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In this paper, we investigate some characteristic properties of keys, and super-
keys for a closure function, defined on the power set of a finite set I f . In particular 
we give a necessary condition under which a subset X of U is a key and explicit 
formula to compute the intersection of all keys for / , a necessary and sufficient con-
dition for which a closure function / has precisely one key. 

Moreover, the translation of a closure function / w h i c h , in some sense, preserves 
the keys for / , as well as the relationship between the keys for a closure function 
and the keys for the corresponding relation scheme are also considered. 

These results are closely related to those presented in [1]. 

1. Keys of closure function 

In this section after proving some lemmas, we give a characteristic condition 
under which a subset K can be a key for a closure function. 

Definition [2]. Let U={a1, a2, ..., an} be a set of n elements (attributes) and 
2V its power set. The function F: 2V-*-2V is called a closure,function or closure iff 
for every X, Y£2U - . 

a )X<gF(X), 

b) F(F(X)) = F(X), 

c) Y c X^F(Y)QF(X). 

Let K£ 2U. We say that K is a superkey of the closure function F if F(K) = U, 
and K is said_to be a key of F if F(K) — U, but F(X) ^ U for any proper subset X 
oi K. We set X=F(X)\X. 
/ We define two sets P and T for the closure function F as follows 

a) T = U { Z : XO? and F(X) ^ X}, 
b) P = U{X: X£2V and F(X) * X). 
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Lemma 1.1. Let F be a closure function and XQ U then: 

F(X) £ X\JP. 

Lemma 2.1. Let F be a closure function and Z g U and T. Then 

F(X\a) = F(X) or F(X\a) = F(X)\a. 

Proof. There are two possible cases : 
a) If a$X then X=X\a. It follows that F(X) = F(X\a). 
b) If a£X then from the definition of T we have F(X)=X, and F(X)\a = 

=X\a. Thus F(X\d) = F(F(X)\a). On the other hand we have 

F(X)\a g F(F(X)\a) = F(X\a) g F(X). 

It is clear that F(X\a) = F(X) or F(X\a) = F(X)\a. The proof is complete. 

Lemma 3.1. Let F be a closure function. Then : 

p g F(T). 

Proof. Let aZP. From the definition of P there would exist an XQ U such 
that F(X)?iX and atF(X)\X. Clearly XQT. Hence F(X)QF(T), showing 
that a£FÍT). 

Lemma 4.1. Let F be a closure function. If a£F(X)\P then 

a£X. 

Proof. We have F{X) = XU(F(A-)\Z) g XU P. On the other hand a£F(X) 
and a$P. This implies a£X. 

Lemma 5.1. Let F be a closure function. If ai T and F(Y)QF(X) then 

F(Y\a) g F(X\a). 

Proof. Since T, taking account of Lemma 2.1 we get F(X\a) = F(X) or 
F(X\a)=F(X)\a. 

a) If F(X\a)=F(X), it is obvious that 

Y\a g F(Y)\a g F(X)\a g F(X) = F(X\a) 
Implies 

F(Y\a) g F(F(X\a)) = F(x\a). 

b) If F(X\a)=F(X)\a we have 

7\a g F(Y)\a g F(X)\a = F(X\a). 
Clearly 

F(Y\a) g F{F(X\a)) = F(X\a), 

the proof is complete. As an immediate consequence of Lemma 5.1 we have the 
following. 

Lemma 6.1. Let F be a closure function. If a$T and F(Y) = F(X) then 

F(X\a) = F(Y\a). 
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Lemma 7.1. Let F be a closure function. If aiKPi F(K\a), then K is not a 
key of F. 

Proof. From a£K we have K\a^K. Thus F(K\a)QF(K). On the other 
hand a£F(K\a). Clearly aU(K\a)QF(K\a), thus KQF(K\a). It is obvious 
that F{K) g F(F(K\a))=F(K\a) g F(/T). Therefore K\a<=zK and F(K) = 
= F(K\a). From this we get that K is not a key of the closure function F. 

Theorem 1.1. Let F be a closure function and K a key of F then: 

u\p g k g (u\p) u (pn t). 

Proof We shall begin with showing that U\PQK. Assume to the contrary, 
that is U\P*£K. From this, there would exist an a£(U\P)\K. Clearly a^P and 
a$K. On the other hand, since K is a key of the closure function F, it is obvious that 
a£F(K). From a$P and taking account of Lemma 4.1, we get aiK which conflicts 
with 

To complete the proof it remains to show that K<g(U\P)\J(PC\T). We know 
that U=(U\P)UP=(U\P)U(PCiT)U(P\T). Suppose to the contrary, i.e. 
Kg(U\P)U(TC)P). Then there exists an a£KC\(P\T). 

From this we have aiK, afzP and ai T. Because AT is a key of F, we have 
F(K)=U=F(U). From ai T, taking account of Lemma 6.1, we get F(K\a) = 
= F(U\a). From ai T, evidently T g U\a. It is obvious that F(T) ^F(U\a). 
In view of the Lemma 3.1, PQF(T). Combining this with a£Pwe obtain 

a£P g F(T) g F(U\a) = F(K\a). 

It is clear that a^KC] F(K\a) showing, by Lemma 7.1, that K is not a key of F. 
We thus arrive to a contradiction. The proof is complete. 

2. Intersection of all keys for a closure function 

We propose in this section to describe the intersection of all key of a closure 
function. 

Lemma 8.2. Let F be a closure function and aiP. Then there exists a key 
K of F such that a§.K. 

Proof. Becauese a<EP, there exists an XQU such that a£F(X)\X. Let CQU 
such that F(X)iJC= U and F(X)C\C=0. Clearly, £ / g F ( X ) U C g F ( * U C ) g U . 
Thus F(X\JC) = U and there exists a key K^XUC. It is clear that..-aiK." 

Theorem 2.2. Let F be a closure function and let I be the intersection of all 
keys of F. Then • . 

1 = u \ p -

Proof. From Theorem 1.1 we have C7\Pg/. To complete the proof, it remains 
to show that IQU\P. In view of Lemma 8.2 we obtain IC\P=0 showing that 

Hence 1= U\P. The proof is complete. 
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3. Sufficient and necessary condition under which 
a closure function has precisely one key 

In this section we present a theorem which gives a sufficient and necessary 
condition for a closure function F to have precisely one key. 

Theorem 3.3. Let F be a closure function. Then F has precisely one key iff 
Tf)PQF(T\P). 

Proof. Sufficiency: Let TC\PQF(T\P). From this we have T=(T\P)U 
U(Ti)P)QF(T\P). It is clear that F(T\P) £F(T) £F(F(T\P)) = F(T\P). 
Thus F(T)=F(T\P). 

By Lemma 3.1, PQF(T). It is clear that: F(TUP)^F(T). From this, 
F(T) = F(TUP). Taking account of Lemma 1.1 we find F(TUP)Q(TUP)UP= 
= TUP. Thus TUP=F(TUP). Consequently F(T\P) = F(T) = F(TUP) = TUP. 
On the other hand we have T\P£ U\P. 

Thus TUP=F(T\P) £F(U\P). From this we find U=(U\P)U(TUP)Q 
£ F ( C / \ P ) £ C / . Finally we have U=F{U\P). 

Now we shall show that U\P is the unique key of F. If U\P is not a key of 
F then there exists a. key X of F such that X% U\P. By Theorem 1.1 we have 
C/\P£Z£ U\P showing that U\P is the unique key of the closure function F. 

Necessity: Let F be a closure function that has precisely one key K. We invoke 
Theorem 2.2 to deduce that 1= U\P=K, showing that U\P is a key of F. Thus 
F(U\P) — U. There are two possible cases. 

a) If U\P^U then from the definition of T we have U\P^T. Thus U\PQ 
QT\P and clearly U= F(U\P)£F(T\P) £ U. This implies U=F(T\P). 
Consequently T(~)PQF(T\P). 

b) If U\P=U then clearly P=0. From this we have 0=TC)PQF(T\P). 
The proof is complete. 

Example. Let U={a, b, c}. 
F: 2V—2U is a closure function, 
F(0) = 0, 
F(a) = ab, 
F(b) = b, 
F(c) = abc, 
F(ab) = ab, 
F(ac) = abc, 
F(cb) = cba, 
F(abc) = abc. 

From this we have: 
F(a) = ab^ a, a = b, 
F(c) = abc c, c = ab, 

F(ac) - abc ^ ac, ac = b, f(cb) ^ abc => cb = a. 
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We obtain : 
T = acb, 
P = ab, 
T f)P = ab. 

a) If K is a key of the closure function F then : 

U\PQKQ(U\P)U(Pf)T). 
Thus cQK<gcab. 

b) The intersection of all keys of F is 
I = U\P = c. 

c) TDP^ab, F(T\P) = F(c)=abc=>TDPQF(T\P). From this, F has 
precisely one key K=U\P=c. 

4. Translations of closure functions 

In this section we shall be concerned with a class of translations of closure 
functions. Starting from a given closure function, translations make it possible to 
obtain more simple closure functions so that the key — finding problem becomes 
less cumbersome, etc. On the other hand, from the set of key for the new, closure 
function obtained in this way the corresponding keys of the original closure func-
tion can be found by a single translation. 

Let C(F) denote the family of all keys for the closure F. We define two sets 
H and G as follows : 

G = 0 {K\K£C(F)}, 

H =U{K\K<iC(F)}. 

Lemma 9.4. Let F be a closure function in U, and AQU. We define a new 
FA by 

F A ( E ) = F ( E \ J A ) \ A f o r £ g U \ A . 

Then: FA is a closure function in U\A. 

Proof. 
a) Let EQU\A. Since F is a closure function, EQF(EUA) and EC\A=0. 

Clearly EQF(E\JA)\A. Consequently EQFA(E). 
b) Let E^E^UKA. Clearly, F(E1UA)<gF(E2UA), whichimplies FA(E1) = 

= F(E1 U A)\A Q F(E2 UA)\A = Fa (F2). 
c) Let E Q U \ A . To complete the proof it remains to show that FA(E) = 

= F A ( F A ( E ) ) . We have FA(FA(£))=FA(F(EUA)\A)=F(F(FU,4)Vf)UA)\A. 
Since A Q F ( E U A ) , F ( F ( £ U A ) \ A ) U A ) \ A = F ( F ( E U A ) ) \ A = F ( E U A ) \ A = 
= FA (E). From a), b), and c), we conclude that PA is a closure function. 

Lemma 10.4. Let F be a closure function in X, ADX=0. We define a new FA by: 
FA(E) = F(E\A)UA for EQXUA. 

Then FA is a closure function in XUA, 
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Proof. 
a) Let E Q X U A . We have On the other hand E \ A Q 

< = F ( E \ A ) and E D A Q A , showing that E Q F ( E \ A ) U A = F A ( E ) . 

b) Let E ^ E ^ X U A . This implies F ( E 1 \ A ) ^ F ( E 2 \ A ) and F A ( E 1 ) = 

= F ( E 1 \ A ) U A Q F ( E 2 \ A ) U A Q F A ( E 2 ) . 

c) Let E Q X U A . Since F is a closure function in X and A H X = 0 , we have 
F(jB\y4)fly4=0. It is clear that: F A ( F A ( £ ) ) = F A ( F ( E \ A ) U A ) = F ( ( F ( E \ A ) U A ) \ 

\ A ) U A = F ( F ( E \ A ) ) U A = F ( E \ A ) U A = F A ( E ) . Consequently F A ( F A ( £ ) ) = 

= FA(E) and F is a closure function in XUA. 

Lemma 11.4. Let F be a closure function in U, AQU. Then: 

1. for all X Q U , and 

2 . F A ( X ) \ J A — F ( X \ J A ) f o r a l l X £ U \ A . 

Proof. 
1. From the definition of FA we have FA (.YV4) = F ( ( X \ A ) U A ) \ A = 

= F ( X U A ) \ A . On the other hand F ( X ) £ F ( X U A ) . Thus F ( A 0 V 1 £ F ( Z L U ) V 1 . 
Consequently F(JT)V* E FA ( X \ A ) . 

2. We have Since A G F ( X U A ) , we get F A ( X ) U A = 

= F(F(XU A ) \ A ) U A = F ( X U A ) . 

Theorem 4.4. Let F be a closure function in U, AQG. Then: 
K is a key of F A if and only if AC\K=0 and K U A is a key of F. 

Proof. We first prove the necessity: Suppose that K is a key of FA. Obviously 
F A ( K ) = U \ A and A(~)K=0. Taking Lemma 11.4 into account we get: 

U = ( U \ A ) U A = F A ( K ) U A G F ( K U A ) G U , 

showing that KUA is a superkey of F. J f KUA were not a key of F then there 
would exist a key K of F such that A Q K ^ K U A . Consequently there would exist 
an K ^ K such that: K = K 1 U A , K1C\A=0. Since K is a key for F, F ( K 1 U A ) = U. 

Applying Lemma 11.4, clearly U \ A = F ( K 1 U A ) \ A Q F A ( K 1 U A \ A ) = F A ( K 1 ) . 

So we have K ^ K , F A ( K X ) = U \ A . This contradicts the hypothesis that K is a 
key of F A . 

We now turn to the proof of sufficiency. Suppose that K C \ A = 0 and K U A is 
a, key for FA. We have to show that K is a key for FA. Since KUA is a key for F, 
we have F ( A U K ) = U . By virtue of Lemma 11.4 and K O A = 0 , we get U \ A = 

= F(KU A ) \ A Q F A ( K U A \ A ) = F A ( K ) g U \ A . Thus U \ A = F A ( K ) , showing 
that AT is a superkey for FA. Assume that K is not a key of FA, then there would 
exist a key K of F,_such that and FA(K) = U\A. Applying Lemma 11.4, 
it follows U = F A ( K ) U A = F ( K U A ) where K U A ^ K U A . This contradicts the 
fact that KUA is a key for F,.that completes the proof. 

Theorem 5.4. Let F be a closure function in U , A Q U and A F ] H = 0 . Then 
. K is a key of F A iff K is a key of F. 

Proof. 
1. The necessity: Suppose that K is a key for F A . Obviously F A ( K ) = U \ A . 

By virtue of Lemma 11.4 we have F ( K U A ) = F A ( K ) U A = ( U \ A ) U A = U , showing 
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that K D A is a superkey for F. Hence, there exists a key K of F such that K Q K U A . 

Since A F ) H = 0 then K D A = 0 . From this, it is easy to see that K<GK. There 
are two possible cases: 

a) K=K. Then obviously K is a key for F. 
b) K ^ K . Since K is a key for F , F ( K ) - U . Applying Lemma 11.4, we have 

U \ A = F ( K ) \ A g FA ( K \ A ) g U \ A and K C \ A = 0 , that is F A ( K ) = U \ A . This 
contradicts the fact that K is a key for FA. 

2. The sufficiency: Suppose that K is a key for F. We have to prove that Kis 
also a key for FA. We have, by the definition of keys, F(K) = U. Applying Lemma 
11.4, U \ A = F ( K ) \ A g F A ( K \ A ) g U \ A . Thus F A ( K \ A ) = U \ A . Since 
A C \ H = 0 , it follows K C \ A = 0 . Consequently F A ( K ) = U \ A showing that K is 
a superkey of FA. Now assume to the contrary, that K is not a key for FA . Then, 
there would exist a key K of FA such that K^ZK. Obviously FA(K) = U\A. We 
invoke^ Lemma 11.4 to deduce = = i/, showing 
that J C U A J s a superkey of F. Consequently, there exists a key X of F such that 
K Q K D A , K ( ~ ) A = 0 . From this K Q K ^ K . This contradicts the hypothesis that 
K is a key for F . 

This completes the proof. 
To continue let us recall a result from § 1. Let F be a closure function in U. 

Let us set 
T = U ^ I A ^ and F ( X ) * X ) , 

P = U { X \ X € 2 V a n d F ( X ) * X } . 

Then, the necessary condition under which K is a key for F is 

1 . U \ P Q K < G ( U \ P ) U ( T F ] P ) , a n d 

2. the intersection I of all keys for F is 1= U\P. We have the following theo-
rems. 

Theorem 6.4. Let F be a closure function in U and 1= U\U {F(Z)\A' |A'€Z i ; 

and F ( X ) ^ X ) . Then K is a key of F , if and only if K C \ I = 0 and K U I is a key 
o f F . 

Theorem 7.4. Let F be a closure function in U , and N = P \ T . Then AT is a 
key of FN if and only if K is a key of F. 

Lemma 12.4. Let F be a closure function in U , U F ) A = 0 . Then 

1. I X ^ U U A , 

2. F ( X ) U A = F A ( X \ J A ) > X Q U . . 

Proof. We first prove 
1. Let X Q U U A . From the definition of F A we have: 

F A ( X ) \ A = = F ( X \ A ) \ A g F(A'\yl). 

2. Let X Q U. We have F A { X ( J A ) = F ( X \ J A \ A ) { J A = F ( X \ A ) \ J A . Since 
A C \ U = 0 , A D X = 0 . It is clear that F A ( X U A ) = F ( X \ A ) U A = F ( X ) U A . This 
completes the proof. 
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Theorem 8.4. Let F be a closure function in U and A D U=0. Then 
K H A = 0 a n d K i s a k e y o f F A i f f K i s a k e y o f F . 

Proof. We first prove the necessity: Suppose that AT is a key of FA and K F \ A — 0 . 

Obviously FA(K) = UUA. Taking Lemma 12.4 we get: 

U = £ / L U \ / i = F A ( K ) \ A g F ( K \ A ) g U. 

Obviously, F ( K ) = F ( K \ A ) = U , showing that K is a superkey of F. If K were not 
a key of F , then there would exist a key K such that K ^ K and F ( K ) = U . 

From the definition of F A we find: F A ( K ) = F ( K \ A ) \ J A = F ( K ) { J A = U U A . This 
contradicts the hypothesis that K is a key for F. We now turn to the proof of the 
sufficiency. Suppose that K is a key for F. We have to show that K C \ A = 0 and K 

is a key for F A . Since K is a key o f f , we have F ( K ) = U and K ^ U . Thus K O A = 0 . 

On the other hand F A ( K ) = F ( K \ A ) { J A = F ( K ) { J A = U U A showing that K is a 
superkey of FA. 2f K is not a key of FA, then there would exist a key K such that 
K £ K and F A ( K ) = U U A . We have U= F A ( K ) \ A G F ( K \ A ) = F ( K ) G U. Thus 
F(K) = U. This contradicts the hypothesis that K is a key of F. Hence AT is a key of 
FA. The proof is complete. 

5. On a relationship between keys for relation 
scheme and keys for closure function 

Let us recall some necessary notions and definitions. Definition of a closure 
function: Let U=={ALTA,¡, ..., An} be a set of n elements (attributes) and 2V its 
power set. The function / : 2U—2U is called a closure function or closure iff for 
every X, Y£2V, 

a ) J T g f ( X ) , 

b ) f { f ( X ) ) = f ( X ) , 

c) if Z g Y then f(X)Qf(Y). 

Let KQU, K is said to be a superkey for the closure function / if / ( K ) = U. 
K is said to be a key for the closure function / if K is a superkey for / but / ( X ) ^ U 
for any proper subset X of K. Let C ( / ) denote the family of all keys for the closure 
function f . 

Definition of a relation scheme: [3] . 
Armstrong's axioms [4]. Let X, Y, ZQU; 
Rule 1: (Reflexivity) if YQX then X-+Y; 
Rule 2: (Transitivity) if X-*Y and 7 - Z then X^Z; 
Rule 3: (Augmentation) if X ^ Y then X U Z - Y U Z . 

Relation scheme: 
A relation scheme is a 2-tuple (CI, F) where: 
a) U is a finite set (of attributes), 

. b) F is a finite set of functional dependencies (FD). 
Let F be a given set of FD's of a relation scheme. We can apply these rules; to 

the F£/s in F to derive new FD's. > 

/ 
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The set of all FD's that are derivable from F by repeated applications of Armst-
rong's rules (including the FD's in F) is called the closure of F and is denoted by F+. 

Let XQU be a given set of attributes. We define the closure of X (relative to 
F), denote by X+, to be the set of all attributes that are functionally dependent on X: 

X+ = {A\{X ^ A)£F+). 

Algorithm for finding X+: 
= X, 

J^O+D = x w U { R j \ L j - RjdF and Ls Q X (0}. 

There exists an N such that xw=X<N+1\ Then X+=Xm. We have X-*Y<iF+ 

iff YQX+. 
Let ({/, F) be a relation scheme and let X be a subset of U. We say that X is 

a superkey of (U, F) if every attribute in U functionally depends on X. If the set X 
is a superkey and it does not properly contain any superkey then Xis a key for (U, F). 

C(U, F) denotes the set of all keys of a relation scheme (U, F). 

Theorem 9.5. Let (U, F) be a relation scheme. We define the function / : 2^—2" 
as follows: 

X£2U: f ( X ) = X+. 

Then 1. / i s a closure function; 
2. C(f)=C(U, F ) . 

Proof. We first prove 1. 
a) X^X+. Clearly XQf(X). 
b) X=(X+)+ implies f ( X ) = f ( f ( X j ) . 
c) XQY^X+QY+ implies f(X)<gf(Y). 

Consequently / is a closure function. 
2. Now let K be a key of the relation scheme (U, F). Obviously K+ = U. Thus 

we have / ( K ) = U, showing that AT is a superkey for f . Now assume to the contrary 
that, AT is a not a key for f . Then there would exist a key K of / such that K^K 
and f(K) = U. From the definition of / we have K+ = U. Thus K-U. This 
contradicts the hypothesis that AT is a key of (U, F). 

Now let AT be a key of the closure function / . Obviously f(K) = U. Thus 
K+=U,K is a superkey for (U, F). Now assume to the contrary, that AT is not 
a key for (U, F). Then there would exist a key AT of (U, F) such that K^K and 
K-*U. We have K+=U. Thus f(K)=U. This contradicts the hypothesis that AT 
is a key for / . 

Theorem 10.5. Let / be a closure function in U. We define the relation scheme 
(U, F) as follows: 

F = {X -*-f(X)\X£2v}. 
Then 

c e o = C{U, F). 

Proof. From the definition of F we have X+f(X)eF. Thus f(X)QX+. Now 
we have to prove X+ Qf(X). 
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We proceed by induction on n. If n=0 we have Xw=XQf(X). Assume it 
is true for n i.e. x ( n ) g f ( X ) . In fact we have Xin+1) = XM\J {UY\Z~Y£F, Y=F(Z) 
and ZQX(n)). From Z£XM we have f ( Z ) ^f(X(n>) Qf(f(X)),=f(X). Obviously 
Xin+»Qf(X). Finally, we find f(X)=X+. Applying Theorem 9.5, we have C ( / ) = 
= C ( Z , F). The proof is complete. 
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