Frontiers of one-letter languages

Stephen L. Bloom

Introduction

In a talk titled "Infinite words" given in the spring of '83, Dana Scott introduced the notion of a convergent sequence of "word" (i.e. elements of a finitely generated free monoid). A sequence is convergent if, for every regular set R of words, all but finitely many of the terms of the sequence belong to R or all but finitely many belong to the complement of R. Scott stated a number of properties of the collection of (equivalence classes of) convergent sequences, some of which showed that this structure had been known earlier in the guise of a free "profinite" monoid. This monoid has a natural topology and contains a copy of the original free monoid (as a certain discrete subspace). In the case that the words are elements of the one-generated free monoid (i.e. the additive monoid N of the nonnegative integers) an explicit description of all convergent sequences was stated (and is derived here). Further, he posed several problems connected with this structure and the current paper addresses one of these.

Scott asked whether an investigation of the "frontiers" of languages would lead to a useful classification of languages. In an effort to answer this question, we looked at the simplest case: frontiers of subsets of N. An explicit description of these frontiers has been obtained. It is seen that the cardinality of the frontier of a subset of N cannot distinguish regular from nonregular sets, and a necessary and sufficient condition is given that a subset of N have an uncountable frontier.

In order to obtain these facts we derived a number of the facts mentioned by Scott in his talk. We have tried to give very elementary proofs and keep the paper selfcontained.

Preliminaries

N will denote both the set of nonnegative (or "natural") numbers as well as the additive monoid $(N,+, 0)$. An infinite sequence will be denoted by diagonal brackets:

$$
\langle x\rangle=\left\langle x_{1}, x_{2}, \ldots\right\rangle ;
$$

the terms of $\langle x\rangle$ are the elements $x_{n}, n>0$.

The value of a function f on an argument x will be written as $x f$ or $f(x)$.
For positive integers k and l, the 1 -generated finite monoid which is the quotient of N by the least monoid congruence identifying $k+l$ and k is denoted $N_{k, l}$. When $k=l=n!$, this monoid will be denoted M_{n}. One may assume that the elements of $N_{k, l}$ are the integers

$$
0,1, \ldots, k, k+1, \ldots, k+l-1
$$

The closure of a subset A of a topological space is denoted A^{-}, and the frontier of A is $A^{-}-A$.

In this paper, we will use the word "uncountable" to mean the cardinality of the powerset of the natural numbers.

1. Convergent sequences

Let $\langle x\rangle$ and $\langle y\rangle$ be infinite sequences of nonnegative integers. For a subset S of N, the nonnegative integers, define $\langle x\rangle$ to be " S-equivalent" to $\langle y\rangle$ if, all but finitely many of the terms of $\langle x\rangle$ belong to S iff all but finitely many of the terms of $\langle y\rangle$ do.
1.1. Definition. $\langle x\rangle$ is equivalent to $\langle y\rangle$, written $\langle x\rangle \sim\langle y\rangle$, if for every regular set $R,\langle x\rangle$ is R-equivalent to $\langle y\rangle$.

It is easy to verify that \sim is indeed an equivalence relation on the infinite sequences of natural numbes. The $\sim-$ equivalence class of $\langle x\rangle$ will be written $\langle x\rangle^{\sim}$.
1.2. Definition. An infinite sequence is convergent if, for each regular set R, either all but finitely many terms of $\langle x\rangle$ belong to R (we will say $\langle x\rangle$ is "eventually in R '") or $\langle x\rangle$ is eventually in $N \backslash R$, the complement of R.

We let Conv denote the set of all convergent sequences. Note that if $\langle x\rangle$ is convergent and $\langle y\rangle$ is equivalent to $\langle x\rangle$, then $\langle y\rangle$ is also convergent.

The set of equivalence classes of convergent sequences is denoted N^{-}. This set has both a monoid structure and a topological structure, as will be shown below, and is one of the more fascinating objects in the mathematical universe. Our goal in this first section is to give an explicit representation of the members of N^{-}.

We will say that the sequence $\langle y\rangle$ is a subsequence of the sequence $\langle x\rangle$ if there is a strictly increasing function $f: N \rightarrow N$ such that for each $n \in N$,

$$
y_{n}=x_{n f} .
$$

1.3. Proposition. If $\langle y\rangle$ is a subsequence of the convergent sequence $\langle x\rangle$, then $\langle y\rangle$ is equivalent to $\langle x\rangle$ and is therefore convergent.

A sequence of integers is eventually increasing if for each number $b, x_{n}>b$ for all but finitely many n; similarly a sequence $\langle x\rangle$ is eventually constant with value b if $x_{n}=b$ for all but finitely many n.
1.4. Proposition. If $\langle x\rangle$ is convergent, either $\langle x\rangle$ is eventually constant or eventually increasing.

Proof. Let R_{b} denote the regular set of integers greater than b. Then either $\langle x\rangle$ is eventually in R_{b} for every b, in which case $\langle x\rangle$ is eventually increasing, or not. If
not, since $\langle x\rangle$ is convergent, $\langle x\rangle$ is eventually in the finite union of the singleton sets $\{0\} \cup\{1\} \cup \ldots \cup\{b\}$, for some b. We now apply the following lemma.
1.5. Lemma. If $\langle x\rangle$ is convergent and $\langle x\rangle$ is eventually in a finite union of regular sets $A 1 \cup \ldots \cup A n$, then for some $i,\langle x\rangle$ is eventually in $A i$.

By the Lemma 1.5, $\langle x\rangle$ is eventually constant, proving 1.4. The easy proof of 1.5 is omitted.
1.6. Proposition. Let $\langle x\rangle$ be a convergent sequence. Then either there is a constant sequence $\langle y\rangle$ or a strictly increasing sequence $\langle y\rangle$ with $\langle x\rangle$ equivalent to $\langle y\rangle$.

Proof. By 1.4, $\langle x\rangle$ is either eventually constant, in which case $\langle x\rangle$ has a constant subsequence, or $\langle x\rangle$ is eventually increasing, in which case $\langle x\rangle$ has a strictly increasing subsequence. By 1.3, the proof is complete.

We will characterize those strictly increasing sequences which are convergent. But first we give an alternate formulation of the notion of convergent sequence.
1.7. Proposition. The sequence of integers $\langle x\rangle$ is convergent iff
(1.7a) for each homomorphism h from the additive monoid $(N,+, 0)$ to a finite monoid M, the sequence

$$
\langle x h\rangle=\left\langle x_{1} h, x_{2} h, \ldots\right\rangle
$$

is eventually constant.
Proof. Suppose first that $\langle x\rangle$ is convergent and that $h: N \rightarrow M$ is a monoid homorphism. If M consists of the elements $m 1, \ldots, m k$, then the sets

$$
R i=h^{-1}(m i)
$$

are disjoint regular sets and $\langle x\rangle$ is eventually in the union $R 1 \cup \ldots \cup R k=N$. By lemma $1.5,\langle x\rangle$ is eventually in one $R i$; i.e. $\langle x h\rangle$ is eventually constant.

Now suppose that (1.7a) holds. Let R be any regular set and recall the following fundamental fact:
any regular subset R of N may be written as

$$
R=h^{-1}(X)
$$

for some monoid homomorphism $h: N \rightarrow M, M$ finite, and some $X \subset M$.
Thus, $\langle x\rangle$ is eventually in R if $\langle x h\rangle$ is eventually in X; otherwise, $\langle x\rangle$ is eventually in the complement of R.

The preceding proposition may be rephrased: a convergent sequence is one whose terms eventually cannot be distinguished by a finite automaton.

The next fact is proved in exactly the same way.
1.8. Proposition. If $\langle x\rangle$ and $\langle y\rangle$ are convergent sequences, then $\langle x\rangle$ is equivalent to $\langle y\rangle$ iff for every monoid homomorphism $h: N \rightarrow M, M$ finite, $\langle x h\rangle$ and $\langle y h\rangle$ are eventually equal.
1.9. Corollary. If $\langle x\rangle$ and $\langle y\rangle$ are convergent, so is " $\langle x\rangle+\langle y\rangle$ ", where the "sum" is obtained by pointwise addition; further, if $\langle x\rangle \sim\left\langle x^{\prime}\right\rangle$ and $\langle y\rangle \sim\left\langle y^{\prime}\right\rangle$, then $\langle x\rangle+\langle y\rangle \sim\left\langle x^{\prime}\right\rangle+\left\langle y^{\prime}\right\rangle$.
$\rightarrow \quad$ Both facts follow from 1.7 and 1.8.
1.10. Corollary. N^{-}is a monoid, where the operation is that in 1.9 and the identity element is the equivalence class of the constant zero sequence.

The next proposition is quite useful.
1.11. Proposition. Suppose that $\langle x\rangle$ is a strictly increasing sequence. Then $\langle x\rangle$ is convergent iff, for each $n>0$,

$$
\begin{equation*}
x_{m} \equiv x_{p}(\bmod n!) \tag{1.11a}
\end{equation*}
$$

for all but finitely many m and p. If $\langle x\rangle$ and $\langle y\rangle$ are strictly increasing convergent sequences, $\langle x\rangle \sim\langle y\rangle$ iff, for each $n>0$,

$$
\begin{equation*}
x_{m} \equiv y_{m}(\bmod n!) \tag{1.11b}
\end{equation*}
$$

for all but finitely many m.
Proof. If $\langle x\rangle$ is convergent, then (1.11a) holds, by 1.7 applied to the canonical homomorphism $N \rightarrow Z / n!$, where Z / n ! denotes the ring of integers modulo n !. Conversely assume that $\langle x\rangle$ satisfies the property (1.11a). We show that $\langle x\rangle$ is convergent by using Lemma 1.7 and the following facts.
1.12. Fact. Any monoid homomorphism $h: N \rightarrow M, M$ finite, factors as a composite

where e is a surjective homomorphism, i is injective and $N_{k, l}$ was defined in the Preliminary section.
1.14. Fact. Any homomorphism $h: N \rightarrow N_{k, l}$ factors as

where n is any number greater than both k and l. Note that the map h (and h \#) satisfies:

$$
\begin{align*}
x h & =x \quad \text { if } \quad x<k \\
& =k+\operatorname{Rem}(x-k, l) \quad \text { if } \quad x \geqq k . \tag{1.16}
\end{align*}
$$

We now show that the property of (1.11a) implies that $\langle x\rangle$ is convergent. Suppose that $h: N \rightarrow M$ is a monoid homomorphism, M finite. Then by 1.12 and 1.14 we may as well assume that M is $N_{n!, n!}$ and h is defined by (1.16) when k and l are $n!$; thus we assume

$$
\begin{aligned}
z h & =z \quad \text { if } \quad z<n! \\
& =n!+\operatorname{Rem}(z-n!, n!) \text { if } \quad z \geqq n! \\
& =n!+\operatorname{Rem}(z, n!) .
\end{aligned}
$$

It follows that $\langle x h\rangle$ is eventually constant, since $\langle x\rangle$ is strictly increasing, $x_{m}>n$! for $m>n!$ and $x_{m} \equiv x_{m^{\prime}}(\bmod n!)$, for sufficiently large m and m^{\prime}. Thus, by (1.7), $\langle x\rangle$ is convergent. The proof is complete.

We now want to show that the monoid N^{-}is isomorphic to the (inverse) limit L of the diagram

$$
\begin{equation*}
\ldots \rightarrow M_{n} \xrightarrow{g_{n}} M_{n-1} \xrightarrow{g_{n-1}} \ldots \xrightarrow{g_{2}} M_{1}, \tag{1.17}
\end{equation*}
$$

where $M_{n}=N_{n!, n!}$ and where the homomorphism $g_{n}: M_{n} \rightarrow M_{n-1}$ is defined, as one might expect by now, as

$$
\begin{aligned}
x g_{n} & =x \quad \text { if } \quad x<(n-1)! \\
& =(n-1)!+\operatorname{Rem}(x,(n-1)!), \quad \text { if } \quad x \geqq(n-1)!
\end{aligned}
$$

It is well known [G] that L may be described as the submonoid of πM_{n} consisting of all "compatible" sequences, i.e. all sequences $\langle z\rangle$, with $z_{n} \in M_{n}$, for each $n>0$, and with $z_{n} g_{n}=z_{n-1}$, for $n>1$. In order to prove N^{-}is isomorphic to L, we make two observations about the sequences in L.
1.18. Lemma. If $\langle z\rangle$ is a compatible sequence and for some $n, z_{n}<n$!, then $y_{m}=z_{n}$, for all $m>n$.
1.19. Corollary. If $\langle z\rangle$ is a compatible sequence in L and $\langle z\rangle$ is not eventually constant, then for all $n>0$,

$$
n!\leqq z_{n}(<2 n!)
$$

Now let $k_{n}: N \rightarrow M_{n}$ be the canonical homomorphism (i.e. $1 k_{n}=1$ in M_{n}) and let $h_{n}: N^{-} \rightarrow M_{n}$ be the monoid homomorphism taking the equivalence class of the sequence $\langle x\rangle$ to the eventual value of the sequence $\left\langle x k_{n}\right\rangle$ in M_{n}.
1.20. Lemma. For each $n>0$ the diagram below commutes.

Proof. Since the diagram (1.22) commutes,

if a is the eventual value of $\left\langle x k_{n+1}\right\rangle$ then $a g_{n+1}$ is also the eventual value of $\left\langle x k_{n}\right\rangle$.
Now since the monoid L, equipped with the projection maps

$$
p_{n}:\langle z\rangle \rightarrow z_{n}
$$

is the limit of the diagram (1.17), there is a uniqua homomorphism

$$
q: N^{-} \rightarrow L
$$

such that for each $n, q, p_{n}=h_{n}$. We want to show that q is an isomorphism.

1.24. Lemma. q is surjective.

Proof. Let $\langle x\rangle$ be a sequence in L. If $\langle z\rangle$ is eventually constant with value a then $\langle a\rangle^{\sim} q=\langle z\rangle$, where $\langle a\rangle^{\sim}$ is the equivalence class of the constant sequence $\langle a, a, \ldots\rangle$. Otherwise $\langle z\rangle$ is strictly increasing. Let $\langle x\rangle$ be the sequence of integers with $x_{n}=z_{n}$ for all n (i.e. $\langle x\rangle$ is $\langle z\rangle$ considered as a sequence in N). Then we claim that for each n,

$$
\langle x\rangle^{\sim} h_{n}=z_{n}
$$

so that $\langle x\rangle \sim q=\langle z\rangle$.
Indeed, for $m>n, x_{m} \geqq n!$ and

$$
x_{m} \equiv z_{n}(\bmod n!)
$$

by the definition of the g_{m} 's. So the eventual value of $\left\langle x k_{n}\right\rangle$ is z_{n}. Thus q is surjective.
1.25. Lemma. q is injective.

Proof. Suppose that $\langle x\rangle \sim q=\langle y\rangle^{\sim} q=\langle z\rangle$, where $\langle x\rangle$ and $\langle y\rangle$ are convergent sequences. We will show that $\langle x\rangle$ is equivalent to $\langle y\rangle$. Since this is clear in the case that $\langle x\rangle$ is eventually constant, assume that $\langle x\rangle$ is strictly increasing. Then the eventual value of the sequences $\left\langle x k_{n}\right\rangle$ and $\left\langle y k_{n}\right\rangle$ is z_{n}, so that, for all but finitely many values of m,

$$
x_{m} \equiv y_{m}(\bmod n!)
$$

and hence $\langle x\rangle$ is equivalent to $\langle y\rangle$.
We have proved the following
1.26. Theorem. The monoid N^{-}is isomorphic to L.

It will sometimes be convenient to use L instead of N^{-}in order to get concrete representations. For example, notice how sequences in L are added. The n-th component of $\langle z\rangle+\left\langle z^{\prime}\right\rangle$ is $z_{n} *_{n} z_{n}^{\prime}$, where $*_{n}$ is the monoid operation in M_{n}. Thus, if both
$\langle z\rangle$ and $\left\langle z^{\prime}\right\rangle$ are increasing, i.e. $n!\leqq z_{n}, z_{n}^{\prime}$, then

$$
z_{n} *_{n} z_{n}^{\prime}=n!+\operatorname{Rem}\left(z_{n}+z_{n}^{\prime}, n!\right) .
$$

Hence, aside from the notation " $n!+$ ", the monoid operation on increasing se-: quences in L is the same as that on $\Pi(Z / n!: n>1)$, where Z / n ! is the ring of integers $\bmod n!$. Denoting the increasing sequences in L by \mathbf{F}, we have seen that \mathbf{F} forms a subring of the product of the rings ($Z / n!: n>1$). (In fact, \mathbf{F} is the inverse limit of the diagram

$$
\ldots \rightarrow Z /(n+1)!\rightarrow Z / n!\rightarrow \ldots
$$

where the maps are the canonical ring homomorphisms.) We turn now to the question of getting an explicit description of the sequences in L (and thus N^{-}). The description depends heavily on the following
1.27. "Factorial" Iemma. For each $n \geqq 1$ and each number $x, 0 \leqq x<n$!, there is a unique sequence a_{1}, \ldots, a_{n-1} of integers with

$$
0 \leqq a_{i} \leqq i, \quad 1 \leqq i<n
$$

such that

$$
x=\sum a_{i} i!=a_{1}+a_{2} 2!+\ldots+a_{n-1}(n-1)!
$$

(When $n=1$, the sequences is the empty sequence, whose sum is 0 .)
This fact may be proved in a straightforward manner. Now, if $\langle z\rangle$ is an increasing sequence in L, for each $n, n!\leqq z_{n}<2 n!$. Thus, we may write

$$
z_{n}=n!+\sum_{1}^{n-1} a_{i} i!
$$

1.28. Proposition. If $\langle z\rangle$ is an increasing sequence in L, and for some n,

$$
\begin{aligned}
z_{n} & =n!+\sum_{1}^{n-1} a_{i} i!, \quad \text { and } \\
z_{n+1} & =(n+1)!+\sum_{1}^{n} b_{i} i!,
\end{aligned}
$$

then for $i<n, b_{i}=a_{i}$.
Proof. Since $z_{n+1} g_{n+1}=z_{n}, \quad \operatorname{Rem}\left(z_{n+1}, n!\right)=\sum a_{i} i!\quad$ But $\quad \operatorname{Rem}\left(z_{n+1}, n!\right)=$ $=\sum b_{i} i$. By the uniqueness part of the factorial lemma, the proposition is proved.

Hence, if $\langle z\rangle$ is an increasing sequence in L, there is a unique infinite subdiagonal sequence $\langle a\rangle$ (i.e. $0 \leqq a_{n} \leqq n$, all n) such that

$$
\begin{equation*}
z_{n}=n!+\sum_{1}^{n-1} a_{i} i! \tag{1.28a}
\end{equation*}
$$

for all n.
Let $S D$ denote the set of all infinite subdiagonal sequences, and let $S D^{*}$ denote the set of all finite subdiagonal sequences of integers. If $\langle a\rangle$ is any sequence in $S D$, let $z(a)$ denote the sequence defined by (1.28a) above. Then we have already proved part of the next theorem.
1.29. First representation theorem. For each sequence $\langle a\rangle$ in $S D, z(a)$ is an increasing sequence in L, and the map $S D \rightarrow F$ defined by

$$
\langle a\rangle \mapsto z(a)
$$

is a bijection.
Proof. We already know the map is surjective. The fact that $z(a)$ is in fact in L (and hence in \mathbf{F}) is immediate, since $\left((n+1)!+\sum_{1}^{n} a_{i} i!\right) q_{n+1}=n!+\sum_{1}^{n-1} a_{i} i!$. If $\langle a\rangle$ and $\left\langle a^{\prime}\right\rangle$ are distinct sequences in $S D$, then $z(a)$ and $z\left(a^{\prime}\right)$ are distinct by the factorial lemma. The theorem is proved.

It is easy to see that if $\langle z\rangle$ is an eventually constant sequence in L, then there is a unique finite subdiagonal sequence
such that for $k<n$

$$
\left\langle a_{1}, \ldots a_{n-1}\right\rangle
$$

$$
z_{k}=k!+\sum_{1}^{k-1} a_{i} i!
$$

and for $k>n$,

$$
z_{k}=\sum_{1}^{n-1} a_{i} i!
$$

2. Topology

The standard topology on L (and thus on N^{-}) is inherited from the product topology on

$$
\Pi M_{n}
$$

where each finite monoid M_{n} has the discrete topology. Thus the subbasis for the topology on L consists of all sets of the form

$$
p_{n}^{-1}(X)
$$

where $p_{n}: L \rightarrow M_{n}$ is the n-th projection map and X is some subset of M_{n}. Clearly L is Hausdorff in this topology, and is compact by the Tychonoff theorem since L is closed in the product. (Indeed, if $\langle z\rangle \notin L$, then for some $n, z_{n} g_{n} \neq z_{n-1}$. Then

$$
p_{n}^{-1}\left(z_{n}\right) \cap p_{n-1}^{-1}\left(z_{n-1}\right)
$$

is an open set disjoint from L containing $\langle z\rangle$.) The subbasis sets are closed (as well as open) since

$$
L-p_{n}^{-1}(X)=p_{n}^{-1}\left(M_{n}-X\right)
$$

Thus L is a "Stone space". We will show that the Boolean algebra of the clopen (i.e. closed and open) subsets of L is isomorphic to the Boolean algebra of regular subsets of \dot{N}.

Let $i: N \rightarrow L$ be the (unique) monoid homomorphism satisfying

$$
\begin{equation*}
i \cdot p_{n}=k_{n} \tag{2.0a}
\end{equation*}
$$

for all $n>1$. The image of i consists of the eventually constant sequences. For $n>m$,
let
$g_{n, m}: M_{n} \rightarrow M_{m}$ be the composite of

$$
M_{n} \xrightarrow{g_{n}} M_{n-1} \xrightarrow{g_{n-1}} \ldots \xrightarrow{g_{m+1}} M_{m}
$$

We will need the following fact.
2.1. Lemma. Suppose that $X \subset M_{n}$ and $Y \subset M_{m}$, where $n>m$. Then

$$
\text { i) } \quad k_{n}^{-1}(X) \cap k_{m}^{-1}(Y)=k_{n}^{-1}(X \cap Z), \quad \text { and }
$$

ii) $P_{n}^{-1}\left(X_{n}\right) \cap p_{m}^{-1}(Y)=p_{n}^{-1}(X \cap Z)$,
where $Z=g_{n, m}{ }^{-1}(Y)$.
The easy proof is omitted.
2.2. Proposition. The subsets of L of the form

$$
p_{n}^{-1}(X), \quad X \subset M_{n}
$$

are in fact a basis, being closed under finite union and finite intersection and complementation as well.

Proof. We have already noted the closure under complementation and closure under intersection follows from the preceding lemma, part ii). Closure under finite union follows from these two facts.

It follows from general topological principles that the clopen subsets of L are precisely the subsets of the form $p_{n}^{-1}(X), n>1, X \subset M_{n}$.

If S is a subset of N, let S^{-}denote the closure of $i(S)$ in L.
2.3. Lemma. Let $S=k_{n}^{-1}(X)$, where $X \subset M_{n}$. Then $S^{-}=p_{n}^{-1}(X)$. Thus the closure of a regular set is a clopen set in L.

Proof. Let $B=p_{n}^{-1}(X)$. Then S^{-}is contained in B since B is closed and $i(S) \subset$ $\subset B$, by (2.0a). Let b be any point in B not in $i(S)$. We will show that b is a limit point of $i(S)$. Let $C=p_{m}^{-1}(Y)$. be any basis set containing b. We may assume that $n>m$. Applying 2.1,

$$
\begin{aligned}
& B \cap C=p_{n}^{-1}(Z), \quad \text { and } \\
& S \cap k_{n}^{-1}(Y)=k_{n}^{-1}(Z)
\end{aligned}
$$

where $Z=g_{n, m}^{-1}(Y)$. Let R be the set $S \cap k_{n}^{-1}(Y)$. Then R is nonempty: otherwise, Z is empty, since k_{n} is surjective, and this would imply that $B \cap C$ would be empty, contradicting the fact that b is contained in this intersection. Now if $a \in R, i(a)$ is in $B \cap C$, by (2.0a) again, showing that b is a limit point of S. The proof of 2.3 is complete.

2.4. Lemma. Let R and S any subsets of N. Then $R \subset S$ iff $R^{-} \subset S^{-}$:

Proof. Only one direction is nontrivial. Suppose that R^{-}is contained in S^{-}. Let $x \in R$. Then the singleton set $\{x\}$ is a regular subset of N so the closure of $i .(\{x\})$, say A, is a clopen subset of L, by 2.3 above. Since A is open and since $R^{-} \subset S^{-}$, A must contain a point of S. But since L is Hausdorff, A is a singleton set. Thus $x \in S$, proving the lemma.
2.5. Theorem. The map $R \mapsto R^{-}$is a Boolean isomorphism from the Boolean algebra of regular subsets of N to the Boolean algebra of clopen subsets of L.

Proof. By Lemma 2.3, each regular subset of N is mapped to a clopen basis set and every clopen set in L is the closure of the image of a regular set. By Lemma 2.4, the map is an order (and hence Boolean) isomorphism.

The next fact follows from the standard proof of the Stone representation theorem.
2.6. Corollary. N^{-}is in bijective correspondence with the collection of ultrafilters on the Boolean algebra of regular subsets of N.

3. Some algebra

Recall that we have shown that the strictly increasing sequences F in L form a ring, isomorphic to the inverse limit of the diagram

$$
\ldots \rightarrow Z / n!\rightarrow Z /(n-1)!\rightarrow \ldots
$$

Although it is probably well known, we will indicate why \mathbf{F} is also isomorphic as a ring to the product ring

$$
\Pi\left(Z_{p}: p \text { prime }\right)
$$

where Z_{p} is the ring of p-adic integers.
One definition of Z_{p} (see [Kurosh, p. 154]) is the following:
3.1. Definition. Z_{p} consists of all sequences $\langle k\rangle$ of nonnegative integers satisfying

$$
\begin{equation*}
0 \leqq k_{n}<p^{n} \tag{3.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{n} \equiv k_{n+1}\left(\bmod p^{n}\right) \tag{3.1b}
\end{equation*}
$$

for each $n>1$. The sequences are added and multiplied pointwise, where the n-th component is reduced modulo p^{n}. Thus Z_{p} is the inverse limit of the diagram

$$
\begin{equation*}
\ldots \rightarrow Z / p^{n} \rightarrow Z / p^{n-1} \rightarrow \ldots \tag{3.2}
\end{equation*}
$$

Kurosh gives an easy proof that
3.3. Z_{p} has no zero divisors.

We will show that each sequence $\langle z\rangle$ in F determines a sequence $\langle z\rangle \alpha_{p}$ in Z_{p}.
3.4. Definition of $\alpha_{p}: F \rightarrow Z_{p}$.

Given $\langle z\rangle$, for each n let $m=p^{n}$!. Then for all $t>m$,
so that

$$
z_{t} \equiv z_{m}(\bmod m)
$$

$$
z_{t} \equiv z_{m}\left(\bmod p^{n}\right)
$$

Then for each n, we define k_{n} as $\operatorname{Rem}\left(z_{m}, p^{n}\right)$, and we let $\langle z\rangle \alpha_{p}=\langle k\rangle$.

Taking the target tupling of the maps α_{p}, p prime, we get a map

$$
\alpha: \mathbf{F} \rightarrow \Pi\left(Z_{p}: p \text { prime }\right) .
$$

Since the ring operations on both \mathbf{F} and Z_{p} are defined componentwise and since reduction mod m preserves addition and multiplication, we have
3.5. Lemma. Each map α_{p} is a ring homomorphism and thus so is α.
3.6. Lemma. α is an isomorphism.

Proof. First we show that α is injective. Let $\langle z\rangle$ and $\left\langle z^{\prime}\right\rangle$ be distinct sequences in \mathbf{F}. Then for some $n, z_{n} \neq z_{n}^{\prime}$. Factoring $n!$ as a product of powers of primes, there is some prime p and some m such that

But for all $t>n!$,

$$
z_{n} \not \equiv z_{n}^{\prime}\left(\bmod p^{m}\right)
$$

and

$$
z_{t} \equiv z_{n}\left(\bmod p^{m}\right)
$$

$$
z_{t}^{\prime} \equiv z_{n}^{\prime}\left(\bmod p^{m}\right)
$$

Thus, $\langle z\rangle \alpha_{p} \neq\left\langle z^{\prime}\right\rangle \alpha_{p}$, so that α is injective.
Now we prove α is in fact surjective. Suppose that we are given an element of $\Pi\left(Z_{p}: p\right.$ prime $)$, say

$$
\left\langle y^{p}\right\rangle=\left\langle y^{p}(1), y^{p}(2), \ldots\right\rangle
$$

for each prime p. We will construct a sequence $\langle z\rangle$ in \mathbf{F} such that $\langle z\rangle \alpha_{p}=\left\langle y^{p}\right\rangle$ for each \bar{p}. In order to do this, we construct an increasing sequence $\langle x\rangle$ in Conv with $x_{1}=y^{p 1}(1)$ (where $p 1, p 2, \ldots$, are the primes in increasing order) and for each $n>1$,

$$
\begin{align*}
& x_{n}>x_{n-1} ; \tag{3.7}\\
& x_{n} \equiv y^{p 1}(n)\left(\bmod (p 1)^{n}\right) \\
& x_{n} \equiv y^{p 2}(n)\left(\bmod (p 2)^{n}\right) \\
& \ldots \\
& x_{n} \equiv y^{\mathrm{pn}}(n)\left(\bmod (p n)^{n}\right) .
\end{align*}
$$

Suppose that $\langle x\rangle$ satisfies the above conditions. Then $\langle x\rangle$ is obviously increasing and is, although not so obviously, convergent. Indeed, to prove $\langle x\rangle$ is convergent we will show that for each n, all but finitely many of the terms of $\langle x\rangle$ are congruent modulo $n!$. Recall that if q and q^{\prime} are relatively prime, then
iff

$$
u \equiv v\left(\bmod q q^{\prime}\right)
$$

$$
u \equiv v(\bmod q) \quad \text { and } \quad u \equiv v\left(\bmod q^{\prime}\right)
$$

Now factor a fixed n ! into a product of primes, say

$$
n!=p 1^{k 1} \ldots p r^{k r}
$$

whre $0 \leqq k i, i=1, \ldots, r$. Let m be any number greater than both r and $\max (k 1, \ldots$,
$\ldots k r)$. Then for each $i<m$,

$$
x_{m} \equiv y^{p i}(m)\left(\bmod p i^{m}\right)
$$

so that

$$
x_{m} \equiv y^{p i}(m)\left(\bmod p i^{k i}\right)
$$

since $m>k i$. But since $\left\langle y^{p i}\right\rangle$ is in $Z_{p i}$,

$$
y^{p i}(m) \equiv y^{p i}(k i)\left(\bmod p i^{k i}\right)
$$

It follows that for $t>m$,

$$
x_{t} \equiv y^{p i}(k i)\left(\bmod p i^{k i}\right), \quad \text { all } \quad i<r .
$$

But then, for $t>m$,

$$
x_{t} \equiv x_{m}(\bmod n!)
$$

proving that $\langle x\rangle$ is convergent. Let $\langle z\rangle$ be the sequence in L determined by $\langle x\rangle$. Then $\langle z\rangle \alpha_{p}=\left\langle y^{p}\right\rangle$, for all p.

It remains to show how to obtain the sequence $\langle x\rangle$. But assuming we have found x_{1}, \ldots, x_{n-1}, we obtain x_{n} satisfying (3.7) by applying the Chinese Remainder Theorem.

The proof of the Theorem is complete.

4. Some closures

In section 2 we showed that if R is a regular subset of N, then the closure of $i(R)$ in L has the form
for some $X \subset M_{n}$.

$$
p_{n}^{-1}(X)
$$

4.1. Proposition. If R is an infinite regular subset of N, then R^{-}and thus its frontier are uncountable.

Proof. Suppose R is $k_{n}^{-1}(X)$, where $X \subset M_{n}$. If R is infinite, there is some element b in X with

$$
n!\leqq b(<2 n!)
$$

Write b as $n!+\sum^{n-1} a_{i} i!$. Then, for all infinite subdiagonal sequences a which extend $\left\langle a_{1}, \ldots, a_{n-1}\right\rangle$, the element $z(a)$ is in the closure of R. Since there are uncountably many such sequences a, the proposition is proved.

Now we prove that if S is the nonregular (context sensitive) set of squares, i.e.

$$
S=\left\{n^{2}: n \in N\right\}
$$

then the frontier of S is also uncountable.
We will use two facts from the preceding section.
(4.2) Z_{p} has no zero divisors.
(4.3) F is isomorphic as a ring to

$$
\Pi\left(Z_{p}: p \text { prime }\right)
$$

Let $\langle x\rangle$ be any sequence in \mathbf{F} and let $\langle y\rangle=\langle x\rangle\langle x\rangle=\langle x\rangle^{2}$ (so that for each n, $y_{n}=n!+\operatorname{Rem}\left(x_{n}^{2}, n!\right)$).
4.4. Lemma. $\langle y\rangle$ is a limit point of S.

Proof. Let B be a basis set containing $\langle y\rangle$. Then $B=p_{n}^{-1}\left(X_{n}\right)$, for some n and some subset X_{n} of M_{n}. Thus $y_{n} \in X_{n}$. If a is the natural number

$$
a=n!+x_{n}
$$

then $k_{n}\left(a^{2}\right)=y_{n}$, so that $i\left(a^{2}\right) \in B$, proving that $\langle y\rangle$ is a limit point of S.
Now we will show that there are uncountably many points in L of the form $\langle x\rangle\langle x\rangle$, which will complete the proof that S^{-}is uncountable. Indeed, in any ring with no zero divisors, if $u^{2}=v^{2}$, then $u=v$ or $u=-v$, since

$$
u^{2}-v^{2}=(u+v)(u-v) .
$$

Now we choose in each ring Z_{p} two elements, say x_{p} and y_{p}, such that x_{p} is disctint from y_{p} and from $-y_{p}$.

Then, for each function $f:$ Primes $\rightarrow\{0,1\}$, let $z(f)$ be the element of $\Pi\left(Z_{p}\right.$: p prime) defined by:

$$
\begin{aligned}
z(f)_{p} & =x_{p}
\end{aligned} \quad \text { if } \quad f(p)=0 ;
$$

Then, by 4.4 , regarding each element $z(f)$ as an element of $\mathbf{F}, z(f)^{2}$ is a limit point of S. But if $f \neq f^{\prime}$, then $z(f)^{2} \neq z\left(f^{\prime}\right)^{2}$; indeed, if $x_{p}=f(p) \neq f^{\prime}(p)$, then $z(f)_{p}^{2}=x_{p}^{2} \neq y_{p}^{2}=z\left(f^{\prime}\right)_{p}^{2}$. We have proved:
4.5. Proposition. S has an uncountable frontier.

Thus the cardinality of the frontier of a language cannot distinguish regular from nonregular sets. In the next section we will characterize all sets whose frontier is uncountable.

5. Explicit topology

In this section we will use the first representation theorem to get a second, more geometric description of L and the topology on L. This description makes use of a locally finite rooted tree T (see [EBT]). The vertices of T are certain finite sequences in $S D^{*} \cup S D^{*} \times\{\perp\}$.

A vertex of T in the form of a pair $(\langle s\rangle, \perp)$ is written as a finite sequence $\langle s, \perp\rangle$ ending in the symbol \perp. The root of T is $\langle\perp\rangle$; the root has three immediate successors: \rangle (the empty sequence), $\langle 1\rangle$ and $\langle 0, \perp\rangle$; if

$$
v=\left\langle a_{1}, \ldots, a_{n}, \perp\right\rangle
$$

is a vertex in T, then $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is in $S \dot{D}^{*}$, and v has the following $2 n+3$ immediate successors:

$$
\begin{gathered}
\left\langle a_{1}, \ldots, a_{n}, 1\right\rangle, \ldots\left\langle a_{1}, \ldots, a_{n}, n+1\right\rangle \text { and } \\
\left\langle a_{1}, \ldots, a_{n}, 0, \perp\right\rangle, \ldots,\left\langle a_{1}, \ldots, a_{n}, n+1, \perp\right\rangle .
\end{gathered}
$$

All vertices in T not ending in \perp are leaves; all vertices ending in \perp are not.

A (root) path in T is a sequence $v_{0}=\perp, v_{1}, \ldots$ of vertices, perhaps infinite, such that for each n, v_{n+1} is an immediate successor of v_{n}. We let P denote the collection of all root paths which are either infinite or are finite and end in a leaf.

We want to prove that N^{-}is in bijective correspondence with P. In order to see this, we define two maps

$$
\begin{aligned}
& \text { val: Ver } \rightarrow N \\
& \text { path: } N \rightarrow P
\end{aligned}
$$

where Ver is the set of vertices of T, as follows:

$$
\begin{aligned}
\operatorname{val}\left\langle a_{1}, \ldots, a_{n-1}\right\rangle & =\sum_{1}^{n-1} a_{i} i! \\
\operatorname{val}\left\langle a_{1}, \ldots, a_{n-1}, \perp\right\rangle & =n!+\sum_{1}^{n-1} a_{i} i!
\end{aligned}
$$

Note that val $\rangle=0$, where \rangle is the empty sequence.
Path is defined as follows: for each x in N, path (x) is the root path in P to the leaf vertex v, where val $v=x$. Note that if $x>0$, then $a_{n-1}>0$, and n is least number such that $x<n!$. (Of course, path $(0)=\langle \rangle$.) Lastly, if $v=\left\langle a_{1}, \ldots, a_{n-1}, \perp\right\rangle$, let $l(v)=n!$.

We note one important fact.
Fact. If there is a path from v to v^{\prime} in T, then

$$
\operatorname{val}(v) \equiv \operatorname{val}\left(v^{\prime}\right)(\bmod l(v))
$$

We now define a function from L to P.
Definition of $p: L \rightarrow P$.
If $\langle z\rangle$ is an eventually constant sequence with value x in N, then $\langle z\rangle p=$ path (x); if $\langle z\rangle$ is a strictly increasing sequence in L, then $\langle z\rangle p$ is the infinite root path
where

$$
\perp, \quad v_{1}, \ldots, v_{n}, \ldots
$$

$$
\begin{gathered}
v_{n}=\left\langle a_{1}, \ldots, a_{n-1}, \perp\right\rangle \\
\text { if } \quad z_{n}=n!+\sum a_{i} i!, \text { for } n>1
\end{gathered}
$$

Now we equip the set P of maximal root paths in the tree T with a topology as follows. For each vertex v of T, let $B(v)$ denote the set of all paths in P which contain v.
5.1. Definition. The topology on P is determined by taking the collection of sets $B(v), v \in \mathrm{Ver}$, as a basis.

Note that if v and v^{\prime} are incomparable vertices, then $B(v) \cap B\left(v^{\prime}\right)$ is empty, and if $v<v^{\prime}$, the intersection is $B\left(v^{\prime}\right)$.

Recall the bijection $p: L \rightarrow P$ above. The topology on L can be easily "seen" in P.
5.2. Theorem. p is a homeomorphism.

Proof. Let $B=B(v)$ be a basis set in P. If v is a leaf, $B(v)$ is a singleton and $p^{-1}(B)$ consists of the eventually constant sequence with eventual value val (v).

Otherwise,

$$
\begin{gathered}
v=\left\langle a_{1}, \ldots, a_{n-1}, \perp\right\rangle \text { so that } \\
p^{-1}(B)=\left\{\langle z\rangle \in L: z_{n}=n!+\Sigma a_{i} i!\right\}=p_{n}^{-1}(\text { val } v) .
\end{gathered}
$$

In either case, $p^{-1}(B)$ is a basis set in L. Thus, p is continuous. The argument that p^{-1} is also continuous is equally easy and is omitted.

The frontier of a subset A of a topological space is $A^{-}-A$. Using the above geometric picture of the topology on P, we may describe the frontiers of subsets A of N as follows. Each element x of A determines a finite path path (x) in P (ending in a leaf v with $\operatorname{val}(v)=x$.) The collection of all the vertices in path (x) for $x \in A$, determines a subtree of T, say $T(A)$. The important fact about the tree representation is this: if we identify the elements of N with their images under path, we obtain

The second representation theorem. The infinite paths in $T(A)$ are precisely the elements in the frontier of A.

For example, if we want to find a set A whose frontier is only countably infinite, we might want $T(A)$ to "look like" the tree in figure 5.2 a . To do this, one may define A as the set of all numbers of the form val $\langle 1,2, \ldots, n, 0, \ldots, 0,1\rangle$ (for $n, m>0$, where there are $m 0$'s).

Since we want to characterize those subsets of N whose frontier in L (or P or N^{-}) is uncountable, we will prove a theorem concerning those locally finite trees that have an uncountable number of infinite paths.
5.3. Definition. B_{2} is the complete binary tree - i.e. each vertex in B_{2} has exactly two immediate successors.

Fig. 5.2a
5.4. Definition. Let $T_{i}=\left(V_{i}, E_{i}\right), i=1,2$ be rooted trees, with V_{i} the set of vertices and E_{i}, the set of (ordered) edges. An order embedding $T_{1} \rightarrow T_{2}$ is function $f: V_{1} \rightarrow V_{2}$ such that for each pair $\left\langle v, v^{\prime}\right\rangle$ of vertices in T_{1}, there is a path in T_{1} from v to v^{\prime} iff there is a path from $v f$ to $v^{\prime} f$ in T_{2}.
5.5. Theorem. Let T be a rooted locally finite tree. Then T has an uncountable number of infinite paths iff there is an order embedding of $B_{2} \rightarrow T$.

Proof. Since clearly B_{2} has uncountably many paths, it is easy to see that if there is an order embedding of B_{2} in T, T has uncountably many paths as well. Now to prove the converse, we use the following fact
5.6. Lemma. Let T be a locally finite tree with uncountably many paths. Then there are two incomparable vertices v_{1} and v_{2} in T (i.e. it is not the case that $v_{1}<v_{2}$ or $v_{2}<v_{1}$) such that for $i=1,2, T\left(v_{i}\right)$ has uncountably many paths, where $T\left(v_{i}\right)$ is the subtree of T consisting of v_{i} and all of its successors.

Proof of the Lemma. Since T is locally finite, for each n there are only finitely many vertices in T of depth n. For some n there must be two distinct vertices at depth n, say v_{1} and v_{2}, such that the subtrees $T\left(v_{1}\right)$ and $T\left(v_{2}\right)$ of all descendents of v_{1} and v_{2} respectively both have uncountably many paths. Otherwise, T has only countably many paths, a contradiction.

Using this lemma, we can define an order embedding of B_{2} in T, by induction on the depths of the vertices in B_{2}. The root of B_{2} maps to the root of T. The two successors of the root of B_{2} map to the first pair of incomparable vertices v_{1} and v_{2} in T such that $T\left(v_{i}\right), i=1,2$ has uncountably many paths. Having defined the embedding f on all vertices of B_{2} of depth n such that for a vertex v in B_{2}, the tree $T(v f)$ has uncountably many paths, we use the lemma again to extend the definition of f one level further. The proof of the theorem is complete.

We may easily translate this result into an arithmetic form. For integers u and v, define

$$
u \leqq v \quad \text { if } \quad u \leqq v \quad \text { and } \quad u \equiv v(\bmod l(u))
$$

i.e. if

$$
u=n!+\sum a_{i} i!
$$

and

$$
v=m!+\sum b_{j} j!
$$

then $u \subseteq v$ iff $n \leqq m$ and $a_{i}=b_{i}$ for $i<n$. Say that a subset W of N is " B_{2}-like" if for all x in W there are y, z in W such that $x \sqsubseteq y$ and $x \sqsubseteq z$ and y and z are \subseteq incomparable.

The translation of 5.5 is:
5.7. Proposition. A subset X of N has an uncountable frontier iff X contains a nonempty B_{2}-like subset.

We obtain the following number theoretic fact as a result.
5.8. Corollary. The set of squares contains a B_{2}-like subset.

6. Final Remarks

It appears that the cardinality of the frontier of a one letter language is not a useful tool for making distinctions among languages. One might then ask whether the consideration of the sequence of frontiers of a language $X \subset N$ will be more useful, where the sequence $X=X_{0}, X_{1}, \ldots$ is defined by

$$
X_{n+1}=X_{n}^{-}-X_{n}
$$

i.e. the $n+1$-st set is the frontier of the n-th. However, it is easy to show that for every subset X of N, X_{2}, and hence X_{n} for $n>2$, is empty.

In Scott's talk, several of the results given here were stated: the theorem in Section 3 that \mathbf{F} is isomorphic to the product of the p-adic integers; the fact that N^{-} formed a compact, zero-dimensional Hausdorff space and our Corollary 2.6; most importantly he stated a version of the first representation theorem for the sequences in \mathbf{F}.

The paper [B] has some results of a category-theoretic nature related to the theorem in Section 3. We have not made any use of the fact that N^{-}forms a free profinite monoid. The reader interested in other properties of N^{-}(and other free profinite monoids) may consult [B2] and [R].

Some of the results in Section 1 and 2 can be generalized to the case of the structure of convergent sequences of words in an arbitrary alphabet. The interesting problem of finding a concrete representation of the equivalence classes of these sequences is, as far as I know, still open. However, in the case that M is a finitely generated free commutative monoid, the monoid M^{-}is a finite power of N^{-}, as Z. Esik observed.

Addendum

In a recent conversation, Scott suggested modifying the definition of the frontier of a subset S of N as follows. Instead of defining the frontier of S as the closure of S^{-}minus $S, S^{-}-S$, let:

$$
\text { fron }(S)=S^{-}-\operatorname{int}\left(S^{-}\right)
$$

where "int" denotes the interior operator. This definition has the property that exactly the regular sets have an empty frontier, since fron $(S)=\emptyset$ iff the closure of S is clopen.

Does the cardinality of this "new frontier" give more information about the structure of the set? Not much. For example, when S is the set of squares, we have already shown that the closure of S is uncountable. The interior of the closure is empty, by the following observation.

Proposition.. Let S be an infinite subset of N. If C is the closure of $S, \operatorname{cl}(S)$, $O=\operatorname{int}(C) \backslash F$ is empty iff S contains no infinite regular subset. (Recall that F is the set of infinite elements of $\operatorname{cl}(N)$, the closure of N.)

Proof. First suppose that S contains no infinite regular subset. If $x \in O$, there is a regular subset R of S such that $x \in c l(R)$, by the definition of the topology. Since R is finite, $\operatorname{cl}(R)=R$, and x itself is a finite number. Now suppose that int $(C) \backslash F$ is empty but that R is an infinite regular subset of S. Then $\operatorname{cl}(R)$ is a clopen subset of int (C) and contains uncountably many elements of F.

Applying this proposition to the set $S q$ of squares, we see that int $(c l(S q))$ contains only the elements of $S q$ itself, since, by the pumping lemma, $S q$ contains no infinite regular subset. Thus, the cardinality of fron $(S q)$ is uncountable.

We now show how to construct, for any subset A of integers, a set $S=S(A)$ such that fron (S) is also uncountable, and such that A is Turing equivalent to S. (Thus, if A is nonrecursive, so is S.) In this construction, we make use of the representation of the elements of $c l(N)$ as paths in the tree T defined in section 5 , as well as proposition 5.7. We define the vertices in a subtree $A(T)$ of T by induction: First assume that the vertex $\langle 0,0,0, \perp\rangle$ belongs to $A(T)$;
Now assume that for $4<n$, the set of vertices V_{n-1} of length $<n$ which belong to $A(T)$ have been defined. For each vertex $v \in V_{n-1}$ which is not a leaf, write v as

Then define:

$$
v=\left\langle a_{1}, \ldots, a_{n-1}, \perp\right\rangle
$$

$v 1\left(=\left\langle a_{1}, \ldots, a_{n-1}, 1\right\rangle\right) \in V_{n}$ iff $n \in A$; furthermore, define, for $j=0$ and $j=1$
$v j \perp\left(=\left\langle a_{1}, \ldots, a_{n-1}, j, \perp\right\rangle\right) \in V_{n}$ iff $n \in A$; if n is not in A, then for $j=2$ and 3 , $v j \perp \in V_{n}$.

Otherwise, $v j$ and $v j \perp$ do not belong to V_{n}.
This completes the definition of the set of vertices of the tree $A(T)$.
Note that the tree B_{2} may be order embedded in $T(A)$, so that by proposition 5.7 the set S determined by the leaves of $T(A)$ has an uncountable closure. Moreover, $T(A)$ does not contain all infinite paths containing a particular vertex, and hence S does not contain any infinite regular subset. Lastly, it is clear that A and S are Turing equivalent.

Acknowledgements

It is a pleasure to thank Dana Scott for introducing me to his convergent sequences and sending me some references, including the slides of this talk. Jess Wright, Ralph Tindell and Doug Troeger made several useful suggestions.

Abstract

In a talk titled "Infinite words" given in the spring of '83, Dana Scott introduced the notion of a convergent sequence of "words" (i.e. elements of a finitely generated free monoid). Scott stated a number of properties of the collection of (equivalence classes of) convergent sequences, some of which showed that this structure forms a free "profinite" monoid. The monoid of convergent sequences has a natural Stone space topology in which subsets of the free monoid have closures. Scott asked whether an investigation of the "frontiers" of languages would lead to a useful classification of languages. In this paper, an explicit deseription of the frontiers of all subsets of N, the one-generated free monoid, is obtained. It is shown that the cardinality of the frontier of a subset of N cannot distinguish regular from nonregular sets. A necessary and sufficient condition that a subset of N have an uncountable frontier is given.

DEPARTMENT OF PURE AND APPLIED MATHEMATICS
STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NJ 07030
CONSULTANT TO THE MATHEMATICAL SCIENCES DEPARTMENT
IBM WATSON RESEARCH CENTER
YORKTOWN HEIGHTS. NY 10598

References

[B] Banaschewski, B., On profinite universal algebras. General topology and its relations to modern analysis and algebra II (Preceedings 3rd Prague Topology Symposium 1971). Academia Prague 1972, 51-62.
[B2] Banaschewski, B., The Birkhoff Theorem for Varieties of Finite Algebras, manuscript 1980.
[EBT] Elgot, C., Bloom, S. L., Tindell, R., The algebraic structure of rooted trees, J. of Computer and System Science, vol. 16, No. 3 (1978) 362-399.
[G] Gratzer, G., Universal Algebra (Van Nostrand, Princeton, Toronto, London; 1968).
[K] Kurosh, The theory of groups, translated by K. Hirsch, (Chesea, New York; 1960)
[R] Reiterman, J., The Birkhoff theorem for finite algebras; Algebra Universalis 14 (1982) 1-10.
[S] Scott, D., Infinite words, slides of a lecture given during the spring of 1983.

