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In this paper, we investigate some characteristic properties of keys.and super-
keys for a closure function, defined on the power set of a finite set U. In particular
we give a necessary condition under which a subset X of U is a key. and explicit
formula to compute the intersection of all keys for f, a necessary and sufficient con-
dition for which a closure function f has precisely one key.

Moreover, the translation of a closure function f which, in some sense, preserves
the keys for f, as well as the relationship between the keys for a closure function
and the keys for the corresponding relation scheme are also considered.

These results are closely related to those presented in [1].

1. Keys of closure function

In this section after proving some lemmas, we give a ‘characteristic- condrtron
under which a subset K can be a key for a closure function. :

Definition [2]. Let U={a,, as, ..., a,} be a set of #n elements (attribuiee) and
2Y its power set. The function F: 2U..20 s called a closure.function or closure iff
for every X, Ye2Y

a) X & F(X),

b) F(F(X)) = F(X),

QY S X=>F¥)& F(X). A
Let Kc2Y. We say that K is a superkey of the closure function F if F(K)="U,

and K is said to be a key of F if F(K)=U, but F(X)## U for any proper subset X
of K. We set X=F(X)\X.

/" We define two sets P and T for the closure function F as follows
a) T = U{X: Xe2¥ and F(X) # X},

b) P = U{X: X¢€2¥ and F(X) # X}.
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Lemma 1.1. Let F be a closure function and XS U then:
F(X)cS XUP.
Lemma 2.1. Let F be a closure function and XS U and a¢T. Then
F(A\a) = F(X) or F(X\a)=FX@X)\a.

Proof. There are two possible cases:

a) If a¢X then X=X\a. It follows that F(X)=F(X\a).

b) If a€X then from the definition of T we have F(X)=X, and F(X)\a=
=X\a. Thus F(X\@)=F(F(X)\a). On the other hand we have

F(X)\a € F(F(X)\a) = F(X\a) S F(X).
It is clear that F (X\a) =F(X) or F(\\@)=F(X)\a. The proof is complete.
Lemma 3.1. Let F be a closure function. Then:
' P S FT). '

Proof. Let ac P. From the definition of P there would exist an XS U such
that F(X)=X and ac F(X)\X. Clearly XET. Hence F(X)&F(T), showing
_that ac F(T).

Lemma 4.1. Let F be a closure function. If a€ F(X)\ P then
acX.

Proof. We have F(X)=XU(F(X)\X)SXUP. On the other hand a€ F(X)
and a¢ P. This implies a€ X.

Lemma 5.1. Let F be a closure function. If ¢¢ T and F(Y)EF(X) then
F(Y\a) & F(X\a).
‘ Proof. Since a4 T, taking account of Lemma 2.1 we get F(X\a)=F(X) or
F(X\a)=F(X)\a. o )
: a) If F(X\a@)=F(X), it is obvious that
YNNG S FI)N\a S F(X)\a & F(X) = F(X\a)
F(Y\a) & F(F(X\a)) = F(x\a).
b) If F(X\@)=F(X)\a.we have
™\ & F(Y)\a & F(X)\a = F(X\a).

F(T\a) S F(F(X\@) = F(X\a),

the proof is complete. As an immediate consequence of Lemma 5.1 we have the
following.

{mplies

Clearly

Lemma 6.1. Let F be a closure function. If a¢ 7" and F(Y)=F(X) then
| F(X\a) = F(Y\a).
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Lemma 7.1. Let F be a closure function. If a¢ KNF(K\a), then K is not a
key of F.

Proof. From a€K we have K\a%K. Thus F(K\a)SF(K). On the other
hand a€ F(K\ga). Clearly aU(K\a)EF(K\a), thus KSF(K\a). It is obvious
that F(K)SF(F(K\@)=F(K\@)SF(K). Thereforr K\aGK and F(K)=
= F(K\@a). From this we get that K is not a key of the closure function F.

Theorem 1.1. Let F be a closure function and K a key of F then:
UN\P € K S (U\P)U(PNT).

Proof. We shall begin with showing that UNPSK. Assume to the contrary,
that is UNPEK. From this, there would exist an a€(UNP)\K. Clearly a¢ P and
a4 K. On the other hand, since K is a key of the closure function F, it is obvious-that
a€ F(K). From a¢ P and taking account of Lemma 4.1, we get a¢ K which conflicts
with a¢ K.

To complete the proof it remains to show that KS(UNPYU(PNT). We know
that U=(UN\P)UP=(UNP)U(PNT)U(P\T). Suppose to the contrary, i.e.
KE(UNP)YU(TNP). Then there exists an a€ KN(P\T).

From this we have a¢K, acP and a¢T. Because K is a key of F, we have
F(K)=U=F(U). From a4 T, taking account of Lemma 6.1, we get F(K\a)—
=F(UN\a). From a4 T, evidently TCU\ga. It is obvious that F(T)S F(UN\a).
In view of the Lemma 3.1, PSF(T). Combining this with a€ P we obtain

acP S F(T) € F(U\a) = F(K\a).

It is clear that ac KN F(K\a) showing, by Lemma 7.1, that X is not a key of F.
We thus arrive to a contradiction. The proof is complete.

2. Intersection of all keys for a closure function

We propose in this section to describe the intersection of all key of a closure
function.

Lemma 8.2. Let F be a closure function and a€P. Then there exists a key
K of F such that a¢ K.

Proof. Becauese ac P, there exists an XS U such that a€ F(X)\X. Let: CcCcvU
such that F(X)UC=U and F(X)NC=@. Clearly, USF(X)UCSF(XUC)CU.
Thus F(XUC)=U and there exists a key KSXUC. It is clear that.a¢ K-

Theorem 2.2. Let F be a closure function and let I be the intersection of all
keys of F. Then -
I = UNZP.

Proof. From Theorem 1.1 we have UNPESI. To complete the proof; it remains
to show that JEUNP. In view of Lemma 8.2 we obtain /N P=0 showing that
IS UNL. ‘

Hence I=UN\P. The proof is complete.
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3. Sufficient and necessary condition under which
a closure function has precisely one key

In this section we present a theorem which gives a sufficient and necessary
condition for a closure function F to have precisely one key.

Theorem 3.3. Let F be a closure function. Then F has precisely one key iff
TNPSF(T\P).

Proof. Sufficiency: Let TNPSF(T\P). From this we have T=(T\P)U
U(TNPYSF(T\P). It is clear that F(T\P)SF(T)SF(F(T\P))=F(T\P).
Thus F(T)=F(T\P).

* By Lemma 3.1, PEF(T). It is clear that: F(TUP)EF(T). From this,
F(T)=F(TUP). Taking account of Lemma 1.1 we find F(TUP)S(TUP)U P=
=TUP. Thus TUP=F(TUP). Consequently F(T\P)=F(T)=FTUP)=TUP.
On the other hand we have TN\ PES U\ P. )

Thus TUP=F(T\P)SF(U\P). From this we find U=(U\P)U(TUP)S
S F(UNP)SU. Finally we have U=F(U\P).

Now we shall show that U\ P is the unique key of F. If U\ P is not a key of
F then there exists a.key X of F such that XEUN\P. By Theorem 1.1 we have
UNPEXLUNP showing that UN P is the unique key of the closure function F.

Necessity: Let F be a closure function that has precisely one key K. We invoke
Theorem 2.2 to deduce that J=U\P=K, showing that U\ P is a key of F. Thus
F(UNP)=U. There are two possible cases.

a) If UNP#U then from the definition of Twe have UNPCST. Thus UN\LP&
ETM\P and clearly U=F(U\P)SF(T\P)SU. This implies U=F(T\2P).
Consequently TN PSS F(T\P). :

b) If UNP=U then clearly P=@. From this we have §=TNPSF(T\.P).
The proof is complete.

Example. Let U={a; b, c}.
F: 2V-2Y is a closure function,
F(@) =90,
F(a) = ab,
F(b) = b,
F(c) = abc,
F(ab) = ab,
F(ac) = abc,
F(cb) = cbha,
F(abc) = abc.
From this we have:
F(a)=ab#a, a=0b,
F(c) =abc #c¢, ¢=ab,
F(ac) = abc # ac, ac =b, f(ch) #abc= cb = a.
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We obtain:
T = ach,
P = ab,
TNP = ab.
a) If K is a key of the closure function F then:

UNP E K S (UNPUPNT).
Thus ¢S K& cab.
b) The intersection of all keys of F is

I=U\P=c

¢) TNP=ab, F(T\P)=F()= abc=>TﬂPCF(T\P) "From this, F has
precisely one key K=UN\P=c. o

4. Translations of closure functions

In this section we shall be concerned with a class of translations of closure
functions. Starting from a given closure function, translations make it possible to
obtain more simple closure functions so that the key — finding problem becomes
less cumbersome, etc. On the other hand, from the set of key for the new, closure
function obtained in this way the corresponding keys of the original closure func-
tion can be found by a single translation.

Let C(F) denote the family of all keys for the closure F. We define two sets
H and G as follows:

G =N{K|KeC(F)},

H =U{K|KeC(F)}.

Lemma 9.4. Let F be a closure function in U, and ASU. We define a new
F by :
F,(E)= F(EUANA for E< UNA.

Then: F, is a closure function in UN\A4.

Proof.

a) Let ECUNA. Since F is a closure function, ESF(EUA) and ENd= 0
Clearly ECF (EUANA. Consequently ECF,(E).

b) Let E, SE,SUNA. Clearly, F(E,UA)S F(E,U4), which implies F, (El) =
= F(E,UANAC F(E,UAN\A=F (Ey).

c) Let ECU\A4. To complete the proof it remains to show that F,(E)=
=F,(F,(E)). “We have F(F (E))=F,(F(EUAN\A)=F(F(EUA\A)UANA.
Since ASF(EUA), F(F(EUANAUANA=F (F (EUDNA=F(EUA\A=
=F(E). From a), b), and c), we conclude that F, is a closure function.

Lemma 10.4. Let F be a closure function in X, AN X=0. We define a new F4 by:
- FA(E) = F(ENAUA for ES XUA,
" Then FAis a closure function in XU 4,
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Proof.

a) Let ESXUA4. We have E=(EN\A)U(ENA). On the other hand EN\ACS
CF(ENA) and ENACS4, showing that ECF(ENA)UA=FA(E).

b) Let E,CE,CXUA. This implies F(EN\A)SF(Ex\A) and FA(E)=
=F(ENAUAS F(ENA)UAC FA(E).

c) Let ECXUA. Since F is a closure function in X and ANX=@, we have
F(ENA)NA=Q. Itisclearthat: FA(FA(E))=FA(F(E\A)UA)=F((F(E\A)UA)\
\A)UA=F(F(ENA)UA=F(ENA)UA=FA(E). Consequently FA(FA(E))=
=F4(E) and F is a closure function in XUA. )

Lemma 11.4. Let F be a closure function in U, ASU. Then:
L F(X)NAE F,(X\4) forall XS U, and
2. F,(X)UA4A=F(XU4) forall XS UN\A.

Proof.

1. F{om the definition of F, we have F,(0N\A)=F(X\HUAINAL=
=F(XUA)\A. On the other hand F(X) S F(XU ). Thus F(X)NASF(XUANA.
Consequently F(Y)\AEF,(I\A).

2. We have F (X)=F(XUAN\A. Since ASF(XUA), we get F,(X)UA=
=F(F(XUA)\A)UA=F(XUA).

Theorem 4.4. Let F be a closure function in U, 4SG. Then:
Kisakey of F, if and only if ANK=0 and KUA is a key of F.

. Proof. We first prove the necessity: Suppose that X is a key of F,. Obviously
F,(K)=U\A and ANK=4. Taking Lemma 11.4 into account we get:

U=(U\AUA=F,(K)UAS FKUA) S U,

showing that KUA is a superkey of F. If KUA were not a key of F then there
would exist.a key K of F such that 4SKEKUA. Consequently there would exist
an" K, &K such that: K=K,UA4, K;NA=@. Since K is a key for F, F(K;UA)=U.
Applying Lemma 11.4, clearly UNA=FK,UAHNAEF,(K,UA\A)=F,(K).
So we have K %K, F,(K;))=U\A4. This contradicts the hypothesis that X is a
key of F,. :

We now turn to the proof of sufficiency. Suppose that KNA=@ and KUA is
a key for F,. We have to show that X is a key for F,. Since KUA is a key for F,
we have F(AUK)=U. By virtue of Lemma 11.4 and KNA=0, we get U\ 4=
=F(KUANASF (KUANA)=F(K)SU\A. Thus UNA=F,(K), showing
that K is a superkey for F,. Assume that K is not a key of F,, then there would
exist a key K of F, such that K&K and F,(K)=U\A. Applying Lemma 11.4,
it follows U=F, (K)UA=F(KUA) where KUALKUA. This contradicts the
fact that KU A is a key for F, that completes the proof.

Theorem 5.4. Let F be a closure function in U, ASU and ANH=@. Then
K is a key of F, iff Kis a key of F.

Proof.
1. The necessity: Suppose that K is a key for F,. Obviously F,(K)=U\A.
By virtue of Lemma 11.4 we have F(KUA)=F,(K)UA=(U\A)UA=U, showing
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that KU A is a superkey for F. Hence, there exists a key K of F such that KEKU 4.
Since ANH=0 thén KNA=@. From this, it is easy to see that KSK. There
are two possible cases:

a) K=K. Then obv1ously K is a key for F. '

b) KCK Since K is a key for F, F(K)="U. Applymg Lemma 11.4, we have
UN\A=F (K)\ACF P (K\A)C UN\A and KNA=0, thatis F,(K)=U\4. This
contradicts the fact that K is a key for F 4

2. The sufficiency: Suppose that K is a key for F. We have to prove that K-is
also a key for F,. We have, by the definition of keys, F(K)=U. Applying Lemma
114, UNA=F(KNACSF(ENASU\A4. Thus F,(K\A)=U\A4. Since.
ANH=0, it follows KNA=@. Consequently F,(K)=U\4A showing that K is ™
a superkey of F,. Now assume to the contrary, that K is not a key for F,. Then,
there would exist a key K of F, such that KCK Obviously F,(K)=U\A. We
invoke Lemma 11.4 to deduce F(KUA)= FA(K)UA (UNA)UA=U, showing
that KUA is a superkey of F. Consequently, there exists a key: K of F such that
KSKUd, KNA=0. From this KSKEK. This contradicts the hypothesis that-
K is a key for F.

This completes the proof.

To continue let us recall a result from § 1. Let F be a closure functlon in U.
Let us set -

T = U{X|X€2U and F(X) # X},

P =U{X|Xe2V and F(X) = X}.
Then, the necessary condition under which K is a key for F is
1. UN\PSKS (UNPUTNP), and - = - ‘

2. the intersection I of all keys for F is I=U\/P. We have the followmg theo-
rems.

Theorem 6.4. Let F be a closure function in U and I=U\U{F (X)\X IXGZU
and F(X)X)}. Then K is a key of F; if and only if KN/=@ and KUI IS a key
of F.

Theorem 7.4. Let F be a closure function in U, and N=P\T. Then K is a
key of Fy if and only if K is a key of F. '

Lemma 12.4. Let F be a closure function in U, , UNA=@. Then

I. FAAANACS F(IN\4), XS UUA,

2. F(X\)U4 = FA(XU4A), XS U.

Proof. We first prove

1. Let XSUUA. From the definition of F4 we have:
FAXNA = (FXNAUANA = F (X\A)\A S F(X\A).

2. Let XSU. We have FAXUA)=FXUAAUA=FX\AUA. Since
ANU=0, ANX=@. It is clear that F"(XUA) F(X\A)UA F(X)UA This
completes the proof,
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Theorem 8.4. Let F be a closure function in U and ANU=#. Then
KNA=P and X is a key of FAiff K is a key of F.

Proof. We first prove the necessity : Suppose that K is a key of F4and KN A=0.
Obviously FA(K)=UUA. Taking Lemma 12.4 we get:

U= UUAA = FAKIN\A S F(K\A4) S U.

Obviously, F(K)=F(K\A4)=U, showing that X is a superkey of F. If K were not
a key of F, then there would exist a key K such that K&K and F(K)=U.
From the definition of F#4 we find: FAK)=F(K\A)UA=F(K)UA=UUA. This
contradicts- the hypothesis that K is a key for F. We now turn to the proof of the
suﬁiciency. Suppose that X is a key for F. We have to show that KNA=0 and K
is a key for F4. Since Kisa key of F, we have F(K)=U and KSU. Thus KNA=0.
On -the other hand F"(K) F(KN\A)UA=F(K)UA=UUA showing that K is a
superkey of F4. If K is not a key of F4, then there would exist a key K such that
KIK and: FA(K)=UUA. Wehave U=FAK)NASF(R\A)=F(K)SU. Thus
F(K)y=U. This coniradicts the hypothesis that K is a key of F. Hence K is a key of
FA. The proof is complete.

5. On a relationship between keys for relation
scheme and keys for closure function

Let us recall some necessary notions and definitions. Definition of a closure
function: Let U={4,, 4,, ..., 4,} be a set of n elements (attributes) and 2Y its
power set. The function f: 2U—~2V is called a closure function or closure iff for
every X, Ye2U,

"a) X € f(X),
b)) F(A(X) = f(X),
U 9)if XSY then f(X)SFX).

Let KSU, K is said to be a superkey for the closure function f if f(K)=U.
K is said to be a key for the closure function f if K is a superkey for f but f(X)=U
for any proper subset X of K. Let C(f) denote the family of all keys for the closure
function f.

Definition of a relation scheme: [3] .

Armstrong’s axioms [4]. Let X, Y, ZE U,

Rule 1: (Reflexivity) if YSX then X—Y;

Rule 2: (Tranpsitivity) if X—Y and Y—~Z then X—~Z;

Rule 3: (Augmentation) if X —»Y then XUZ-~YUZ.

Relation scheme:

A relation scheme is a 2-tuple (U F) where:

a) U is a finite set (of attributes),

- b) Fis a finite set of functional dependencies (FD)

Let-F be a given set of FD’s of a relation scheme: We can apply these rulesito
the FD's in F to derive new FD’s.
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The set of all FD’s that are derivable from F by repeated applications of Armst-
rong’s rules (including the FD’s in F) is called the closure of F and is denoted by F*.
Let XS U be a given set of attributes. We define the closure of X (relative to
F), denote by X, to be the set of all attributes that are functionally dependent on X:

X+ = {A|(X ~ A)cF*).

Algorithm for finding X+
X0 = X,

X6+D = XOU{R,|L; - R;¢F and L, € XO}.

There exists an N such that X =X®"+D_ Then X+=X™. We have X~Y€F*
iff YSXT.

Let (U, F) be a relation scheme and let X be a subset of U. We say that X is
a superkey of (U, F) if every attribute in U functionally depends on X. If the set X
is a superkey and it does not properly contain any superkey then X is a key for (U, F )

(U, F) denotes the set of all keys of a relation scheme (U, F).

Theorem 9.5. Let (U, F) be a relation scheme. We define the function f: 2V -2V
as follows:
Xe2Y: f(X) =

Then 1. fis a closure function;
2. C(fH)=CU,F).

Proof. We first prove 1.

a) X&Xxt. Clearly XSf(X).

b) X=(X*)* implies 7(X)=/(f(X).

c) XEY=>XTCY™* implies f(X)Sf(Y).

Consequently f is a closure function.

2. Now let K be a key of the relation scheme (U, F). Obviously K*=U. Thus
we have f(K)=U, showing that K is a superkey for f. Now assume to the contrary
that, K is a not a key for f. Then there would exist a key K of f such that KCK
and f(K)=U. From the definition of f we have K*=U. Thus K—U. ThlS
contradicts the hypothesis that K is a key of (U; F).

Now let K be a key of the closure function f. Obviously f(K)=U. Thus
K*=U,K is a superkey for (U, F). Now assume to the contrary, that K is not
a key for (U, F). Then there would exist a key K of (U, F) such that KCK and
K—~U. We have K*=U. Thus f(K)=U. This contradicts the hypothesis that X
is a key for f.

Theorem 10.5. Let f be a closure function in U. We define the relation scheme
(U, F) as follows:
F = {X > f(X)|Xe2"}.
Then
C(f) =C(U, F).

Proof. From the definition of F we have X—~f(X)eéF. Thus f(X)SX*. Now
we have to prove X+ Sf(X).
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We procced by induction on n. If n=0 we have X@=XCSf(X). Assume it
is true for ni.e. xX™Cf(X). In fact we have X+V=X®WU{UY|Z~YEF, Y=F(Z)
and ZEX™}. From ZeX™ we have f(Z)Sf(X™)Sf(f(X))=f(X). Obviously
X+ C f(X). Finally, we find f(X)=X*. Applying Theorem 9.5, we have C(f)=
=C(Z, F). The proof is complete.
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