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We are here concerned with a class of partitions which are similar to the well 
known cyclic partitions of Markov chains. Let G—(V, E) be a directed graph with 
a non-empty (possibly infinite) vertex set V and a set of directed edges E. Consider 
partitions n = {5a} of a graph G, where {i?a} is a family of disjoint non-empty sub-
sets (or blocks) BXQV and (J Ba=V. A partition n is called autonomous if for 

a 
every block Ba either ő(Bx) is empty or ő(BJ^Bfi for some block Bp. Here S(B) 
denotes the set of all vertices which are reached in one step from BQV. By the 
minimal autonomous partition (m.a.p.) of a directed graph G we mean such auto-
nomous partition which is a refinement of any autonomous partition of this graph. 
Denote the m.a.p. of G by 7imin(G), or simply 7tmin when non confusion is possible. 
The intersection of all autonomous partitions of G is an autonomous partition which 
is equal to the m.a.p. of G. Thus, the m.a.p. is uniquely determined for every directed 
graph. 

These partitions turned out to be a very useful tool for studying some properties 
of automata and much of the motivation for the work discussed here derives from 
attempts to describe a structure of automata which are stable to the input-induced 
errors. My attention to examining the m.a.p. was also called by the paper [1] of A. 
Ádám, who introduced the autonomous partitions under the name P-partitions and 
considered these partitions from the graphtheoretical point of view. The main result 
of A. Ádám lies in the following. Let q be the relation on a graph G such that for each 
pair of vertices v, u£V we have (v, u)dg if and only if v and u are reached in equal 
number of steps from some vertex w£ V, i.e. there exist two paths of equal length 
from w t o i) and from vv to u; Then QT=nm]n for every sink-free directed graph, 
where qt denotes the transitive closure of q. (Here and elsewhere we do not distin-
guish between partitions and the corresponding equivalence relations.) The above 
statement we shall call A. Ádám's theorem on minimal autonomous partitions. 

The purposes of our paper are: 
1) to describe the structure of m.a.p. for various types of directed graphs; and 
2) to demonstrate the possibility of applications of A. Ádám's theorem to auto-

mata theory. 
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Minimal autonomous partitions 

In this section we describe the structure of m.a.p. for arbitrary directed graphs, 
for graphs with finitely many sinks, for sink-free and source-free graphs and for 
strongly connected graphs. 

By o we denote the trivial partition such that every block of o is a singleton. If 
T is any relation on a graph, then we denote by T° the following relation: for each two 
vertices v,u£V we have (v, W)£T" if and only if either (v, or there exists a 
finite sequence of pairs vt, u^V, i= 1, ..., n, such that {vi, wJCt, vi£0(v,_and 
Mi€<5(Mi-1) for i=2,...,n and vn=v, un=u. t" will be called the autonomous clo-
sure of T. It will be observed that o" is exactly the relation q defined above. By TT 

we denote the transitive closure of t, i.e. (v, u)£zT iff there exists a finite sequence of 
vertices Vi, ..., vn such that for i=2,...,n and v, =v, vn=u. 

We begin with A. Ádám's theorem ([I], Propositions 5,6): 

Theorem 1, For an arbitrary graph For an arbitrary sink-free 
graph o a T=nm i n . 

Remark 1. Although A. Ádám [1] dealt only with finite connected graphs, his 
proof of this theorem is valid for arbitrary graphs. 

We are going to generalize A. Ádám's theorem in the following way. Let sink (G) 
be the number of sinks of G and o n x (" r ) means 0

a T -aT , where aT is repeated n times. 
o o 

We shall first give some properties of the relations 0"* (aT). Put o°°(aT) = U o a x a ( T ) , 
n = 1 

i.e. (v, w)£o~(ar) iff (v, u)£onx(aT) for some n £ l . Note that ^ « m g ^ + D x O T 
for each n s l , hence o°°(ar) is a partition. Furthermore, one easily verifies that the 
following pairs of factor-graphs are isomorphic: 

G/nmin(G) ~ [ G / o ^ / l ^ G / o " 7 ) ] ( * ) 

G/o (n+1)x(aT) ~ [G/o"r]/[onx("r)(G/o"r)] ( * * ) 

or (by induction) for each n, / s i 

C7Mn, i „(<7)~[G/o , x ( a T ) ] /K.„ (<? /ö ' x o r ) ] ( * ) 

G/o(n+í) x ( " r ) ~ [G/o'x (°r)]/[on x (° r ) (G/o'x (flT))] ( * * ) 

We are now in a position to prove the generalization of A. Ádám's theorem: 

Theorem 2. For an arbitrary graph, o°°(or,=7tmin. If sink (G)^ra, then 

Proof. 1) It follows from A. Addm's theorem that on*ittT)Qnmia for each w s l . 
Thus o°°UT)Qnmin. To prove o°°{aT)=nmin, fix two vertices (v, w)io~(aT). We 
then have (v, u)£ok%iaT\ for some fcsl. Consequently, (i/, H')€o (k+1)x(aT) if 
v'£5(v) and u'£d(u). From this it follows that o°°(ar) is an autonomous partition. 
Suppose o~(a7) ^ 7tmin. Then o~(aT) is a proper refinement of 7imin and the minimality 

nmia gives the contradiction. 
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2) Now prove the second assertion. 
Induction base: If sink (G)=0, then oaT=nmin by A. Adam's theorem. 
Induction step: If sink (G)=n + 1 and oaT?±nmi„,. then sink (G/oaT)^n. Indeed, 
if 0o7V7rmin, then there exist blocks A, B, C of oaT with 8(A)C\B^ti, S{A)nC^0 
and B(1C=0. (Here 0 denotes the empty set.) This means that there is a sink in A, 
but A, considered as a vertex of the factor-graph G/oaT, is not a sink. Thus 
sink(G/o" r)^n. 

Suppose o(n+1)x(aT)=nmin holds for each graph G' with sink (G')=«- Then 

G'/nmin(G') ~ G'/o<"+»*<°T\G'). 

where G'=G/oaT and ~ means graph isomorphism. On the other hand, properties 
(*) and (* *) give 

G'/nmin(G') ~ G/;tmin(G) 

G'loin+1)x<aT\G') ~ G/o(n+2)x(aT)(G). Thus 
G/nmin(G) ~ G/o("+2)x(aT>(G) 

and consequently, 7imin=o ("+2)x(aT) if sink(G)=n + 1. Q.E.D. 

Examples. Fig. 1 shows a graph G with sink(G) = l, oaTa?inm{n, oaTaT= 
nmin. Fig. 2 shows a graph G with sink(G)=2, oaTaTa^nmXn, oaTaTaT=7tmin. For 
the graph in Fig. 3 we have, sink (G)=3, oaTaTaTa^nmm, oaTaTaTaT=nmin. 

These examples give rise to the following 

Fig. 1. 
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Proposition 1. For each integer n there exists a graph G such that sink (G)—n 
and ^ i t ^ . 

Question 1. Does Proposition 1 remain valid when we restrict ourselves to 
finite graphs without sources? 

Question 2. For any n, characterize the graphs having exactly n sinks such that 
0nx(„7>=Jtmin ¿olds ¡ n Theorem 2. 

Corollary 1. If G is finite, then 0nx(oT)=7rmin for some integer n^\V\. 

Proof. If every vertex of G is a sink, then o=nmm. Elsewise, sink (G)S |F | — 1 
and we can apply Theorem 2. 

Question 3. What is the smallest number/(/c) such that o f W x i a T ) = n m l n for 
every finite graph with \V\=kl 

Now let us consider sink-free graphs. The relation o" is not transitive, in general, 
even if a graph has no sink and no source (see Fig. 4). (This example also provides a 
particular answer to Problem 3 in [1].) But for strongly connected graphs the relation 
o" is always transitive. 

Proposition 2. For an arbitrary strongly connected graph, o"=7rmin. 

Proof. First, let G be a finite strongly connected graph. Let B£ nmia be an arbi-
trary block of its m.a.p. and let c£B be a vertex in this block. Consider the factor 
graph G/jrmin. Obviously, G/nmin is a cycle. Denote its length by p. Consider a se-
quence of sets Sk=5kp(c), k=0, 1,2, ..., where Sn(c)=d(8"-1(c)), <5°(c)=c, 
5\c)—5{c). Note that SkQB£nmin and for every pair of vertices v,u£Sk we have 
(v, u)£o", for each k=0, 1, 2 , . . . . Since G is finite, the sequence Sk becomes station-
ary, i.e. there exist integers Ism such that ¿p(St)=Sl+1, ¿p(Sl+1)=St+2, ... 

m 
..., 5p(Sm)=S,. Since G is strongly connected, (J Si=B. If l=m, then the prop-

¡=1 
osition is already proved (in this case S,=B and (v, u)£oa for each pair v, u£B). 
If not, suppose without the loss of generality that all sets in the system 5'={5'|, ... 
..., 5m} are different. A family of sets {S'JgS', a . . . , m), will be called a 
maximal system if and only if Pi S a = 0 and for each n (l^nSm) such that 

n$A we have 5f l5 ' n=0. Let §={S1,..., §q} be the_family of intersections of the 
maximal systems. It is not difficult to see that 8P(S1)QS2,..., 5p(Sq)^§1 for a 
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suitable numeration of the sets S. Furthermore, if i ^ j , then £¡["15, =0. Since G 
9 

is strongly connected, one has (J S'1=5. Therefore we can consider the following 
i=1 

partition : 
« = {Si, d^SJ, ..., V-^SO, S2 , ..., S"- 1 ^)} . 

Obviously, n is autonomous partition and n is a proper refinement of 7tmin. This con-
tradicts the minimality of rcm!n. Hence l=m and oa=nmm. 

The general case, when G is an arbitrary strongly connected graph, is reducible 
to the previous one. Indeed, let B be an arbitrary block of the m.a.p. We are going to 
show that (v, u)(Loa for each pair of vertices v, u£B. Since a strongly connected 
graph has no sink, therefore it fulfils the suppositions of A. Adam's theorem. Hence 
(v, u)doaT. This means that there exists a sequence of vetrices vlt ..., vn£B such that 
v-t =v, v„=u and (vi, vi+1)£o" for i=l, ..., n—1. Select two paths of equal length 
from vt to vt and from vt to vi+1 for each c = l, ..., n—1 and take an arbitrary path 
from v„ to vt. Consider the subgraph G' of G consisting all vertices and edges of se-
lected paths. It is clear that G' is a finite strongly connected graph. Moreover, the 
vertices v and u belong to the same block of nmin(G'). Consequently, (v, u)£o" by 
the previous part of the proof (note that o"(G') is the refinement of o°(G)). Q.E.D. 

Remark 2. In addition, strongly connected graphs have another advantageous 
property: it is a well known fact in the theory of Markov chains that for such graphs 
the equality p = p * holds (see below). 

Now we are going to generalize Proposition 2. When does oa=nmin hold for 
sink-free and source-free graphs? This problem is closely related to Problem 2 in [1]: 
when is the length p of the cycle of the functional graph G/nmin equal to the greatest 
common divisor p* of all cycle lengths of G? Let p be the greatest common divisor 
of all cycle lengths of the induced subgraph spanned by all generators of G, i.e. 
p=g.c.d. {length (C): every vertex of cycle C is a generator of G}. (A vertex v is 
called generator if for each vertex u there exists a path from v to u.) 

One has the following 

Theorem 3. If a finite connected graph G has no source, then oa=nmin iff 
there exists at least one generator of G and p=p. 

Proof. Assume that oa=7imin and G has no source. Then o" is a transitive rela-
tion. It is not difficult to see that there exists a generator v of G. Let u be a vertex 
such that there is a path from u to v of length p. If v=u, then p —p. Otherwise, since 
the vertices v and u belong to the same block of 7tmin (therefore (v, u)£o") and since 
v is a generator, there exist two paths from v to v and from v to u of equal length kp 
(for some integer / r s l ) . It is clear that one can find two cycles, both containing v, 
with lengths kp and kp+p. Hence p=p. 

Now let p=p and suppose that there exists a generator v of G. Then there are 
two cycles C1 and C2 such that v€Clt v£C2 and the greatest common divisor of 
/1=length (Cx) and /2=length (C2) equals p. Indeed, the subgraph G of G spanned by 
all generators is strongly connected, hence we can apply Proposition 2, our assump-
tion p=p, then Remark 2 and the construction of the previous part of this proof. It 
is clear that if (v1, v2)€o", then (uj, u2)€rtmin. We are going to show the converse 
implication. Let and v2 be arbitrary vertices which belong to the same block of 
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7rmin. Since v is a generator of G, there exist two paths from v to v1 (of the length 
and from v to v2 (of the length m2). It should be observed that ll=k1p, l2=k2p, 
Ni—w2| =k3p, for some Ar^l , ¿ 2 s l , Ar3s0. From the fact that the equation 

hx + ky - K - / w a | 

is solvable in integers, it follows that there exist two paths of equal length from v to vx 
and from v to v2, respectively. Q.E.D. 

Corollary 1. If a finite connected graph G has no source, then oa=nmm im-
plies p=p*. 

Proof. The divisibility relations p\p* and p*\p are clear. If p=p, then p=p*. 
The converse implication in Corollary 1 is not valid, in general (see Fig. 5). 
We finish this section with the remark that the above results were not intended 

as an overview of the m.a.p. and Problems 1—2 proposed by A. Ádám [1] are still 
open. 

Applications to automata theory 

In this section we are going to describe a class of automata which are stable to 
the input-induced errors. First introduce some notations used below. By automaton 
we mean a system A=(X, S, <5), where X and S are arbitrary finite non-empty sets, 
called the input alphabet and the state set, respectively, and «5: SXX-»S is called 
the transition function. By S we also denote the natural extension of the transition 
function to a mapping 2SXX*-»2S, where 2 s is a family of subsets of S and X* 
is a free monoid generated by X. By the m.a.p. of an automaton we mean the m.a.p. 
of its transition diagram. A block B of the m.a.p. of an automaton is called cyclic if 
S(B,J)QB for some non-empty J£X*. The set of states which belong to the cyclic 
blocks is denoted C(S). By the period of automaton A we mean the least common 
multiple of all cycle lengths of the transition diagram of the factor automaton A/nm-m. 
We denote the period of A by p(A). If A1=(X, Slt S,) and A2=(X, S2, S2) are 
automata with S t05*2=0 and the same input alphabet, then AXXA2= 
=(X, S'jXiS'a, <5), where 5((Ji, *)> 4(^2» *)) for each 
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and x£X, is called the product of the automata and A1+A2=(X,S1\JS2,5), where 

is called the sum of the automata. An automaton A=(X, S, 3) is called a subauto-
maton of A=(X, S, <5) if SQS and S(s, x)=5(s, x) for every choice of s£S, 
xZX. An automaton A is said to be strongly connected if for every pair of states 
s, t£S there are such words J x , J 2 ^X* that 6{s,J1)=t and S(t,J2)=s. In other 
words, an automaton A is strongly connected iff the transition diagram of A is strongly 
connected. An automaton is said to be connected if its transition diagram, considered 
as a non-oriented graph, is connected. Note that every automaton A is a sum of 
connected automata A = 2 Aa. We say that an automaton A can be represented by 

a parallel composition of automata B and C if there exists a subautomaton D of 
BxC such that A is a homomorphic image of D. The onto mapping h: S'-+S is 
called a homomorphism from D=(X, S', <5') to A=(X,S,5) if S(h(s),x) = 
=h(5'(s,x)) for every choice of s£S\ x£X. 

An automaton A is called autonomous if S(s, x)=8(s, y) for each s£S and 
x, y£X. It should be observed that an automaton A is autonomous iff it is isomorphic 
to the factor automaton A/nmXn. 

An automaton A is called to be directable (or cofinal) if there exists a word 
X* such that 1(5(5, 7)| = 1, where | • | denotes the cardinality. Such words J are 

called directing. 
A directable automaton is called definite if there exists an integer n such that 

every word, whose length is greater than or equal to n, is directing. 
The automata we will be concerned with belong to a class defined by the following 

properties. 

Definition 1. An automaton A=(X\ S, <5) is called correctable if there exists 
J£X* such that 5(s, J1J)=S(s, J2J) for every state s£S and every two words 
Jlt J2£X* of equal length. Such words J are called correcting. 

Note that it is just the case of S. Winograd's automata which are synchronized 
with probability 1 with respect to the input-induced errors [6]. 

The automata of this type are capable of "forgetting" all previously occurred 
errors after accepting a specially selected correcting sequence of inputs. This provides 
the advantages, of their use in technique. 

The next assertion follows immediately from A. Adam's theorem. 

Correctability Criterion. An automaton A is correctable iff there exists a (cor-
recting) word J£X* such that \5(B, J)\ = 1 for each block B£nmln(A). 

This criterion allows us to describe the structure of correctable automata more 
precisely. 

First Decomposition Theorem. An automaton A is correctable iff it can be rep-
resented by a parallel composition of autonomous and directable automata. 

Sketch of the proof. The following five lemmas imply the sufficiency of the 
theorem. 

The next assertion is obvious: 

2 Acta Cybemetica VIII/4 

<5(5, x) = | 
x), if 

52(s, x), if s£S2 2) 

a 
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Lemma 1. Every autonomous automaton is correctable. 

Lemma 2. An automaton A is directable iff the following three conditions are 
fulfilled: 

A is correctable, 
A is connected, 
p{A)= 1. 

Proof. Suppose that p(A)—l holds for a connected correctable automaton A. 
Then Alnmin has only one cycle and this cycle is a loop. Denote by B the set of states 
s£S of A such that the natural homomorphism y of A onto A/irmin carries s to the 
unique cyclic vertex of A/nmin. It is easy to see that there exists a natural number n 
such that 5(S, I)QB whenever the length of the word I is at least n. The Correcta-
bility Criterion implies the existence of a word J^X* such that \3{B, / ) | = 1. Let 
J2€X* be an arbitrary word whose length is at least n and let J be defined by 
J=J2Jj. Then / is a directing word. 

Conversely, assume that A is a directable automaton. Obviously, A is connected 
and correctable. Our last aim is to verify p(A) = 1. We shall show that p(A)> 1 
leads to a contradiction. Indeed, p(A)>1 implies the existence of two states s, t£S 
such that s and t belong to different cyclic blocks of 7rmin. Thus 5(s, J)^S(t, J) 
for every word J£X* and the lemma follows. 

Lemma 3. ([4]). A product of finitely many correctable automata is correctable. 

Lemma 4. ([4]). Every subautomaton of a correctable one is correctable. 

Lemma 5. Every homomorphic image (consequently every factor automaton) 
of a correctable automaton is correctable. 

Proof. Consider a homomorphism h: A-+B, where A is correctable. Let us 
start with three states s2, s3 of B such that 5B(s1, Jx)=s2, SB(s1, J2)=s3 with 
some words Jit J2 which are of equal length. (Here §B means the transition function 
of B and dA denotes the transition function of A). Then obviously 

SaM, JiKh-1^), J^h-^Sa) 

for an arbitrary element s{ of / i_ 1(j1); thus the correcting word J oi A fulfils 

Hence 
3B(s2, J) = 8B(s3, J) 

and the lemma follows. 
Now we are going to prove the necessity. Let A be a correctable automaton. 

Consider the following three cases. 
1. Let A be strongly connected. Then the partition classes mod nmin(A) can be 

denoted by Bx, B2, ..., Bq in such a manner that ¿(B^ x)QBi+1 if and 
S(B9, x)(i^B1 (for each x£X). Let us choose a set C = {.sl5 ..., such that 
SitBf for each i (1 ^ i = q ) . 

Consider the family of all sets <5 (C, J) where (C is fixed and) J runs through all 
the elements of A"*. Since A is a finite automaton, this family consists of a finite num-
ber of different members. Denote the members of the family by C l 5 C2 , ..., C„ (the 



On minimal autonomous partitions of directed graphs and seme applications to automata theory 333 

ordering is arbitrary). C1,Ci, ..., C„ are pairwise different (but not necessarily dis-
joint) state sets and their union CiU.-.UC,, equals S (otherwise we could get a 
contradiction to the strongly connectedness of A). It is easy to see that | C , n ^ | = 1 
for every choice of Ct and B, where 1 ^ / S n and B is a block mod 7rmin(yi). For 
every choice of Ct and x£X there exists a unique Cy such that <5(C(, (l^i^n, 
1 rsj^n). 

Consider the automaton Ad=(X, {C,}, 5d), where <5d(C,-, x)=Cj iff <5(C;, x)=Cj. 
Denote Aa=A/nmin. It is not difficult to see that Ad is a directable automaton. This 
assertion follows from the Correctability Criterion. Indeed, since A is correctable, then 
there exists a correcting word J£X* such that \S(B, J)\ = 1 for each block 
5 m o d nm-m(A). Consider two arbitrary states C ; , C,- of Ad. Let C, = {j1 , . . . , s9} 
and Cy= {^i, ..., s'q}, where sx£Bx, s'a£Bx. Since sx and s'x belong to the same block 
mod JI„„-„(̂ ), we have <5(ja, J)~8(s'a, J) for each a (1 ^ct^q). Put sx=5(sx,J). 
Obviously, {jj, ..., s'g} is a member of the family C = {Cl5 ..., C„}. Let {¿J', ... 
..., s'J}=Ck where l^k^q. Then 

Sd(C„ J) = 5d(Cj, J) = Q, 

hence Ad is directable. Obviously, Aa is autonomous. The mapping from AaXAd 

to A taking a pair of states B£nmin(A) (this is a state of Aa) and C ;6C (this is a state 
if Ad) into the state s—BDCi of A is a required homomorphism. 

2. Let A be connected. 

Lemma 6. ([4]). Every connected correctable automaton contains a unique 
strongly connected subautomaton (which is evidently correctable). 

Remark 3. It will be noted that Lemma 6 is not valid in general for infinite auto-m a t a -
Denote by A=(X, S, 5) the strongly connected subautomaton of A. Let 

Aa = A/nmin(A) and Ad=(X, {.C,}, Sd), g S, be autonomous and directable com-
ponents of A, constructed analogously to the previous part of this proof, i.e. A can 
be represented by a parallel composition of Aa and Ad. Consider the automaton 
^ ( ^ ( . S X ^ I H C ; } , Sd), where 

Sd(b, x) = 
5(b,x), if b£S\S and 8(b,x)£S\S; 
arbitrary ( ^ { Q such that <5(b, *)€<?;, if b£S\S and 8(b,x)£§; 
Sd(b,x), if b£{Ct). 

The automaton Ad is directable. Indeed, it is easy to see that there exists a word 
Ji£X* such that Sd((S\S)U {<?J, / J i {C,}. Let J2iX* be a correcting word of 
A, hence J2 is a directing word of Ad. Let J be defined by J—J^J-i • Then J is a direct-
ing word of Ad. Denote Aa=A/nmin(A). Our last aim is to find a subauomtaton of 
AaxAd which can be mapped homomorphically onto A. Consider the subautomaton 
A whose states are all the_pairs (B, b), where B£nm-m(A), b£(S\S)U {€;}, such 
that BOb^Q. Note that A really is a subautomaton. Then the mapping (B, ¿>)— 
-*BC\b is a required homomorphism. 

3. Let A be an arbitrary correctable automaton. Represent A in the form 
A = ]?AX, where Ax is connected for each a. 

2* 
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Lemma 7. ([4]). Suppose A — 2 A,; then A is correctable iff At is correctable 
¡=i 

for each i=l,...,n. If A is correctable and A = 2 Ax (where there is an infinity 
a 

of summands), then Aa is correctable for each a. 
Let Aa

a and A% be automous and directable components of Aa, constructed ana-
logously to the first and second parts of our proof. Then A can be represented by 
a parallel composition of £ A% and JJ Aj. It will be noted that a sum of autono-

a a 
mous automata is autonomous and a product of finitely many directable automata is 
directable. Since every correcting word of A is a directing word of [J A*d, the auto-

a 
mat on J ] is directable, even if there were an infinite number of multiplicands. 

Q.E.D. * 
Remark 4. It follows from part 1 of the previous proof that every strongly 

connected correctable automaton is a homomorphic image of a product of strongly 
connected autonomous and strongly connected directable automata. 

A. Adam's theorem can be applied to the description the other types of automata. 

Definition 2. A correctable automaton A is called self-correctable if there exists 
an integer n such that every word, whose length is greater than or equal to n, is 
correcting. 

The smallest n which satisfies the above condition is called the correction time 
and denoted by n(A). 

Self-correctability Criterion. An automaton A is self-correctable iff there exists 
an integer n such that 1(3(5,7)1 = 1 for each block B£nmm(A) and each word 
JiX". The smallest n which satisfies this condition equals n(A). 

Second Decomposition Theorem. An automaton A is self-correctable iff it can 
be represented by a parallel composition of autonomous and definite automata. 

The proof might have been arranged analogously to the proof of First Decom-
position Theorem, but we are here suggested a simpler way of proving this theorem. 

First we establish some preliminary results on self-correctable automata. 
The following result is obvious: 

Lemma 8. An automaton A is self-correctable iff there exists an integer n such 
that the equality 

3(3,1, J) = b(s,hJ) 

holds for every choice of the state s and the words 7X, /2 , J where , /2 are of equal 
length and the length of / is n. 

Suppose that A is self-correctable, let the smallest possible n(=n(A)) be consid-
ered (cf. Lemma 8). For every t ( ^ n ) we denote by F,(s,J) the state S(s,IJ) 
where s is a s ta te / i s a word of length« and lis an abritrary word whose length is t—n. 

Supplement to Lemma 8. The sequence of functions 

is periodic. 
( * * * ) 
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Proof. The set of states of A and the set of words of length n are finite. Thus the 
sequence ( * * *) contains only a finite number of different members. Let q be the 
smallest number such that there is a number t0 for which nst0~^q and F,o=Fq 
are valid. We can show without difficulty that F,=Ft• implies F,+1 = F,-+1. Conse-
quently, the sequence (* * *) is periodic; the length of its period and pre-period are 
p=q—t0 and /„, respectively. (In other words: F,=Ft. if and only if t^t0, t' = t0 
and t=t'(modp) are true.) 

Remark 5. The period p of ( * * *) equals the period p(A) of the automaton A. 
Proof of the Second Decomposition Theorem. Since Lemmas 1—7 are valid for 

self-correctable automata after replacing the words correctable by self-correctable and 
directable by definite, then a composition of autonomous and definite automata is 
self-correctable. Now let A be a self-correctable automaton. Then one can consider 
the definite component of A as a connection of storage device on a shift register (for 
preservation of last n(A) inputs) and a set of p(A) devices for computing functions 
F,o, ..., F ro+p( /1 )_1 . It is easy to see that the definite component is a definite in fact 
automaton. In this case the autonomous component A/Kmin determines the function 
which value corresponds to the present state of A. Q.E.D. 

Remark 6. One can show that every strongly connected self-correctable auto-
maton is a homomorphic image of a product of strongly connected autonomous and 
strongly connected definite automata (cf. Remark 4). M. Ito and J. Duske proved in 
[3] that every strongly connected definite automaton is a homomorphic image of a 
shift register. (Recall that a shift register in [3] is an automaton (X , X", 5) where X is 
finite, m = 1 and <5((xl5 ..., x„), x)=(x2, ..., x„, x) for every choice of x£X, x^X, 
i = l, ..., n.) Thus, every strongly connected self-correctable automaton is a homo-
morphic image of a product of strongly connected autonomous automaton and a 
shift register. 

Now let us estimate the correction time n(A) of self-correctable automata. 

Theorem 4. Let A be a self-correctable automaton and let k (=0) be the smal-
lest number such that each J£X"U)+k satisfies: 

1) S(S,J)QC(S); and 
2) if J)QB and S(B2, J)^B for some Bu B2, B£nmia(A), then 

5 (BUJ) = 8(B2,J). 
Then 

n(A) + k ss \S\-m, 

where m is the maximum of all cycle lengths of the transition diagram of A/nm-m. 
If A is a strongly connected self-correctable automaton, then 

p(A)X\X\«A^ |S | . 

Remark 7. In particular, if A is a connected self-correctable automaton, then 

n(A) + k |5|-/>(i4). 

Remark 8. Since J£Xn<-A)+k and k^O, then |<5(5 ;,/)| = 1 in Theorem 4 
(/=1,2). Therefore one can write 8(Bi , J )£B instead of 

5(B„J)QB. 
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Proof of Theorem 4. Let us first suppose that A is a strongly connected self-
correctable automaton. Since C(S)—S, then /c=0 in this case. Given an integer n 
consider the relation 

Pn = {(.s^sJtS2: 5(slt J) = S(s2, J) for each J£Xn). 
It is clear that P0 = {(s, s): s£S}. Since A is strongly connected, then PnQnmin(A) 
holds for each nsO. It follows from Self-correctability Criterion that Pn(A)^ 
^nmin(A) where n(A) is the correction time of A. Thus, P„(A)—nmm{A). Moreover, 
P„QPn+1 and P„7^Pn+1 iff n<n(A). The strong connectedness of A implies that 
the transition diagram of A/nmin is a cycle. Therefore the number of blocks of nmm(A) 
is equal to the period p(A) of A. Obviously, the number of blocks of P„(A)-iis greater 
than or equal to p(A)+1. Similarly, if O^i^n(A) then the number of blocks of 
P„iA)-i Sp(A)+i. In particular, with i—n(A), we get 

n(A) ^ \S\-p(A). 

Now consider an arbitrary self-correctable automaton A. Without the loss of 
generality we may restrict ourselves to the case where A is connected. 

The proof of Theorem 4 will be continued after verifying a lemma. 

Lemma 9. Let A be a connected self-correctable automaton. Then there exists 
a partition n = {5,}, /=1 , . . . , « , of A such that 

1) for any i (1 =/=k) , the elements of i ^ U ^ U . . . U.6,- form a subautomaton 
of A; moreover, (X , B1, S) is strongly connected and self-correctable; 

2) if 1 s i ^ r i and 7 is a word whose length is denoted by /, then <5(2?,-, J)Q 
g^ iU . - .U^ , - , » , where /*=min (/, / - 1 ) . 

Proof. One can choose (using Lemma 6 and the remark at the beginning of the 
proof of the Second Decomposition Theorem) the unique selfcorrectable strongly 
connected subautomaton (X, B1, 5) of A. 

Consider a sequence of sets: 

B2 = {sqSXB^. 5(s, x)£B1 for each x£X}; 

B3 = {stS^B^B2); 8(s,x)£BiUB2 for each x^X}\ 

B, = { i e S X ^ U ... U5,_!): S(s, xKBiU ... U f o r each 

Clearly, one can find an integer m ( s i ) such that 2?f=0 iff z>m. Since the 
family of disjoint sets {£,}, /'=1, ... m, satisfies the conditions 1 — 2, we only have 

m 
to prove that {£,} is really a partition, i.e. U Bi=S. Put S = S \ № U . . . U5m). 

~ ¡=i 
We are going to show jhat §=d . 

Assume now that We derive a contradiction from this assumption. It is 
easy to see that there exists r s l such that S(S, J)QC(S) for all words J£Xr. 
Using the definition of S one also easily obtains that for any s£S there exists a 
sequence of words J-£X' such that <5(s, J?)£S where / = 1 , 2 , . . . . Let s be an arbi-
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trary state of 5, then s=8(s, J f ) belongs to a cyclic block of nmin(A). A moment's 
consideration shows that there exists a state t of Bx which belongs to the same block 
of the m.a.p. Indeed, let the cyclic blocks of nmin(A) be denoted by C1,C2, ..., Cq. 
Since (X, Bj, 8) is a subautomaton of the connected automaton A, for 
any j=\,...,q. Now let s£Cj, we choose an arbitrary state t of B1CiCJ. Thus, the 
states s£§ and t^B1 belong to the same (cyclic) block of nmin(A). Furthermore, 
8(s, J?)eS for all /=1, 2, ... and 8(t,J)eB1 for each word J^X*. Obviously, 

5 = 0 . Therefore 8(s, Jt)^8(t, J?) for every choice of / = 1 , 2 , . . . (Note that 
the length of /f equals /). This contradicts the Self-correctability Criterion and the 
lemma follows. 

Proof of Theorem 4 (final part). Now (using Lemma 9) let us select the strongly 
connected subautomaton A=(X, Bt, 8) of A and let r ( S i ) be the smallest number 
which satisfies 8(S,J)<^BX for all J£Xr. Clearly 8(S, J)^C(S) when J£Xr 

and it follows from Lemma 9 that 
r ^ 1 5 X ^ 1 . (1) 

Since A is strongly connected, therefore by the previous part of the proof one has 

n(A)^\B1\-p(A). (2) 

p(A) = p(A). (3) 

n(A) + k s n(A) + r. (4) 

Clearly (1), (2), (3) and (4) jointly imply 

n(A) + k s n(A) + r -p(A) + \SSJB1\ = ISI-/KA 

and the first assertion of Theorem 4 is proved. 
But it follows immediately from Remark 6 that 

p(A)X\X\n(A^ |S| 

holds for strongly connected self-correctable automata. Q.E.D. 

Now let A be definite, then the smallest n which satisfies: 
|5(S, / ) | = 1 for all J£Xn 

is called the degree of A and is denoted by d(A). 

Corollary 1. Let A be a definite automaton, then 
d(A) ^ |S| — 1. 

If A is a strongly connected definite automaton, then 
\X\ilA) s |5|. 

Proof. If A is definite, then it is self-correctable. By Lemma 2 and remark at the 
beginning of the proof of the Second Decomposition Theorem one has p(A) = 1. 
Since A is definite, it is connected, therefore the maximum m of all cycle lengths of the 
transition diagram of A/nmin equals p(A) = 1. Finally we show that d(A)=n(A)+k 
(cf. Theorem 4). It is clear that d(A)^n(A)+k. Now let J£X* be defined by 
J=J1Ji where the length of Jx equals k and the length of J2 equals n(A). Then all the 

It will be noted that 

Also note that 
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states of 5(S, / , ) belong to the unique cyclic b'ock of nmin(A). Therefore, by the Self-
correctability Criterion, one has |<5 (S, J) | = 1. Thus, d(A)^n(A)+k and the first 
assertion of Corollary 1 follows. 

In order to prove the second assertion it will suffice to note that d{A)—n{A) 
holds for strongly connected definite automata. 

Remark 9. The first assertion of Corollary 1 is well-known (e.g. see V. I. Le-
venshtejn [5, Lemma 11]). In [3] M. Ito and J. Duske obtained the estimation: 
l A f ^ s l S I . 

Although we only dealt with finite automata in this section, some results are valid 
for arbitrary automata. First, one easily sees that the validity of the Correctability 
(Self-correctability) Criterion does not depend on the cardinality of the state set and 
of the input alphabet. One can also prove Decomposition Theorems for arbitrary 
automata. 

A word should be said here about the structure of semigroups of correctable au-
tomata. Recall that the semigroup SA of A is the factor semigroup X*/= where 
JX=J2 iff S(s, J1)=o(s, J2) for all states s£ S. It is easy to see that the set of all 
correcting words forms an ideal of SA. (Here and elsewhere we do not distinguish 
between semigroup's elements J£SA and corresponding words J£X*.) If A is finite, 
then SA is a finite semigroup, therefore there exists the kernel Ker (S^) of SA. One 
can show that Ker (SA) iff 1) J is a correcting word; and 2) J satifies conditions 
1—2 of Theorem 4. Note that conditions 1—2 of Theorem 4 actually means that the 
set {J, J2, J3,...} (where J2=JJ, J3=JJJ, ...) forms a subgroup of SA. Recall that 
the kernel of an arbitrary compact (in particular, finite) semigroup can be written as a 
union of pairwise disjoint maximal isomorphic groups: Ker= IJ Ga. The groups Ga 

a 
are called the group-components of the kernel. If A is a correctable automaton, then 
each group-component Gx is cyclic and the period of Gx equals p(A). Moreover, 
SA-Ga=Gx for each a. One easily see that the semigroups of self-correctable auto-
mata possess the following additional property: the equality SA-G=G holds for 
any maximal subgroup GQSA. In other words, the group-components of SA 
(where A is a correctable automaton) are "generalized right zeros" of SA. If A is 
self-correctable, then every maximal subgroup of SA is a "generalized right zero". 

Input-induced errors 

Here we suggest an equivalent form of A. Adam's theorem for automata. Let us 
consider the input-induced errors. Recall that an error (s, t) of storing state t instead 
of state s is said to be input-induced iff there exist a state v and two words Jlt J2 of 
equal length such that 8(v,J1)=s and d(v,J2)=t. The partition (relation) n is 
said to be corresponding to the input-induced errors iff n is the smallest (i.e. most 
refined) partition such that for any input-induced error (.?, t) we have (J, t)£n. All 
these concepts were introduced by J. Hartmanis and R. E. Stearns in [2]. 

Thes next proposition actually was a base of our consideration in the previous 
section of the paper. 

Proposition 3. Let A be an arbitrary (possibly infinite) automaton. Then the 
partition it corresponding to the input-induced errors is equal to the minimal auto-
nomous partition 7rm!n (A). 
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Note added in Proof. If a connected graph G has at least one semiwalk with 
positive net length, p of the (unique) cycle of G/7rmin is equal to the greatest com-
mon divisor of all closed semiwalk net lengths of G (G. S. Bloom and S. A. Burr 
[7, Theorem 3.2]). Elsewise, G/nmin has no cycles and consequently G(nmm is a direc-
ted path (cf. [7, Theorem 3.3]). 
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Резюме 

Рассматриваются ориентированные графы G=(V,E), где У—множество вершин и 
Е — множество дуг. Разбиение я={В*} множества вершин графа на непересекающиеся блоки 
B^V называется автономным, если для каждого блока Ва, содержащего хотя бы одну вер-
шину с ненулевой полустепенью исхода, найдется такой блок Вр, что все вершины, достижи-
мые из Ва за один шаг, лежат в Вр. Минимальное автономное разбиение (м.а.р.) графа — это 
такое его автономное разбиение, которое является собственным подразбиением любого 
другого автономного разбиения этого графа. Аналоги м.а.р. хорошо известны — это раз-
биения состояний марковских цепей и автоматов на циклические классы. В нашей работе изу-
чается строение м.а.р. для различных типов ориентированных графов. Мы привели достаточно 
подробное описание структуры м.а.р. для графов с конечным числом стоков, графов, не содер-
жащих истоков и стоков, а также для сильно связных графов. Можно показать, что м.а.р. 
графа с конечным числом стоков можно получить из тривиального разбиения этого графа 
(т.е. разбиения, каждый блок которого содержит в точности одну вершину) путем примене-
ния к нему конечного числа операций транзитивного и автономного замыканий, а именно, 
достаточно 2 X /г+2 таких операций, где л-число стоков графа. При этом для произвольных 
графов всегда достаточно счетного числа операций. Количество необходимых операций — 
важная характеристика м.а.р. и его оценкам собственно и посвящена первая часть настоящей 
статьи. 

С помощью м.а.р. оказалось удобным описывать строение автоматов, устойчивых к 
индуцированным входными искажениями ошибкам. Этим вопросам посвящена вторая часть 
статьи, где, в частности, решается задача о декомпозиции таких автоматов. 
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