
Acta Cybernetica, Tom. 7, Fasc. 4, Szeged, 1986. 

Problem solving based on knowledge representation 
and program synthesis 

S. S. LAVROV 

Computers cannot solve problems, they are only able to execute programs. A 
man can solve problems if he has necessary knowledge and experience. In informa-
tics to solve a problem means to find and to describe a sequence of computing ope-
rations leading to the intended result. If a problem is solved in that sense then a 
program capable to get an answer to that single problem is created. Possibly the 
program can supply solutions of a number of problems differing however only in 
their input data. 

A man can usually do more than this. He knows the field of his activity — an 
object area as we shall call it. He is able to solve many essentially different problems 
in this area. 

From this standpoint a challenging problem arises — how to transfer human's 
knowledge and experience to a computer, how to make it capable to solve a large 
class of problems, not just one, in a specific area. The problem is by no means a new 
one. It is known a number of ways to solve it. 

These traditional ways are: program packages (if one takes an algorithmic 
approach), data bases (when an informational approach is preferable), expert systems. 
Every program package or expert system usually has its own built-in control device. 
In the case of data bases this role is played by a data base management system. Such 
a system enables us to create different data bases oriented to different object areas. 
A similar approach is known in connection with expert systems. 

There exist also systems based on more abstract form of knowledge represen-
tation. Among them the language PROLOG [1] and its implementations and applica-
tions should be mentioned first of all. 

However in all these cases we have one large program or- system which directly 
uses a computer to solve various problems. The system does not try to generate a 
program for each specified problem. In other words all these systems are rather inters 
pretive than compilative by their nature. 

Only one form of knowledge representation is used in every kind of system. This 
form is: a computing procedure or a program module in the case of a program pac-
kage, a table in the case of a data base, a rule of the form "condition—action" in the 
case of an expert system, a Horn clause in the case of a PROLOG program. 

It occurs sometimes that two very similar application systems having almost the 
same purpose and possibilities are classified differently by their authors, e.g. as an 
expert system and a data base, depending on the authors' tastes and points of view: 

6« 



438 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations 

A very interesting problem solving system called PRIZ was developed in Tallinn 
by E. H. Tyugu and his colleages as early as the first half of 60-ies [2—4]. The system 
has very much progressed since then of cause. The work which will be reported here 
was inspired in many aspects by this system. 

The approach adopted in the informatics division of our institute is intended to 
overcome the drawbacks and the restrictions mentioned above. In our system called 
SPORA ("СПОРА") we wanted to develop a unified approach combining the prin-
ciples accepted by the designers of many application systems. On the other hand we 
tried not to mix up different concepts. Moreover our intention was to find the most 
appropriate place in the system for every independent concept known. We wanted 
to use any such concept with maximal effect. 

Similarly we tried to take the greatest possible advantage of different experience 
and tastes of different people working in any chosen area. There are always people 
with strong mathematical attitude and a good mathematical education. There are 
people also who like computer programming and are eager to contact, to cooperate 
with a computer. Surely most people are using computers only by necessity because 
without them they could not reach the desirable result. 

Starting from all these considerations we have built our system in the following 
way. 

The main part of the system is a knowledge base. We distinguish at least three 
kinds of knowledge: conceptual, algorithmic and factual ones. Conceptual knowledge 
is a set of terms (words) naming the basic concepts or notions of a given object area 
together with their properties and relationships. All this is expressed on the most 
abstract level. A description of an object area on this level is called conceptual model 
of the area. Abstraction is made from physical representation of entities (i.e. from 
their measurement units), from their programming representation (possible data types 
in some algorithmic language) and even from their mathematical representation. E.g. 
we prefer to write the Ohm law in the form 

Ohm (voltage, current, resistance) 
or 

voltage=times (current, resistance) 
where the word "times" denotes a map with no predefined mathematical properties 
instead of the usual u=i*r. 

A conceptual model contains some entity types and functional dependencies 
(maps) called primary. They are just names and on the abstract level do not posses 
any directly stated properties. However we consider the possibility to add a sort of 
axiomatics describing such properties to a model. 

The model also contains secondary types and maps which are described in a 
relational manner. The components of an object, i.e. the attributes of a type or the 
arguments and the result of a map should be explicitly listed. In addition to this the 
dependencies between the components should be described. 

There are tree kinds of dependencies. A functional dependency has the form 
v:=t where v is a component of an object, t is a functional term constructed from 
such components. Such a dependency prescribes the value of v to be computed as a 
result of the term t evaluation. 



Problem solving based on knowledge representation and program synthesis 439 

An equational dependency (or simply an equation) having the form 
prescribes values of functional terms tt and t2 to be equal. 

A relational dependency looks like this: 

isRi(v h = f i , . . . , vik = tk) 

where Rx is another type described elsewhere, vtl, ..., vik are some of the attributes of 
.Rj and ti,..., tk are functional terms constructed from the components of the currently 
defined object. Such a dependency allows one to use the dependencies associated 
with the type Rx in the actual definition. It means that an object with the components 
vh, ..., vik having values supplied by the terms ..., tk must belong to the type Rv 

There is a possibility for an object to have optional components and conditional 
dependencies between them. The definition of either a type or a map may be recursive. 

This approach has his pros and cons. The main gain is that abstraction from 
many details usually opens the shortest and the most natural way to a solution of the 
given problem. The main drawback is that a solution (if one is found) is an abstract 
one and cannot be directly used for computation. Another difficulty arises from the 
fact that equational dependencies cannot be resolved on the abstract level. This is so 
because on that level we abstract from the mathematical representation of primary 
maps and cannot use their mathematical properties. 

Therefore an abstract conceptual model of an object area needs an algorithmic 
and informational support. At this point two other kinds of knowledge mentioned 
above step on the scene. 

Algorithmic knowledge is a collection of ways to represent each entity as an 
object of some algorithmic language and each map as a procedure written in such a 
language. Such a representation is needed only for the entities of primary types and 
for primary maps. The secondary types and maps have a standard representation 
based on their desription sketched above. The algorithmic languages used for the 
representation of algorithmic knowledge are called base languages of the system. 
Currently base languages are Pascal, FORTRAN and ALGOL 60. The system it-
self is written mainly in Pascal and partially in the assembly language of the BESM 
6 computer. 

Factual knowledge is a set of values and qualitative characteristics of objects 
under consideration. The most natural way to represent the factual knowledge is to 
put it in a data base. The data manipulation language of the data base is also con-
sidered as a base language of the system. 

Thus the whole knowledge base consists of a conceptual model, a program 
modules package forming the algorithmic support of the model and a data base 
forming its informational support. Certainly an interface between these three parts of 
the knowledge base should be described. We consider both the program package and 
the data base equally important parts of the knowledge base having equal rights 
and status. 

Our problem solving system has a number of input languages oriented to dif-
ferent needs and to different classes of users. 

The most complicate and still rather simple language is the language for object 
area description. People using this language to construct conceptual models should 
be experts in the object area. They must be mathematically educated as well. We 
call them model designers. They are working in close contact with (if not being the 



440 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations 

same) people creating algorithmic and informational support of the model; i.e., 
program packages and data bases. . .. > 

To describe the interface between the model and its support one uses another 
input language called representation language or more exactly — primary types and 
maps representation language. This language is essentially a kind of universal macro-
language. For each primary data type one has to describe a way to translate a name 
of an object having this type into a base language construction. For each primary 
map a way to call corresponding procedure should be described; 

Users of the representation language should be good programmers first of all. 
Their main task is to describe the interface between the conceptual model and its 
algorithmic and informational support. Both program modules and contents of a 
data base included in the support may be written by other people. The use of a macro-
language allows one to include arbitrary modules or data collections in the concept 
tual model support. 

A knowledge base of an object area being constructed, it,is a rather simple task 
to specify a problem from the area. Essentially one has to list all.the input quantities 
and the desirable result, in other words, to point out the places which these data 
occupy in the model. Additionally if the data base part does not contain the numeri? 
cal values of some input quantities one has to supply the systém with these values; 

All this information may be expressed in a rather simple language called request 
language and oriented to the most numerous category of users, viz. terminal ones. 

A closer consideration reveals however a gap between the conceptual model and 
a problem specification existing in that scheme of problem solving. In fact, there may 
be no places for the input data and the result of a problem in the model. Let ùs take 
geometry as an example of an object area. Its model contains siich notions as a point, 
a straight line, a triangle, a circle, a distancé, an angle and so on, such relations as thé 
incidence of a point and a line, the tangency of a line to a circle etc. To state a problem 
howevèr oneneeds a collection of objects having various relationships between them-
selves to be described or drafted. The conceptual model of geometry cannot contain 
all such interited collections; • 

Therefore before stating a problem one has to describe a more or less concrete 
object on which the problem will be stated. We meet here another kind of knowledge 
which may be called a constructive one. Constructive knowledge is a set of rules and 
methods allowing one; to describe an object under investigation on the basis of a 
conceptual model. A number of problems may be posed with respect to the object; 

In our system we have a device useful by itself which can serve this purpose. 
The device is that of submodels related to a given: model. Indeed the means to des-
cribe an investigated object are essentially the samé as those used in the description 
of any secondary object: 

. To conclude a couple of words about the system functioning Should be said. 
A problem specification together with the model of the corresponding object 

area (or part of the model) is translated into a logical language. The result of the 
translation is an existence théorem foi" a solution of the given problem. Then the 
system tries to prove the theorem. Front theproof if one is found the system extracts 
an algorithm leading to a solution of the-problem. We call this algorithm an abstract 
program because it is expressed in terms of the conceptual model. 
; ' Next the abstract program is translated into one of the base languages of thé 
system. The interface between the model: and its support is also: used; on this stage; 



Problem, solving based on knowledge representation and program synthesis 441 

The resulting base language program can be compiled into machine code and 
then be executed by computer. The input data for the computation can be either 
taken from the data base or given by the author of the problem specification. 

Variants of the scheme just described are possible. The abstract program can 
be printed for examination by the user instead of being processed further. If the 
problem stated is of a rather general nature then the abstract program can be added 
to the conceptual model while its translation into a base language is added to the 
algorithmic support of the model. The compiled program can be included into a 
library. Thus not only the final result of computation but all the intermediate ones 
starting from the abstract program can be considered as a solution of the problem. 

When one of the steps described above fails the user gets a diagnostic message. 
The first version of the system SPORA was written in 1977—82. Recently the 

second version was developed and tested. 

References 

[1] VAN EMDEN, M. E . , KOWALSKY R. A., The semantics of predicate logic as a programming lan-
guage. — J. of the ACM, 1976, v. 23, N 4, p.p. 23—32. 

[2] TYUGU, E. H., A data base and problem solver for computer-aided design. — In: Information 
Processing 71. — North-Holland Publ. Co., 1972, p.p. 1046-49. 

[3] TYUGU, E., Towards practical synthesis of programs. — In: Information Processing 80. — North-
Holland Publ. Co., 1980, p.p. 207—19. 

[4] Тыугу Э. X. Концептуальное программирование. — Москва, изд—во „Наука", 1984. 

(Received Sept. 26, 1985.) 

ИНСТИТУТ ТЕОРЕТИЧЕСКИЙ АСТРОНОМИИ 
АКАДЕМИИ Н А У К СССР 
191187 ЛЕНИНГРАД 
НАБЕРЕЖНАЯ КУТУЗОВА, 10 
СССР 


