
be that a syntactically erroneous number symbol would not be detected by the parser
(since each possible token t would be considered valid through unification C = /).
Another problem of similar nature is that a grammar with the following alternative
productions is not LL(7) in our sense:

factor — [C], {is _ number (C)}.
factor — [id].

The reason to this is that the sets FIRST([C]) and FIRST ([id]) are not considered
disjoint (again since C always unifies with id). A general solution to these problems
is hard to find. In both example cases we could and actually should use procedure
is _ number to generate all the possible ground patterns for C and make use of this
pattern set instead of C in computing the FIRST and FOLLOW sets, but in general
such lexical auxiliary procedures are rather hard to automatically locate in a DCG.

One interesting problem to be solved in the future is to integrate lexical analysis
with parsing in DCGs. As noted in chapter 2, the traditional DCG formalism does not
support such an integration, and we also have excluded it from our implementation.
Another topic for the future is to base parsing and error recovery on the translation
from DCG into ordinary Prolog, as is done in conventional implementations. This
strategy would certainly be more efficient than our current one: besides that meta-
interpretation as the implementation method was shown to be rather inefficient,
conceptually the relation between a translation-based implementation and the meta-
interpreter-based implementation clearly bears an analogy to the relation between
(faster) parser programs and (slower) table-driven parsers. In the translation mode
it would also be easier for the user to correct a non-LL(i) grammar or to retain the
semantics during context-free transformations, since all the implementation-depen-
dent information (such as the FIRST and FOLLOW sets) that is currently hidden
within the meta-interpreter would be explicitly available in terms of Prolog.

Acknowledgements. We appreciate Prof. Esko Ukkonen's participation in a
number of fruitful discussions on the topic.

220 J. Paakki, K. Toppola

References

[Abr 86] ABRAMSON H.: Sequential and Current Deterministic Logic Grammars. In: Proc. of the
3rd International Conference on Logic Programming, London, 1986. Lecture Notes in
Computer Science 225, Springer-Verlag, 1986, 389-395.

[A S U 86] A H O A . V., SETHI R., ULLMAN J. D.: Compilers — Principles, Techniques and Tools.
', Addison-Wesley, 1986.

[Bri 82] BRINCH HANSEN P.: Programming a Personal Computer. Prentice-Hall, 1982.
[Col 73] COLMERAUER A. : Les systemes-Q ou un Formalisme pour Analyser et Synthesizer des

Phrases sur Ordinateur. Publication Interne No. 43, Dept. d'Informatique, Université
de Montréal, 1973.

[GiW 78] GŒGERICH R., WILHELM R.: Counter-One-Pass Features in One-Pass Compilation — A
Formalization Using Attribute Grammars. Information Processing Letters 7, 6, 1978,
279—284.

[Har 77] HARTMAN A. C.: A Concurrent Pascal Compiler for Minicomputers. Lecture Notes in
Computer Science 50, Springer-Verlag, 1977.

[Knn 68] K N U T H D. E.: Semantics of Context-Free Languages. Mathematical Systems Theory 2,
2, 1968, 127—145.

[Kos 71] KÖSTER C. H. A.: Affix Grammars. In: Peck J. E, L.: Aleol 68 Implementation, North-
Holland, 1971, 95—109.

[M T K 86] MATSUMOTO V., TANAKA H., KIYONO M . : BUP : A Bottom-Up Parsing System for Natural
Languages. In : Logic Programming and Its Applications (van Caneghem M., Warren D.,
eds.), Ablex Publishing Co., 1986.
NILSSON U.: Alternative Implementation of DCGs. New Generation Computing 4, 4,
1986, 383—399.
PAAKKI J.: Comparison of Compiler Writing Methods: An Experiment. In: Proc. of
the 13th Information Technologies Conference, Sarajevo, 1989. Science and Research
Council of Bosnia and Hertzegovina, 1989, R 122.
PEMBERTON S. : Comments on an Error-Recovery Scheme by Hartmann. Software Practice
and Experimence 10, 3, 1980, 231—240.
PEREIRA F., WARREN D.: Definite Clause Grammars for Language Analysis — A Survey
of the Formalism and a Comparison with Augmented Transition Networks. Artificial
Intelligence 13, 1980, 231—278.
Quintus Computer Systems, Inc: Quintus Prolog Reference Manual, Version 6, 1986.
STERLING L., SHAPIRO S.: The Art o f Prolog. T h e M I T Press, 1986.
TOPPOLA K . : An Error-Recovering DCG Feature (in Finnish). Report C—1989—23,
Department of Computer Science, University of Helsinki, 1989.

[WeM 80] WELSH J . , M C K E A G M . : Structured System Programming. Prentice-Hall, 1980.

[NU 86]

[Paa 89]

[Pem 80]

[PeW 80]

[Qui 86]
[StS 86]
[Top 89]

Appendix

An example session, starting with automatic error recovering and finishing
with user-supplied local correction. The commands by the user are given in bold.
? — consult(dcg).
yes
? — read_grammar(gl).
The grammar is not LL(1).
yes . .
?— list .grammar.
(1) expr —* expr,"+",term.
(2) expr —- term.
(3) term — term, "*",factor.
(4) term —••factor.

An Error-Recovering Form of DCGs •45

(5) factor — "(",expr,")".
(6) factor - "id",

yes
? — transform(e).
Eliminating left recursion ...
yes
? — list-grammar.
(1) expr "(",expr,")",terml,exprl.
(2) expr "id", terml,exprl.
(3) term "(",expr,")",terml.
(4) term .—• "id",terml.
(5) factor "(",expr,")".
(6) factor — "id".
(7) exprl "+",term,exprl.
(8) exprl
(9) terml "*",factor,terml.

(10) terml —

yes
? — parse("id+id").
Parsing completed, 0 errors detected,
yes
? — parse("id*(id—id)+id").
id* (id
•— Error 1 —
Unexpected symbol(s) met and skipped:
— id
Parsing completed, 1 errors detected,
yes
? — correction(on).
yes
? — parse("id*(id—id)+id")
id* (id
•— Error 1 —-
* * * *

One of the following expected:
* +)
Replace(r)/insert(i)/delete(d) token: .
— r(-f) .
Parsing completed, 1 errors detected,
yes

