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Abstract 

The network design problem (NDP), in its simplest form, is that of designing 
a connected subnetwork of an n node network, by selecting from the set of all edges 
a subset which minimizes the sum of user's shortest path costs between all node 
pairs of the networks, being subjected to a budget constraint which limits the num-
ber of edges that may be included in the optimal network. 

In the present paper, remembering the complexity of the N D P (10) and the 
branch and backtrack (B&Bt) procedures applied to it, we point out the opportunity 
of reducing the total number of operations, required to solve it, using some domi-
nance relations existing among its solutions. An algorithm which uses such rela-
tions is also proposed. 

Introduction 

The network design problem (NDP) is a well defined subject of transportation 
planning. In its general form it can be defined as follows: given a connected graph 
G=(N, A) with n nodes and m edges; a subset of edges which can be invested in 
(improved or constructed); a set of investment costs on these edges; a set of user's 
costs on the edges with and without investments; a set of origin-destination (o/d) 
pairs on the graph; a set of demanded flows between o/d pairs: find the set of 
edges which minimizes the total user's 'cost with a budget constraint on the total 
investment cost. This problem is interesting since its solution may be relevant in 
the design of transportation networks. In all these applications the network design 
is obviously subjected to many more constraints than those considered in this paper, 
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but the solution of the N D P may be used as a measuring standard for the efficiency 
of applicative designs, and this justifies the study of the NDP. 

. Under the hypothesis that the demand flows are equal to 1 for all the o]d 
pairs on the graphs and that the subset of edges which can be invested in is equal 
to the set of all edges, it is possible to define a simplified version of the network 
design problem, i.e. to find the set of edges which minimizes the sum of the shortest 
path costs between all pairs of nodes with a budget constraint on the total invest-
ment cost. 

This combinatorial problem is expressed by a binary programming model 
whose variables are associated to the edges which can be included in the network. 

It belongs to the NP-complete class and then it requires exponential computa-
tion time (10). 

Branch and bound techniques are generally used for its exact or approximate 
solution (3, 4, 5, 6, 7). The structure of these algorithms are substantially the same. 
It is based on two tests, lower bound test and feasibility test, applied to the partial 
problem Pt, generated during the procedure of separation and progressive evalua-
tion of the B&B. 

The lower bound test generally used is not powerful enough to exploit the 
aspects of the problem structures which are useful to improve the computation 
efficiency of the algorithms. It is possible to define a dominance relation D among 
the subproblems P t of the N D P such that if P iDP s then the objective function 
value f(Pt) is not greater than f(Pj). If it occurs, and Pt has already been evaluated, 
then we can exclude from consideration the subproblem Pj. 

The use of suitable parameters associated to the nodes of the B&B arborescence, 
allows us to evaluate the "goodness" of a solution and to define a bounding strategy 
useful to reduce the objective function evaluations number. 

An algorithm which uses the dominance relation and this bounding strategy is 
proposed. 

Mathematical formulation 

Let G=(N, A) be a connected undirected graph, with 

N = {vj, ..., v„} set of nodes, 

A = {<*!, ..., am} set of all possible edges, 

T = {(a), 5)£NXN, co^S} set of origin-destination (o/d) pairs. 

We define the following functions: 

C: A— R+; C = {c t, ..., c„,} set of user's costs on the edges, 

H: P-~R+-, H = {h1; ..., hm} set of the investment costs on the edges. 

Let B £ R + be the budget. 
We can state the following problem: 
Find a subgraph 

G' = (N, A') (A' i A) 

I 
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such tha t U(X)= 2 ^ a W m i n ! 
<0), ») € r 
m 

¡=i 

where lmii(X) is the shortest pa th cost between a> and 5 with X= {x^ ..., xm} i.e.: 

{1 if the edge i is included in the ne twork, 

0 otherwise, 
and 

L.si^O = 2 cixi 

where q is the shortest pa th between co and 5. 
This p rob lem was proved by Johnson et al. (10) t o be NP-comple te and by 

Wong (15) t o be N P - h a r d i.e. it is quite unlikely t o find an a lgor i thm for it such 
that its running t ime be a polynomial funct ion of the input size. Then , if we want 
to solve such a problem in an optimal way using the classical B&Bt techniques, it 
may happen tha t it would take too much time. F o r this reason, it is useful to apply 
branch and backtrack algorithms with some funct ions able t o reduce at the min imum 
the branching on the B&Bt arborescence. 

Branch and Backtrack Algorithm and Dominance Relations 

The B&Bt is a computat ional principle which has been proved useful in solving 
various combinator ia l optimization problems encountered in opera t ions research 
and combinator ia l mathematics. The underlying idea of a B&Bt procedure is to 
decompose a given problem into smaller and smaller part ial p rob lem. Two types 
of tests are applied to each partial problem to see if it can be solved or, on the con-
trary, be concluded that no opt imal solution is obtainable f r o m it ; in bo th cases, 
the partial p rob lem is terminated and n o t decomposed any fur ther . These tests are 
called lower bound (for minimization problem) and feasibility tests. The computa-
tion terminates when all nodes are either decomposed or te rminated . In the N D P 
the feasibility test is done verifying if the best solution of the subproblem Pi sat-
isfy the constraint of the budget B. The lower b o u n d g(Pt) of the opt imal value 
f(Pt) of a part ial problem Pi is generally f o u n d evaluating the objective funct ion 
value of the best solution of Ph obtained setting to 1 the f ree variables of Pt. 

If g ( P , ) ^ z where z is the current op t imum, tha t is the value of the best feasible 
solution of P0 (the given minimization problem) obtained so far , we conclude tha t 
Pi does not provide an optimal solution of P0, and Pt is terminated. A generaliza-
tion of this lower bound test can be done using a binary relation D, called dominance 
relation. 

Let P={Plt ..., Pp) be the set of part ial problems generated by a B&Bt pro-
cedure. A dominance relation D is a partial order relation over P which satisfies 
the following condit ions (7). 

1) D i s : 
transitive PpPj & PJDPk^PiDPk, 
reflexive P i D P h 

antisymmetric PiDPj & PjDPi-*Pi = Pi\ 
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2) P¡DPj & P^Pj-fiP.^fiPj) and 
Pi is not a proper descendant of Pj\ 

3) P i D P j & P t ^ P j imply that some descendant 
Pv of Pi satisfies P^DPj, & P^^Pj, for any descendant Pr of P}. 

It is obvious that Pj need to be solved if Pi is already generated and PtDPj 
holds; thus Pj can be terminated. A dominance relation D may be interpreted as 
an embodiment of the information on optimal solutions of partial problems obtain-
able without actually solving them (that is computing J(Pj)), and can be regarded 
as a generalization of the lower bound test. 

For the N D P we can assert that the total cost function U(X) is a monotone 
non-increasing function of the decisional variables {*,}. Consider two solutions XJ 

and XK, best solution of the partial problems Pj and Pk. 
We say that 

XJ = XK if \/ixf & x f . 

The following statements hold: 

i) XJ ^ XK & XK S XM XJ = XM, 

XK S XK, 

Xs ^XK & XK XJ - XK = X1, 

ii) XJ ^ XK - U{XJ) S U(XK). 

Consider an edge / such that xf^xf (that is x{ = 1 and x f = 0 ) ; 
the flow unit between each pair (a>, 5) using through XJ a shortest path con-
taining ut, will use through XK another path of cost /aJ,a(A'к)^í t l)>¿(A'• ,), 

iii) XJ^XK & XJ?±XK-

MK': XK' ^ XK3J': X1' ^ XJ & X1' S XK\ 

If we consider the solutions XJ and XK as best solutions of the problems Pj and Pk 
we can state that 

X1 ^ XK PjDPk. (a) 

In Fig. 1 the complete arborescence of an N D P with 4 variables is represented. 
In Fig. 2 a sequential graph which takes care of all dominance relations among 
the solution is shown. To each level of this graph the solutions with the same num-
ber of variables set to 1 belong. Generally, the known B&B algorithms use only 
partially the dominance relation. The thick line represents the dominance rela-
tions implicitly considered in B&Bt algorithms, the sharp line, the other dominance 
relations. 

A more readable version of the graph of Fig. 2 is reported in Fig. 3. It can be 
remarked that: 

a) none of the solution is dominated by any other of the successive level, 
b) none of the solutions dominated by at least one solution belonging to the 

previous level, 
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c) solutions belonging to the same level are not comparable using the D relations. 
Obviously the number of level is equal to m + 1 and for each level there are 

different solutions, (1=0, 1, ..., m). 
If a problem P¡ is dominated by another P¡ already solved with U(XJ)^z 

(current upper bound) we do not need to solve P¡, that is to compute the relative 
objective function value. 

We underline that applying the dominance relation does not reduce the num-
ber of the generated partial problems but only the number of the solved problems. 

Some remarks on the structure of the solutions 

The graphical representation of Fig. 3 enables us to identify quickly the sub-
sets of feasible and infeasibie solutions. In fact the "border" between these two 
subsets can be defined as the subset of those feasible solutions, dominated by the 
infeasibie ones. 

If the investment costs h¡ ( /=1 , . . . ,m) are all equal to h the border is rep-
resented by the level [B/h\. If the h¡ costs are not equal, the border can be rep-
resented by solutions belonging to different levels. In this case, arranging the h¡ in 
non-decreasing order, the level I satisfying the conditions 

m+l-l m+2-l 
2 h¡ S B and 2 h¡ = B 

i=l ¡=1 

is the first level with border solutions, that is the level with border solutions having 
the highest number of 1. The remaining feasible solutions of the border belong to 
successive levels ( /+1 , . . . ,m) and can be identified starting from the infeasibie 
solutions of level I. 

The optimal solutions of the problem belong to the border, on which all solu-
tions are not comparable and altogether dominate all the other feasible ones. 

Using the dominance relation without solving the problems P¡, whose best 
solutions are infeasibie, we must solve all and only those belonging to the border. 
If we do not use the dominance relation, the classical criteria applied in B&Bt algo-
rithm does not prevent us from analyzing solutions not belonging to the border 
and then obviously not optimal. 

The proposed algorithm 

The algorithm we propose here is a classical B&Bt algorithm with the addition 
of the dominance test and of some heuristic devices for the bounding strategy. 
A more general scheme of our algorithm is reported in Fig. 4. 

Some detailed steps are the following 
— The algorithm realizes a preliminary arrangement of the variables to speed-up 

the procedure. 
— A feasibility test verifies if the available budget allows us to set u p an other 

variable to I. 
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begin 
j _ si={P0}; z —<*>; W~<P 

end 
begin 

2 — while do 
3 — P,=s(si) 
4 — if PjQPi for some Pj^P, belonging to the set of nodes currently generated then 

begin 
5 — stf=s4-{Pi) 

end 
else 

6 — if Pi can be solved or proved to be infeasible then 
begin 

7 — if z >/(/>,) then 
begin 

8 — 0=0(P t); z=f(Pi) 
go to 11 

end 
else 

9 — if z =/(?,) then 
begin 

10 — 0 = 0 U0 (Pd 
end 

11 — st=s4-{Pi} 
end 

else 
1 2 — if g(Pt)>z then 

begin 
13 — 

end 
else 

14 — generate sons P,t,..., P,k of P,\ ..., P,k}-{.P,} 
end 
begin 

15 — if z = °° then 
begin 

16 — print "P0 is infeasible" 
end 

else 
17 - O(P„) -0 ; / ( P „ ) - z 

end 

Fig. 4. 

— A first test on budget left compares the minimum value of the free variables 
investment costs with the remaining available budget. 

— The dominance test compare the best solution of the current subproblem 
with the list of the not-yet dominated solution. 

— A second test on budget left compares the sum of the free variables investment 
costs with the remaining available budget. 

— A solution "goodness" test compares the value of a solution "parameter" 
with the parameter value of the current upper bound solution. 
The algorithm has been tested on small dimension networks (6 nodes, 13 edges) 

varying user 's and investment costs. 
The results showed that the dominance relation effect is relevant when many 

U(X) values must be evaluated, that is when the budget is approximately the 50% 
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of the 2 It is useful to define some conditions about the number of requested 
ht£H 

operations. 
Let TA be the number of solved problems, tA the operation number to solve 

each partial problem, tD the average operation number for the dominance test, 
TD the number of generated and dominated problems. With good approximation 
we can state the total operations number T', using the dominance test, is 

T' = t„(TA+TD)+TAtA 

and the total operations number T' without using the dominance test, is 

T" = (TA + TD)tA. 

Introducing dominance test is useful until T'<T", i.e. 

' A 

Finally, it seems useful to introduce the dominance relation in B&Bt procedure 
for N D P , also if the running time to conclude the arborescence remain relevant 
in some cases. The optimal solution, with a good arrangement of the variables 
is fastly found, before the end of the procedure. This considerations allows us t o 
use the algorithm as heuristic, stopping it before the end, and getting the last feasible 
solution (current optimum). 

Conclusions 

In this paper we developed some considerations on the structure of the 
solution set of the problem, identifying a border of feasible solutions between the 
two subsets of feasible and infeasible solutions. 

We have also shown the opportunity of introducing a dominance test, regarded 
as a generalization of the lower bound test, in the basic structure of the B&Bt algo-
ri thm for the N D P . 

The principal effect of this introduction is to improve computational efficiency 
of the B&Bt procedure. In fact in this way a larger number of partial problems 
can be terminated without evaluating the objective function value. 

The first results suggested the fitness of using the dominance test in a 
quite well defined range of the investment costs. Moreover the considerations on 
the solutions set structure, suggested to construct an "ad hoc" algorithm which 
examines directly the sei of feasible solutions of the border and the set of the infeasible 
solutions which dominate the border. 
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