
Formal properties of literal shuffle 

B . BERARD 

Abstract 

We introduce the literal shuffle operation, that is a more constrained form of the 
well-known shuffle operation. In order to describe concurrent processes, the shuffle 
operation models the asynchronous case, while the literal shuffle operation corresponds 
to a synchronous behaviour. 

The closure properties of some classical families of languages under literal shuffle 
are studied and properties of families of languages defined by means of literal shuffle 
are given. 

Introduction 

The shuffle operation naturally appears in several problems, like concurrency of 
processes ([9], [10], [11]), or multi-point communication, where all stations share 
a single bus ([5]). That is one of the reasons of the large theoretical literature about 
this operation (see for instance [1], [3], [6], [7]). In the latter example, general shuffle 
operation models the asynchronous case, where each transmitter uses asynchronously 
the single communication channel. If the hypothesis of synchronism is made (step-
lock transmission), the situation is modeled by what can be named "literal" shuffle. 
Each transmitter emits, in turn, one elementary signal. The same remark holds for 
concurrency, where general shuffle corresponds to asynchronism and literal shuffle to 
synchronism. 

There are no specific studies of literal shuffle. One of the reasons is perhaps that, 
when adding the full trio operations, literal shuffle is as powerful as general shuffle. 
Nevertheless, when a more precise approach is made, literal shuffle appears as satisfy-
ing specific properties. In the present paper, we study the literal shuffle operation, 
particularly in relation with the classical families of languages : regular sets, context-
free languages, context-sensitive languages and recursively enumerable sets. The 
paper is divided in three sections. The first one contains some specific definitions about 
shuffle and literal shuffle, and some basic properties of these operations. In the second 
section, we study the closure properties of the families Rat, tff, and MS under 
literal shuffle and we show that the family of recursively enumerable sets is the! smallest 
full trio closed under iterated literal shuffle, thus extending a result of M. Jantzen [6] 
about the shuffle operation. 



28 B. Berard 

In the third section, we give some properties of the language families obtained 
by using literal shuffle, in the same way as the families Shuf and y S were studied in 
[6]. The main purpose of this section is to state that the two families obtained that 
way and SP8 are incomparable. 

Notations and basic definitions 

Let X be an alphabet. X* is the free monoid generated by X, and e will denote 
the empty word in X*. 

L e t / b e a word in X*, | / | is the length of / and i f / is not the empty word,/ ( i > 

is the Ith letter o f / , \f\x is the number of occurrences of the letter x in / . 
A word g in X* is a subword o f / i f / = ugv, for some, u, v in X*. If u is the empty 

word, g is a prefix of / . 
Fin, Rat, my , 0t§ will respectively denote the family of finite sets, regular 

sets, context-free languages, context-sensitive languages, recursively enumerable 
sets. Let X and Y be two alphabets. A homomorphism h from X* into Y* is said 
to be: non erasing if h(X)<gY+, where r + = y * - { s } , 

alphabetical . if A ^ g r U i e } , 
a coding if h(X)QY, 
an isomorphism if h and h-1 are codings. In that case, Y is called a copy 
of Zand if Z- is a language in X*, h(L) is called a copy of L. 

i f is the class of all homomorphism and ^ f - 1 is the class of all inverse homomor-
phisms. 

A full trio is a family of languages closed under homomorphisms, inverse homo-A A 
morphisms and intersections with regular sets. will denote the 
full trio operations, where A ^ is the class of intersections with regular sets. D[* is 
the resticted Dyck set over the alphabet {a, b) generated by the context-free gram-
mar with productions: 

S-aSb+ SS+ s (see [4] and [3] for details). 

Part 1 — Shuffle and literal shuffle 

The shuffle operation will be denoted by the symbol m and is defined for lan-
guages L and M in X* by 

LmM — {/= «JÜ!... u„va, u¡,v¡ in X*, ux...un$.L, vj_... va£M). 

The iterated shuffle will be denoted by in*. Let L be a language in X*, then Lm*= 
= U Lh where L0= {e} and Li+l=L¡mL. The families Shuf and i f g were intro-

i t o 
duced by M. Jantzen [6]: Shuf = ( u , m, m*)(Fin) is the least family of languages 
including Fin and closed under union, shuffle and iterated shuffle. SfS=( u, •, *, m, 
m*)(Fin) is the least family of languages including Fin and closed under union, 
product, Kleene star, shuffle and iterated shuffle. 

We give now the specific notations of this paper and make the ideas more precise 
about literal shuffle. 



Formal properties of literal shuffle 29 

Let / a n d g be two words in X* with the same length p. The interleaving I of the 
words,/, g is defined by: 

7(e, e) = e if p = 0, 

/(/> g) =f(1} g(1) •••fip)gip> if P> 0. 

Let L and M be languages in X*, we define: 

1) The initial literal shuffle iUj : 

iuijAf = { / ( / i , / 2 ) g\fi,f2,g in X*, l / l = |/2|, 

( / ig€L and feM) or ( / ^ L and / 2 g6M)} . 

2) TTjf //fera/ shuffle ui2 : 

Lm2M = {//(gx , g2)/j | / , g,,g2, h in Jf*, |gx| = |g2|, 

(fgih£L and g2€Af) or 

(gi€£ and fg2h£M) or 

( /g^Z. and g2h£M) or 

{gihdL and fg2£M)}. 

Example: L=a* and M—b* 

LmtM — (ab)* (a* U b*), 

Lw2M = (a* U b*) (ab)*(a* U b*). 

3) The iterated initial literal shuffle m* and the iterated literal shuffle m 2 : 
Lm* = U L^ where L0 = {s} and Li+1 = Lim1L, 

iso 

Lm* = IJ L^ where L0 = {s} and Li+1 = Lt m2 L. 
¡so 

We then define four families of languages : 

jS?1y/i = (u ,n i 1 , uij) (Fin) 

S S f h = (u, m2, m2)(Fin) 

sex y g = (U, . , *, III!, mi) (Fin) 

2 ST 8 = (u, •, *, m2, iu2)(Fin). 

At the end, we summarize some basic properties of the initial literal shuffle and the 
literal shuffle. 

Proposition 1.1. Let X be an alphabet and A, B languages in X*. 

a) The initial literal shuffle and the literal shuffle are not associative operations. 
b) The literal shuffle is commutative but the initial literal shuffle is not commu-

tative. 



30 B. Berard 

c) AB g Am2B, AmxB g AmzB Q AuiB. 

d) X* = Xm' = Xm**. 

e) Let/ , g, h be words in X* such that h=fmig or hZ/m^g, then \h\ = \ f \ + \g\. 

Recall ([1]) that D[*=(ab)m*; we have: 

Proposition 1.2. 

a) (ab)m* = {E, ab}Ua2(ab)*b\ 

b) (ab)m** = Di*. 

The initial literal shuffle seems then to be less powerful than both shuffle and literal 
shuffle. However, we will see that even a very simple language like ((ab)m ' )m* is not 
context-free. Furthermore, the three families ¡ f $ , ^ S ^ S and are pairwise 
incomparable. 

Proof. 
a) The proof is straightforward. 
b) From the definition, we can write (ab)m* = | J Lp, where 

pSO 

L0 = {e> and Lp+i = Lpm2{ab). 

Since Am2BQAmB (Proposition 1.1.c), it is easy to verify that 

Am* Q Am\ thus (ab)m*> Q D'*. 

For the converse inclusion le t /be in Di* with \f\=2p. An induction argument proves 
that / is in Lp. 

The basis when p— 1 is trivial. 
Induction step. Assume the result for words of length 2p and consider a w o r d / 

in Di* of length 2(p+\). There are two possibilities: 

Case 1. f=(ab)p+1. By the induction hypothesis, (ab)p is in Lp, thus/belongs to 
Lp{ab). Since Lp{ab}QLpw2{ab} (Prop, l.l.c), f£Lp+1. 

Case 2. / = / 1 / 2 / 3 , where / 2 is a word of D[, the set of restricted Dyck primes, 
with | / , | s 4 . 

Let «0=6,«!, ..., u2k=f2, be the sequence of prefixes of f2, and let 
ll"jll = \uj\a— \uj\b be the height of the word Uj. If i is the greatest integer such that \\ut\\ 
is maximum, then there exists a letter x in {a, b} and a word v in {a, b}* with / 2 = 
= Ui-2xabbv. We define g=f1ui-2, v1 = xb, v2=ab, h—vf. f = gl{v1, v2)h, thus 

/ i s in gv1hui2ab. Since gvxh is a word in D[* of length 2p, gvth is in Lp by induction 
hypothesis. Consequently,/is 



Formal properties of literal shuffle 31 

Part 2 — Closure properties of the families Rat, ^Sf and MS under 
literal shuffle 

We first show that, when adding the full trio operations, literal shuffle is a power-
ful as shuffle. 

Recall ([3]) that a full trio is closed under shuffle if and only if it is closed under 
intersection. 

Proposition 2.1. Let i f be a full trio. The following properties are equivalent: 
a) i f is closed under shuffle. 
b) i f is closed under literal shuffle. 
c) i f is closed under initial literal shuffle. 

Proof. The result is easily obtained from the two following facts. Let L and M 
be languages respectively in Z* and Y*. 

Fact 1. Assume that Z a n d Y are disjoint alphabets; we define regular languages 
in (ZUF)* by: 

= (Z7)*(Z* U Y *) and R2 = (X* U Y *)(XY)*(Z* U Y *). 
Then 

LmxM = (LmM)f]R1 and Lm2M = (LuiM)f]R2. 

Fact 2. If $ is a new letter and if h is the homomorphism from (ZU rU{$})* 
onto (ZU7)* defined by: 

h(z)=z, for each z in Z U Y, and h($)=e, 
then 

LmM = /i[/i_1(Z,)m1/i_1(M)] = hlh-^mth-^M)]. 

Proposition 2.2. Let L be a language in Z*, let $ be a letter not in Z and let h be 
the homomorphism from (ZU{5})* onto X* defined by: h(x)=x if x is in Z, 
h($)—e. Then, 

Z T = h[(h-i(L))™ï] = 

Proof. Using Proposition 1.1.c, we can get 

Furthermore, if q> is an arbitrary homomorphism and if A, B are languages, then 

cp(AwB) g (A)mcp(B). 

Therefore, we have the following inclusions : 

h l(h~HL))m*l Q h g Lm*. 

Conversely, we use the definition of iterated shuffle and initial literal shuffle : 

Lm* = U L„, L0 = {e}, Ln+1 = LnwL 
nfe o 

and 
(h-HL))m*> = U Mn, M0 = {e}, Mn+1 = M^h-HL). 

ns 0 



32 B. Berard 

We prove that for each integer 0, L„Qh(Mn). If « = 0 or n= 1, the result 
is immediate. Assume n S 2 and let m be a word in w1m...mM)l, where u.-fL. There 
exists an integer 1 such that 

p 

" = II (uu ••• in = ",m ••• "¡,p-
y=i 

We define a sequence of words /¡, l S / S / i , by: 

/« = fi.i - f i . P , f i j = " u tf"', with: 
r i , ; = 0 

ru = 2 , - , ( | a 1 J + ... + |« i_1J), 
S1.J = \Ui,j\ + — +\"n,j\ 

s,.j = (2 i _ 2 —1) I + 2 ' - 2 ( |u i + l t j \ + ... + |M„i7|), i ^ 2. 

Clearly, / j belongs to h -1 (L), 1 ^ / S n , 

|/xl = |u| and \ft\ = 2 ' - 21«| for each i S 2. 
Define: 

g i = / i and for l s i i n - 1 , g i + i = g.mi/i+i-

Obviously, g, is in Mi, l s i ^ n . Further, |g i| = |/i+il = 2'~1M for l s i ' s « , and 
lg„l = 2"-1 |«|. 

Then, we can write g . ^ g ; , ! . . . g i l P , where \g,J = \fi+1,j\, l==i<«, and 
Ign.yl=2|/„,j|. It is easy to prove by induction on i"s2 that: 

Sij = i l j where t u = su + \ui+1J 
and 

h(gi,j) = "i 
For i=n , we obtain: 

gn = g B , l -g„ .p> h(g„,j) = ultJ...u„fJ, 
hence h(g)=u and u is in h(M„). 

From LnQh(M„), we have Lm*Q/i[(/i-1(L))mi], and the proof is complete. 

We now state the closure properties of the families Rat, ^ i f and 913 under 
literal shuffle. They can be obtained by easy machine constructions. 

Proposition 2.3. 

a) The families Rat, ^Sf and are closed under ruj and m a . 
b) Moreover, the families and 018 are closed under mjf and inj . 

Corollary 1. The families <£x£fg and are both contained in the family of 
context-sensitive languages. 

We will see in the next section that there are, in fact, proper containments. 
Using Propositions 2.2 and 2.3 together with a result of M. Jantzen ([6]): M i = 

(J( in*)(Fin), we can show: 



Formal properties of literal shuffle 33 

Corollary 2. The family of recursively enumerable sets is the least family of lan-
guages including the finite sets and closed under the full trio operations and the iter-
ated literal shuffle. 

The same result holds with the iterated initial literal shuffle : 

MS = ( J , nij) (Fin) = (M, nig) (Fin). 

Property 2.3.a) does not remain true for context-free languages : let L and M 
be two different copies of the restricted Dyck set over the disjoint alphabets {a, b} 
and {c, d}, respectively. Then, neither L I I ^ M nor Lm2M are context-free languages. 

We mention a strong result of M. Latteux about the shuffle operation : 

Proposition 2.4. ([7]) Let L and M be two languages over disjoint alphabets Z a n d 
Y respectively. LmM is a context-free language if and only if either L or M is a regular 
language. 

This result does not extend to the initial literal shuffle : Let G be the context-free, 
non regular language over the alphabet {a, b} defined by : 

G = {an'b...a"b\k^l, « ¡SO, 31 jt «¡}. 

(G is known as the Goldstine's language.) If G is a copy of G over the alphabet 
{¿j, 5}, we have : 

Proposition 2.5. GniiG is a context-free language. 

Scheme of the proof. Let $ be a new letter and let ô be the following language in 
({a,b, 5}X{a, b, $})*: 

< ? = { [ ^ ] , /€<?, g€G and p + \f\ = ç+lgl}". 

Let h be the homomorphism from {{a, b, 5}X {a, b, 5})* into {a, b, â, B}* de-
fined by : 

= if * , * { « , * } , h{[$
$]) = s, 

= * if x€{a,b} and *([y]) = j? if
 ytta>bl 

Clearly enough, /i(G)=Gni!G. Then, it suffices to prove the context-freeness of 
G, and we build a pushdown automaton recognizing Ô. We will use two different 
versions of non-deterministic pushdown automata recognizing G (by final states). 

First version. The underlying idea of how this automaton works is the following : 
let w be a word in {a, b}*. Non-deterministically, a block of a's is chosen. The b's 
preceding this block are pushed into the stack. Then, each a in the chosen block makes 

1) If x , y e { a , b, $}* with \x\ = \y\ = n, we write [ * ] for [y»] • • • [ /") ' ] • \ : 

3 Acta Cybernetica VUI/1 



34 B. Berard 

a b to be popped from the stack. The word w is accepted if the number of a's in the 
chosen block does not match the number of b's in the stack. (Initially, the stack con-
tains a single b.) 

Second version. It allows to keep in the stack, after checking, the rank of the 
chosen block of a's. It is based upon the fact that G is also defined by: 

G = {a"lb ... an"b |«i ^ 1 or there exists a k, 

• such that nk+1 ^ «*+l}. 

The automaton first checks wether or not ^ = 1 or chooses a block of a's. (Let k+2 
be its rank.) In the second case, the first k b's are pushed into the stack, then the a's 
of the following block (their number is nk+1) are also pushed into the stack. The b is 
skipped and it is then checked if the number of a's in the following block is different 
of + 1 (by using the nk+1 a's on the top of the stack). If this test is positive, the 
word is accepted and the rank of the current block can be retrieved from the 
stack (number of b's plus 2). 

Now we can describe a non-deterministic pushdown automaton recognizing G. 

As long as couples of letters j ^ j or are encountered, the automaton works as in 

the second version. As soon as a couple ¿ j or is encountered (involving that 
one of the upper and lower words is then known to be in G), the automaton uses the 
a's at the top of the stack for determining which word is in G (say the upper word). 
Using the b's in the stack and switching for first version, the automaton checks then 
that the other word (here the lower one) does belong to G. 

Clearly, no problem appears if the first encountered couple of different letters is 

[$}or [y\ x, yÇ. {a, b}. 

Open question: Do there exist two non regular languages L and M over disjoint 
alphabets, such that Lw2M is context-free? 

Property 2.3b) does not hold for Rat or <6f. We use Proposition 2.2 with the 
language L—{abc}. It is easy to see that Lm* is not context-free. M—h~\L)= 
= $*a$*b$*c$* is a regular language and since Lm*=h(Mm*)-h(Mm») is not in 
<6f, neither M m i nor Mm* is a context-free language. 

However, regular languages or context-free languages can be obtained in some 
very particular cases: 

Proposition 2.6. Let F be a finite set. Fm* is a regular language. 

Proposition 2.7. Let F be a finite set such that for any word/ in F, the length of / 
is less than or equal to 2. Then, Fm» is a context-free language. 

Proof of Prop. 2.6. The proof consists of a construction of a left linear grammar 
such that L(G)=Fm*. 



Formal properties of literal shuffle 35 

Since 0m* = {e} and for any language A, (^U{e})m*=^4m*, we may assume 
that F is not the empty set and does not contain the empty word; F={f1, ..., fk}, 
k ^ l . If X is the alphabet of F, we set p—card (Z), /=max {\fj\, l s / ^ k } and we 
consider the set X' of words in X* with length t: X'={gx, . . . ,gm} where m—pt. 
We can write 

FM* = U U, L0 = {e}, LI+1 = LTUII F. 
/so 

Let «0 be the smallest integer greater than or equal to k, such that for each word / 
inL„0 , \ f \ ^ t . 

Since F, the words in LT are strictly shorter than the words in LI+1 and such 
an integer n0 can be found. 

We define: R= | J LU R is a finite set, 
/ S N 0 - 1 

J(i) = { f ^ L J g i is a prefix of /} , 1 == i =S m, 

7={ie{l,...,m}lJ(i)^0} 

and for each id I, ¿7;=card (/(/)), so that 

J{i) = {Ki>—'hi,) w i t h hr = 8iui,r for some uUr in X*, 

l^r^qi, 

K . = U / ( 0 -

For each (i,j), 1 S / S m , l ^ j s k , there exists a unique integer s(i,j) in {1, ..., m) 
and a unique word vitJ in X* such that: 

gi W l f j = gs(i,j) »¡J-
Now we can finish the proof by constructing a grammar G=(X, N, S, P); N= 
= {S, ..., Dm}, where S, Z>l5 ..., Dm are new letters. The rules of P are the fol-
lowing : 

(i) S—w for each word W in R; 

(ii) S—DiUUr for each r, for each / i n / ; 

(iii) Dt — gi, I S i S m ; 

(iv) D i - D s ( l j ) v i j , l s j s k , 1 s i =§ m. 

G is left linear and it is easy to see that L(G, S)= Fm*. 

Proof of Prop. 2.7. Let F be a finite set in X* and L= Fm*. If every word in F is 
of length less than or equal to 1 and if X is of minimal cardinality, then L—X* is a 
regular language. Since (A U {e})111* =Amt for any language A, we may assume that F 
does not contain the empty word. 

We define a sequence of languages F„, n £ l , inductively by: F 1 = F , 
Fn+1= {/^Z*|there exists a word g in F„ such that: 

either g=gig2, g^t and f—g^yg^, where y is a word of length 1 in F, 

3* 



36 B. Berard 

or g=gixgz, for some x in Zand f=gi)>ixy2g2, wherey ry2 is a word 
of length 2 in F.} 

For each « S i , the set F„ is contained in L, therefore the language M defined by 
M— (J F„ is also contained in L. It is straightforward to verify that L is a submonoid 

n £ l 
of X*; it follows that M*QL. The converse inclusion also holds; the argument is an 
induction on the length of a word in L. 

Since L=M*, it suffices to show that M is a context-free language. Thus, we 
construct a context-free grammar G=(X, N, S, P) such that L(G, S)=M. 

We consider the fixed alphabet X={alt ...,ap} and we define: N— 
= {S, 7\ , ..., Tp}, where S, Tx, ..., Tp are new letters; the homomorphism h from 
X* into N* such that /1(0,)=^, IsSnSp; 

/ = {i€{l,...,/>}|<i,€f} 

and wJ=aJlaJ,a, l s / ^ f c , the words of length 2 in F. 
The productions of P are the following: 

( i i e i 

S^ThTJt, lasj^fc 

( , , ) T-T^TT^,1, 1 S j si Jk,} f o r a n y variable Tt{Tlt ..., Tp) 

(iii) T, -~a„ l s i i p. 

Clearly, this grammar generates M. 

Part 3 — Properties of the families ^ i f S and ¡eSfg 

, We do not mention in this part specific properties of the families and 
i fSfh ; however, we state two useful results about some particular languages in these 
families. 

Proposition 3.1. The language N=((aô)m*)m* (in Sg^SfK) is not context-free. 

Proof, (the details are omitted) 

a) L e t / b e a word in {a, b}*. The height o f / i s \\f\\ = \f\a-\f\b and PR («) 
denotes the set of all prefixes g of the words in the language N, satisfying : ) g\ s n. 

We define, for each integer « ë 0 , # (« )=Max {||g||, PR(n)}. By induction 
on n ^ 2, we can obtain the following inequality : 

#(«)=§ 6 log2(«). 

b) A sequence fk, of words in N can be constructed* such that: fk= 
=gkb3k+i, for some word gk in {a, b}*. 

c) We suppose now that the language N is context-free and, using the Iteration 
Theorem, [4], we will obtain a contradiction. Let N0 be the integer from the Iteration 
Theorem and let h=fNo be the word of N, obtained as in b): h=gNo b3N»+i, where 



Formal properties of literal shuffle 37 

the last 3iV0+4 b's are distinguished. There exists a factorization h=aufivy, such 
that hp=aupPvpy£N, for any p^O. The height of hp is 0, for any p^O, and v is a 
subword ofb3No+i. Thus, ||m||>0 and, using a), we obtain a sequence au of prefixes 
of N, such that ||a|| +/»||tt|| S 6 log2(|a| +/J|M1), which is impossible. Hence, N is not 
context-free. 

Proposition 3.2. The language P={ab, cd}m> (in <?Sfh) is a generator of the 
family of context-free languages. 

Proof. We define the words a=am + n , f}=bn(ac)p, y=(bd)"bm and ô=ab, where 
m, n a n d p are integers, p^2, n^p+l. We then define a regular set K recog-
nized by the transition system ([4]) of the figure below: 

At the end, we introduce the context-free language A, generated by the grammar with 
productions: T—aTfiTy +<5. 

We shall prove that Pf)K=A. Since {a, /?, y, <5} is a code2), it proves that P 
is a generator of /([2]). 

We will say that a word / i s directly reduced in a word g if f=f'axbf" or / = 
=f'cxdf" and g=f'xf", for some letter x in Z a n d some w o r d s / ' , / " in X*. We 
will write f—g and will denote the reflexive and transitive closure of —. I f f—*g , 
we say that / is reduced in g. 

a) It can be shown by induction on that, i f / i s a word in A, \f\^k, then 
/ is reduced in ab. This gives the inclusion AQP. 

b) It is easy to see, by induction on the length of a word in A, that AQK. 
c) So far, we have obtained the inclusion AQPDK. To get the converse inclu-

sion, we need two facts: 
Fact 1: L e t / b e a word in P, neither a<5y nor fiSfi is a subword o f / . 

Fact 2: Let f^faSfidyf" be a word in P. T h e n / i s reduced in f'Sf", and this 
reduction is the only one which can concern the subword ocSfiSy o f f . Let / be a word 
in Pf)K. The argument is again an induction on the length o f f . 

Case 7. a is not a subword o f / . Since/is in K, it can be written as: /=(<5/'y?)... 
...(5yr"P)5yk+'. Since/is in P, | / | 0 = | / | 6 , therefore k=0 and rk+1=0; hence 

f=ab is in A. 

Case 2. a is a subword of f . We then consider the last occurrence of a in / , so that 
f—f'oLf", « is not a subword o f f " . Since / is in K and in P, using Fact 1, we obtain: 

A 

2) A subset C in X + is a code if C* is a free monoid with base C. 



38 B. Berard 

/"—SpSyh, f—f'aópóyh is reduced in g—f'8h. Obviously, g is in K and, using Fact 
2, it turns out that g is in P, too. By induction hypothesis, g belongs to A, and we 
consider the place where the rule T— <5 has been applied in a derivation for 
g: TX m'Tm"=>m'bm"^> g, where f and m"^>h. Since T=> m'Tm"^> * * 
=>• m'aTpTym" => f / belongs to A. At the end, we have A—POK and the proof 
is complete. 

Before comparing the families SH^S, 3?Sf§ and we provide some neces-
sary conditions for a language to belong to one of them. Recall ([6]) that every infi-
nite language in y g contains an infinite regular set. Using Proposition 2.6 and 
an inductive proof, we can extend this property : 

Lemma 3.1. Every infinite language in or in contains an infinite 
regular set. 

Proposition 3.3. 
a) The language {cfb"\n^0} is not in ¿C^g 
b) the language { a 2 > £ 0 } is not in <exSf$\lSiSfg. 
Proposition 3.3 b) gives the proper inclusions: 

Corollary 1. ^ y g ^ S f , <£<f£%céy>. 

Using proposition 3.3 a) and the preceding results, we have: 

Corollary 2. Each of the families $£x¥h, ££S/>h, <exSfg and SeSfg is incompa-
rable with the family of context-free languages. 

Proposition 3.4. The families <££fg and !£ (EDTOL) are incomparable. 

Proof. The language {a2"|nsO} is in <£ (EDTOL) ([11]) and does not belong to 
^ 8 . The language P= {ab, cc / } m í is in but it does not belong to £? (EDTOL), 

since it is context-free generator ([8], Proposition 3.2). 
Lemma 3.2. Let L be a language in X*, where X is of minimal cardinality, 

then 
either L is regular, 
or for each letter x in X, for each integer p^O, there exists a word / i n L, such 

that xp is a subword o f f . 
Lemma 3.3. Let L be a language in X*, L$_S£Sfg. Then, either L is regular or the 

two conditions hold: 
(i) there exists a letter x in Zand an integer n0 such that, for each integer />S0, 

a word f=gh can be found in L, where \g\^n0+p and xp is a subword of g. 
(ii) there exists a letter yinX such that, for each integer />S0, a word f—gh can 

be found in L, where \ g\^p andy p is a subword of h. 
We now consider languages over a fixed ordered alphabet X= , ...., a„} 

with n=2, satisfying: 
(*) There exist integers klt ..., in Z, such that for each word / in L, 



Formal properties of literal shuffle 39 

Lemma 3.4. Let L be a language in X*, satisfying the propeity (*) above. 
a) if L is in SfS, then Lf\alat...a* is a finite set, 
b) If L is in S£SfS and then LClaf at...a* is a finite set. 

We can now state the main result of this section : 

Proposition 3.5. 

The families ££XS£S, S£SfS and SfS are pairwise incomparable. 
The famihes <£xSfh, 2? Of h and Shuf are pairwise incomparable. 

Proof. 
— The language L— (abc)m* is in SCSPh and it is easy to see that L is not regular. 

Moreover, if b" is a subword of a word in L, then p^ 3. Using Lemma 3.2, we obtain : 
Li ses. 

— The language M=(abc)m* is in Shuf and Mf)a*b*c* is equal to 
Since M has property (*), we can use Lemma 3.4 a) and b). Thus M 

is neither in ^ S f S nor in :VPS. 
— The restricted Dyck set D[* is in the families Shuf and ££Sfh, (Proposition 

1.2. b)), and D'* has the property (*). By Lemma 3.4. a), we have: D[* does not be-
long to the family S e ^ S . 

— The language N= ((aè)m i)m i is in and is not regular (Proposition 3.1). 
Using Lemma 3.2 and Lemma 3.3 we can show that N is not in SSSfS and N is not 
in ses. 

8, BD DE l'HÔPITAL 
75 005 PARIS — FRANCE 

References 

[1] ARAKI, T. and N. TOKURA, Flow languages equal recursively enumerable languages, Acta Infor-
mática 15, 209—217, (1981). 

[2] BEAUQUIER, J., Générateurs algébriques et systèmes de paires itérantes, Theoretical Computer 
S c i e n c e 8, 2 9 3 — 3 2 3 , (1979) . 

[3] GINSBURG, S., Algebraic and Automata-Theoretic Properties of Formal Languages, North-Hol-
land(1975). 

14] HARRISON, M. A., Introduction to Formal Language Theory, Addison Wesley (1978). 
[5] IWAMA, K., Unique decomposability of shuffled strings; a fromal treatment of asynchronous 

time-multiplexed communication, 5th ACM Symp. on Theory of Comput., 374—381, (1983). 
[6] JANTZEN, M., The power of synchronizing operations on strings, Theoretical Computer Science 

14, 127—154, (1981). 
[7] LATTEUX, M., Cônes rationnels commutatifs, Journal of Computer and System Sciences 18, 

307—333, (1979). 
[8] LAITEUX, M., Sur les générateurs algébriques et linéaires, Publication du Laboratoire de Calcul 

de l'Université de Lille I, n° I. T. 11—79, (1979). 
[9] NIVAT, M., Behaviours of synchronized systems of processes, L.I.T.P. Report n° 81—64, 

Université de Paris 7, (1981). 
[10] OGDEN, W . F . , W . E . RIDDLE a n d W . C. ROUNDS, C o m p l e x i t y o f express ions a l l o w i n g c o n c u r -

rency, 5th ACM Symp. on Principles of Programming Languages, 185—194, (1978). 
[11] ROZENBERG, G. and A. SALOMAA, The Mathematical Theory of L Systems, Academic Press, 

(1980). 
[12] SHAW, A. C., Software descriptions with flow expressions, IEEE Trans. Engrg., SE-14, 242—254, 

(1978). 
(Received Dec. 27,1985) 


