Frontiers of one-letter languages

STEPHEN L. BLoOM

Introduction

In a talk titled “Infinite words” given in the spring of ’83, Dana Scott introduced
the notion of a convergent sequence of “word” (i.e. elements of a finitely generated
free monoid). A sequence is convergent if, for every regular set R of words, all but
finitely many of the terms of the sequence belong to R or all but finitely many belong
to the complement of R. Scott stated a number of properties of the collection of (equi-
valence classes of) convergent sequences, some of which showed that this structure
had been known earlier in the guise of a free “profinite” monoid. This monoid has
a natural topology and contains a copy of the original free monoid (as a certain dis-
crete subspace). In the case that the words are elements of the one-generated free
monoid (i.e. the additive monoid N of the nonnegative integers) an explicit descrip-
tion of all convergent sequences was stated (and is derived here). Further, he posed
several problems connected with this structure and the current paper addresses one
of these.

Scott asked whether an investigation of the “frontiers” of languages would lead
to a useful classification of languages. In an effort to answer this question, we looked
at the simplest case: frontiers of subsets of N. An explicit description of these fron-
tiers has been obtained. It is seen that the cardinality of the frontier of a subset of N
cannot distinguish regular from nonregular sets, and a necessary and sufficient con-
dition is given that a subset of N have an uncountable frontier.

In order to obtain these facts we derived a number of the facts mentioned by
Scott in his talk. We have tried to give very elementary proofs and keep the paper self-
contained.

Preliminaries

N will denote both the set of nonnegative (or “natural”) numbers as well as the
additive monoid (N, +, 0). An infinite sequence will be denoted by diagonal bra-

ckets:
<x> = (X1, X, o )s

the terms of (x) are the elements x,,, n=>0.
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The value of a function f on an argument x will be written as xf or f(x).

For positive integers k and /, the 1-generated finite monoid which is the quotient
of N by the least monoid congruence identifying k+/ and k is denoted N, ;. When
k=I=n!, this monoid will be denoted M,. One may assume that the elements of
N, are the integers

0,1,.. .k k+1, .., k+1-1.

The closure of a subset 4 of a topologlcal space is denoted 4A~, and the frontier
of A is A=—A.

In this paper, we will use the word ““uncountable” to mean the cardinality of the
powerset of the natural numbers.

1. Convergent sequences

Let (x) and (y) be infinite sequences of nonnegative integers. For a subset S of N,
the nonnegative integers, define (x) to be ““S-equivalent” to (y) if, all but finitely many
of the terms of {x) belong to S iff all but finitely many of the terms of (y) do.

1.1. Definition. (x) is equivalent to {y), written (x)~(y), if for every regular
set R, {(x) is R-equivalent to {y).

It is easy to verify that ~ is indeed an equivalence relation on the infinite se-
quences of natural numbes. The ~ — equivalence class of (x) will be written (x)~.

1.2. Definition. An infinite sequence is convergent if, for each regular set R,
either all but finitely many terms of (x) belong to R (we will say {x) is “eventually
in R”) or {x) is eventually in N\ R, the complement of R.

We let Conv denote the set of all convergent sequences. Note that if (x) is con-
vergent and (y) is equivalent to {x), then () is also convergent.

The set of equivalence classes of convergent sequences is denoted N—. This set
has both a monoid structure and a topological structure, as will be shown below, and
is one of the more fascinating objects in the mathematical universe. Our goal in this
first section is to give an explicit representation of the members of N~

- We will say that the sequence (y) is a subsequence of the sequence <x> 1f thereis a
strictly increasing function f: N—N such that for each nEN,

Yn = nf -

1.3. Proposition. If y) is a subsequence of the convergent sequence {x), then (y)
is equivalent to (x) and is therefore convergent.

A sequence of Integers is eventually increasing if for each number b, x,,>b for all
but finitely many »; similarly a sequence (x) is eventually constant with value b if
x,=>b for all but finitely many ».

1.4. Proposition. If (x) is convergent, either (x) is eventually constant or even-
tually increasing.

Proof. Let R, denote the regular set of integers greater than b. Then either )
is eventually in R, for every b, in which case (x) is eventually increasing, or not. If
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not, since {x) is convergent, {x) is eventually in the finite union of the singleton sets
{oyu{11U...U{b}, for some b. We now apply the following lemma.

1.5. Lemma. If {x) is convergent and (x) is eventually in a finite union of regular
sets A1U...UAn, then for some 7, (x) is eventually in Ai.

By the Lemma 1.5, {x) is eventually constant, proving 1.4. The easy proof of 1.5
is omitted.

1.6. Proposition. Let {x) be a convergent sequence. Then either there is a cons-
tant sequence (y) or a strictly increasing sequence (y) with (x) equivalent to (y).

Proof. By 1.4, (x) is either eventually constant, in which case (x) has a constant
subsequence, or {x) is eventually increasing, in which case {x) has a strictly increasing
subsequence. By 1.3, the proof is complete.

We will characterize those strictly increasing sequences which are convergent.
But first we give an alternate formulation of the notion of convergent sequence.

1.7. Proposition. The sequence of integers (x) is convergent iff
(1.7a) for each homomorphism # from the additive monoid (N, +,0) to a
finite monoid M, the sequence

(xh) = (x; h, x5h, ...)
is eventually constant.

Proof. Suppose first that {x) is convergent and that h: N-M is a monmd
homorphism. If M consists of the elements ml, ..., mk, then the sets
Ri = h'l(mi)

are disjoint regular sets and (x) is eventually in the union R1U...URk=N. By
lemma 1.5, {x) is eventually in one Ri; i.e. {xh) is eventually constant.
Now suppose that (1.7a) holds. Let R be any regular set and recall the following

fundamental fact:

any regular subset R of N may be written as
R=h"1(X)
for some monoid homomorphism h: N—M, M finite, and some XC M.

Thus, (x) is eventually in R if (xh) is eventually in X’; otherwise, (x) is eventually
in the complement of R.

The preceding proposition may be rephrased: a convergent sequence is one
whose terms eventually cannot ‘be distinguished by a finite automaton.

The next fact is proved in exactly the same way.

1.8. Proposition. If (x) and (y) are convergent sequences, then (x) is equivalent
to {y) iff for every monoid homomorphism h: N—~M, M finite, (xh) and {yh) are
eventually equal.

1.9. Corollary. If {x) and (y) are convergent, so is “(x)+(y)”, where the “sum
is obtained by pointwise addition; further, if (x)~{x") and (y)~()’), then

XY+~ XD+
Both facts follow from 1.7 and 1.8.

1°
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1.10. Corollary. N ~ is a monoid, where the operation is that in 1.9 and the iden-
tity element is the equivalence class of the constant zero sequence.
The next proposition is quite useful. .

1.11. Proposition. Suppose that {x) is a strictly increasing sequence. Then (x)
is convergent iff, for each n=0,

Xm = X, (mod n!) (1.11a)

for all but finitely many m and p. If (x) and (y) are strictly increasing convergent
sequences, (x)~(y) iff, for each n=0,

Xp = ¥, (mod n!) , (1.11b)
for all but finitely many m. :

Proof. 1If {(x) is convergent, then (1.11a) holds, by 1.7 applied to the canonicai
homomorphism N-Z/n!, where Z/n! denotes the ring of integers modulo n!.
Conversely assume that (x) satisfies the property (1.11a). We show that (x) is con-
vergent by using Lemma 1.7 and the following facts.

1.12. Fact. Any monoid homomorphism h: N—M, M finite, factors as a com-
posite

N € > Nk,l
i (1.13)
h
M

where e is a surjective homomorphism, i is injective and N, , was defined in the Preli-
minary section.

1.14. Fact. Any homomorphism h: N— N, ; factors as

N kx o Ny
h# (1.15)
h
No

where n is any number greater than both k and /. Note that the map h (and h#)
satisfies: '
xh=x if x<k;

= k+Rem (x—k, 1) if x=k (1.16)
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We now show that the property of (1.11a) implies that {x) is convergent. Suppose
that h: N—M is a monoid homomorphism, M finite. Then by 1.12 and 1.14 we may
as well assume that M is N, ,, and h is defined by (1.16) when k and / are n!; thus we
assume

zh=1z if z<nl

=n!+Rem (z—nl,nl) if z=z=n!
= n!+Rem (z, n!).

It follows that (xh) is eventually constant, since (x) is strictly increasing, x,,>n!
for m=>n! and x,=x,. (mod n!), for sufficiently large m and m’. Thus, by (1.7),
(x) is convergent. The proof is complete.

We now want to show that the monoid N~ is isomorphic to the (inverse) limit
L of the diagram

PN VL. NGy V. L. Ny VA 1.17)

where M,=N,, ,, and where the homomorphism g,: M,—~M,_, is defined, as
one might expect by now, as

xg, =x if x%(n—l)!;
=m-1!4+Rem(x,(n—=1)!), if x=@n-1L

_ _It is well known [G] that L may be described as the submonoid of nM, consisting of
all “compatible” sequences, i.e. all sequences (z), with z,€ M,, for each n>0, and with
2,8, =2,_1, for n=>1. In order to prove N ~ is isomorphic to L, we make two obser-
vations about the sequences in L.

1.18. Lemma. If (z) is a compatible sequence and for some n, z,<n!, then
Iy =2,, for all m=n.

1.19. Corollary. If (z) is a compatible sequence in L and (z) is not eventually
constant, then for all n=0,
n! = z,(< 2n)).

Now let k,: N—~M, be the canonical homomorphism (i.e. 1k,=1 in M,)
and let h,: N~ —M, be the monoid homomorphism taking the equivalence class of
the sequence {x) to the eventual value of the sequence (xk,) in M,.

1.20. Lemma. For each n>0 the diagram below commutes.

hn+1
N- —> Mn+1

l &nt1 (121)
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Proof. Since the diagram (1.22) commutes,

k,
N H > Mnit
kn
M,

if a'is the eventual value of {(xk,.,) then ag,,, is also the eventual value of (xk,).
Now since the monoid L, equipped with the projection maps

pn: <Z> - Z,
is the limit of the diagram (1.17), there is a unique homomorphism
qg: N~ - L

such that for each n, g, p,=h,. We want to show that ¢ is an isomorphism.
1.24. Lemma. g is surjective.

Proof. Let (x) be a sequence in L. If (z) is eventually constant with value a then
(@)~ q={z), where {a)~ is the equivalence class of the constant sequence {a, a, ...).
Otherwise (z) is strictly increasing. Let {x) be the sequence of integers with x,=z,
for all n (i.e. (x) is (z) considered as a sequence in N). Then we claim that for each n,

: xX)~h, = z,
so that (x)~g=(z).
Indeed, for m=n, x,=zn! and

X, = z, (mod n!)
by the definition of the g,,’s. So the eventual value of (xk,) is z,. Thus g is surjective.
1.25. Lemma. q is injective.

Proof. Suppose that (x)~g={y)~g=(z), where {x) and (y) are convergent
sequences. We will show that (x) is equivalent to (y). Since this is clear in the case
that {x) is eventually constant, assume that (x) is strictly increasing. Then the eventual
value of the sequences (xk,)and (yk,) is z,, so that, for all but finitely many values

of m,
Xpm = ¥, (mod nl).

and hence (x) is equivalent to {y).
We have proved the following

" 1.26. Theorem. The monoid N ~ is isomorphic to L.

It will sometimes be convenient to use L instead of N~ in order to get concrete
representations. For example, notice how sequences in L are added. The n-th com-
ponent of {z)+{z") is z,*,z;, where %, is the monoid operation in M,. Thus, if both
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(z) and (z") are increasing, i.e. n!=z,, z,, then
z,%,2y = n!+Rem (z,+z,, n!).

Hence, aside from the notation “n! +*°, the monoid operation on increasing se-:
- quences in L is the same as that on I1(Z{n!: n>1), where Z/n!is the ring of integers
mod n!. Denoting the increasing sequences in L by F, we have seen that F forms a
subring of the product of the rings (Z/n!: n=1). (In fact, F is the inverse limit of
the diagram

> Zim+1)! > Zn! - ...

where the maps are the canonical ring homomorphisms.) We turn now to the ques-
tion of getting an explicit description of the sequences in L (and thus N~). The
description depends heavily on the following

1.27. “Factorial” lemma. For each n=1 and each number x, O0=x<n!,
there is a unique sequence a, ..., a,_, of integers with

O=saq;=i, 1=i<n
such that .
X = Zaii! = a1+a22_!+...+an_1(n—1)!.

(When n=1, the sequences is the empty sequence, whose sum is 0.)
This fact may be proved in a straightforward manner. Now, if {z) is an increasing
sequence in L, for each n, n!=z,<2n!. Thus, we may write

- - - R n=1 - - - -
z, = nl+ 3 ail.
1

1.28. Proposition. If (z) is an increasing sequence in L, and for some n,
n—1
z,=n!4+ 2 a;i!, and
1

Zarr = D1+ 3 biil,
. 1
then for i<n, bi=a;.

Proof. Since z,,18,41=2n, Rem(Z,.1,0)=2ay! But Rem(z,.,,nl)=
= Y'b;il. By the uniqueness part of the factorial lemma, the proposition is proved.

Hence, if (z) is an increasing sequencein L, there is a unique infinite subdiagonal
sequence {(a) (i.e. 0=a,=n, all n) such that

n—1 .
z, =nl4+ 23 a;i! (1.28a)
1 . .

for all n. :

Let SD denote the set of all infinite subdiagonal sequences, and let SD* denote
the set of all finite subdiagonal sequences of integers. If {(a) is any sequence in SD,
let z(a) denote the sequence defined by (1.28a) above. Then we have already proved
part of the next theorem. _ L
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1.29. First representation theorem. For each sequence {a) in SD, z(a) is an
increasing sequence in L, and the map SD—F defined by

o (@) = z(a)
is a bijection.

_ Proof. We already know the map is surjective. The fact that z(a) 1s in factin L
(and hence in ¥) is immediate, since ((n+1)'+2a z')q,,+1—n'+2 a;il. If {a)

and (a’) are distinct sequences in SD, then z(a) and z(a’) are distinct by the factorial
lemma. The theorem is proved.

It is easy to see that if {z) is an eventually constant sequence in L, then there is a
unique finite subdiagonal sequence

{ays ... ay_4)

such that for k <n
k—1
z=k!+ > a;il,
1

and for k=>n,

n—1

Zy = 2 dil'!.
1

2. Topology

The standard topology on L (and thus on N ) is inherited from the product
topology on
1M,

where each finite monoid M, has the discrete topology. Thus the subbasis for the
topology on L consists of all sets of the form

2 0.9)
where p,: L—~M, is the n-th projection map and X is some subset of M,,. Clearly L

is Hausdorff in this topology, and is compact by the Tychonoff theorem since L is
closed in the product. (Indeed, if {(z)¢L, then for some n, z,g,#2,-,. Then

() N piti(z,-0)

is an open set disjoint from L containing (z).) The subbasis sets are closed (as well as
open) since
L_p;l(X) = DPn 1(1‘111—11,)

Thus L is a “Stone space”. We will show that the Boolean algebra of the clopen
(i.e. closed and open) subsets of L is isomorphic to the Boolean algebra of regular
subsets of N.

Let i: N—~L be the (unique)- monoid homomorphism satisfying

Py = k" (20&)

forall n>1. The image of i consists of the eventually constant sequences. For n>m,



Frontiers of one-letter languages 9

let g, n.: M,~M, be the composite of

M I lgn—l Im+1 M
n B=1"> . ——> M,
We will need the following fact. '

2.1. Lemma. Suppose that XcM, and YcM,, where n>m. Then
) kY NEY(Y) = kY (XNZ), and
i) Pr(X,)Npa'(Y) = pr'(XN2),

where Z=g, ..~ 1(Y).
The easy proof is omitted.

2.2. Proposition. The subsets of L of the form
(X)), XcM,

are in fact a basis, being closed under ﬁnlte union and finite intersection and comple-
mentatlon as well

Proof. We have already noted the closure under complementation and closure
under intersection follows from the preceding lemma, part ii). Closure under finite
union follows from these two facts.

It follows from general topological principles that the clopen subsets of L are
precisely the subsets of the form p;'(X), n=1, XcM,.

If S is a subset of N, let S~ denote the closure of /(S) in L.

2.3. Lemma. Let S=k;}(X), where XCM,. Then S~=p;*(X). Thus the
closure of a regular set is a clopen set in L.

Proof. Let B=p,(X). Then S~ is contained in B since B is closed and i(S)c
C B, by (2.0a). Let b be any point in B not in i(S). We will show that b is a limit
point of i(S). Let C=p,1(Y) be any basis set containing b. We may assume that
n>m. Applying 2.1,
BNC=p;1(Z), and o

SNkFY(Y) = k71(2),

where Z=g,1(Y). Let R be the set SMNk;1(Y). Then R is nonempty: otherwise,
Z is empty, since k, is surjective, and this would imply that BNC would be empty,
contradicting the fact that b is contained in this intersection. Now if a€R, z(a) Isin
BNC, by<(2.0a) again, showing that b is a limit pomt of S. The proof of 2.3 is com-
plete. .

2.4, Lemma. Let R and S any subsets of N. Then RCS iff.R™ CS -

Proof. Only one direction is nontrivial. Suppose that R~ is contained in S
Let x€R. Then the singleton set {x} is a regular subset of N so the closure of i( {x})
say A, is a clopen subset of L, by 2.3 above. Since A4 is open and since R—C S,
A must contain a pomt of S. But smce Lis Hausdorﬁ‘ A 1sa smgleton set Thus x€S8,
proving the ‘lemma. ' : S i
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2.5. Theorem. The map R~~R~ is a Boolean isomorphism from the Boolean
algebra of regular subsets of N to the Boolean algebra of clopen subsets of L.

Proof. By Lemma 2.3, each regular subset of N is mapped to a clopen basis set
and every clopen set in L is the closure of the image of a regular set. By Lemma 2.4,
the map is an order (and hence Boolean) isomorphism.

The next fact follows from the standard proof of the Stone representation
theorem.

2.6. Corollary. N~ is in bijective correspondence with the collection of ultrafil-
ters on the Boolean algebra of regular subsets of N.

3. Some algebra

Recaii that we have shown that the strictly increasing sequences Fin L ferm a
ring, isomorphic to the inverse limit of the diagram

= Z[nt ~ Z[(n—1)! ~ ..

Although it 1s probably well known, we will indicate why F is also isomorphic as a
ring to the product ring
II(Z,: p prime),

where Z, is the ring of p-adic integers.
One definition of Z, (see [Kurosh, p. 154]) is the following:

3.1. Definition. Z, consists of all sequences (k) of nonnegative integers satis-
fying
0=k, <p", (3.12)
and
kn = kn+l(m0d p") (31b)

for each n>1. The sequences are added and multiplied pointwise, where the n-th
component is reduced modulo p”. Thus Z,, is the inverse limit of the diagram
1 ]

L Z[p - Z[p - (3.2)
Kurosh gives an easy proof that
3.3. Z, has no zero divisors.
We will show that each sequence (z) in F determines a sequence (z)«, in Z,.
3.4. Definition of a,: F~Z,.
Given (z), for each n let m=p"!.' Then for all t=>m,

z, = z,, (mod m),
so that
z, = z,, (mod p").

Then for each n, we define k, as Rem (zm> P"), and we let (2)a,=(k).
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Taking the target tupling of the maps a,, p prime, we get a map
a: F - (Z,: p prime).
Since the ring operations on both F and Z, are defined componentwise and since
reduction mod m preserves addition and multiplication, we have
3.5. Lemma. Each map a, is a ring homomorphism and thus so is a.
3.6. Lemma. « is an isomorphism.

Proof. First we show that a is injective. Let (z) and (z”) be distinct sequences in F.
Then for some n, z,7z,. Factoring n! as a product of powers of primes, there is
some prime p and some m such that

z, # z,(mod p").
But for all t=>n!,

z, = z,(mod p")
and-

z; = z,(mod p™)..

Thus, (z)a,#(z’)a,, so that « is injective.
Now we prove « is in fact surjective. Suppose that we are given an element of

(Z,: p prime), say
o7 =P, y2 (), ..

for each prime p. We will construct a sequence (z) in F such that (z)a,=(y?) for

each p- In order to do this, we construct an mcreasmg sequence {x) in Conv with
1=yP1(1) (where pl, p2, ..., are the primes in increasing order) and for each n>1,

Xp > Xpo1; 37D
x, = yP*(n) (mod (p1)")
x, = yP2(n) (mod (p2)")

x, = y*"(n) (mod (pn)").

Suppose that (x) satisfies the above conditions. Then (x) is obviously increasing
and is, although not so obviously, convergent. Indeed, to prove (x) is convergent we
will show that for each n, all but finitely many of the terms of {x) are congruent mo-
dulo n!. Recall that if g and ¢” are relatively prime, then

u = v(mod gq’)
iff .
u=v(modgq) and u=v(modgq).
Now factor a fixed n! into a product of ’primes, say
n!-= pl¥ . prk,

whre 0 = ki, i=1, ..., r. Let m be any number greater than both r and max (k1, ...,
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. kr). Then for each i<m,
X = y*(m)(mod pi™),

so that ] .
X, = yPi(m)(mod pi*’)

since m>ki. But since (y*") is in Z,,

yPi(m) = yP (ki) (mod pi*)).
. It follows that for t=>m,

x, = yPi (ki) (mod pi*), all i<r.

But then, for 1>m,
X, = x,, (mod n!),

proving that (x) is convergent. Let (z) be the sequence in L determined by (x). Then
(2)a,=(y?), for all p.

It remains to show how to obtain the sequence {x). But assuming we have found
X1, .-, Xp—1, W€ Obtain x, satisfying (3.7) by applying the Chinese Remainder Theo-
rem.

The proof of the Theorem is complete.

4. Some closures

In section 2 we showed that if R is a regular subset of N, then the closure of /(R)
in L has the form
Pt (X)
for some XcM,.

4.1. Proposition. If R is an infinite regular subset of N, then R~ and thus its
frontier are uncountable.

Proof. Suppose R is k;1(X), where XcM,. If R is infinite, there is some ele-
ment b in X with
n! = b(< 2n!).

n—-1 -

Write b as n!+ > a;i!. Then, for all infinite subdiagonal sequences a which
extend {a,, ..., a,_,), the element z(a) is in the closure of R. Since there are uncoun-
tably many such sequences a, the proposition is proved.

Now we prove that if S is the nonregular (context sensitive) set of squares, i.e.

S = {n%: nc N}

then the frontier of S is also uncountable.
We will use two facts from the preceding section.
(4.2) Z, has no zero divisors.
(4.3) F is isomorphic as a ring to

II(Z,: p prime).
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Let {x) be any sequence in F and let (y)=(x)(x)=(x)?* (so that for each n,
yp=n!+Rem (x2, n!)).

4.4. Lemma. {y) is a limit point of S.

Proof. Let B be a basis set containing (y). Then B=p;1(X,), for some n and
some subset X, of M,. Thus y,cX,. If a is the natural number

a=n!+tx,

then k,(a®)=y,, so that i(a®)€B, proving that (») is a limit point of S.

Now we will show that there are uncountably many points in L of the form
(x)(x), which will complete the proof that S~ is uncountable. Indeed, in any ring
with no zero divisors, if u?=v%, then u=v or u=—v, since

u—v® = (u+v)(u—v).

Now we choose in each ring Z, two elements, say x, and y,, such that x, is
disctint from y, and from —y,.
Then, for each function f: Primes—{0, 1}, let z(f) be the element of II(Z,:

p prime) defined by:
z(f)p=x, if f(p)=

=y, if fO)=1

Then, by 4.4, regarding each element z(f) as an element of F, z(f)? is a limit
point of S. But if f=f’, then z(f)?zz(f")?; indeed, if x,=f(p)#f (p), then
z(f)i=x3=y2=2z(f")s. We have proved:

4.5. Proposition. S has an uncountable frontier.

Thus the cardinality of the frontier of a language cannot distinguish regular
from nonregular sets. In the next section we will characterize all sets whose frontier
is uncountable.

5. Explicit topology

In this section we will use the first representation theorem to get a second, more
geometric description of L and the topology on L. This description makes use of a
locally finite rooted tree T (see [EBT]). The vertices of T are certain ﬁnité sequences in

SD*USD*X {1 }.

A vertex of T in the form of a pair ({s), L) iswritten as a ﬁmte sequence s, 1)
ending in the symbol L. Theroot of Tis { | ); the root has three immediate succes-
sors: () (the empty sequence), (1) and €0, L ); if

v="{ay, ..., Ay, L)

is a vertex in T, then (g, ..., a,y is in SD*, and v has the following 2n+3 imme-
diate successors:

(@1 ey Ans 1), ... {0y, ..., 4y, n+1) and
{ags s 4,50, 1), .., {ay, ..., a,, n+1, L)

All vertices in T not ending in | are leaves; all vertices ending in I are not.
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A (root) path in T is a sequence v,= 1, v, ... Of vertices, perhaps infinite,
such that for each n, v,,, is an immediate successor of v,. We let P denote the
collection of all root paths which are either infinite or are finite and end in a leaf.

We want to prove that N~ is in bijective correspondence with P. In order to see
this, we define two maps :
val: Ver - N

path: N - P

where Ver is the set of vertices of T, as follows:

n—1
val {a,, ..., a,_y) = %‘ a;il;

n—1

val {a;, ..., @y, L) =n!+> a;il.
1

Note that val ()=0, where () is the empty sequence.

Path is defined as follows: for each x in N, path (x) is the root path in P to the
leaf vertex v, where val v=x. Note that if x>0, then a,.,=>0, and n is least num-
ber such that x<n!. (Of course, path(0)=().) Lastly, if v={(a,, ..., a,—1, 1),
let I(v)=nl.

We note one important fact.

Fact. If there is a path from v to v’ in T, then
val (v) = val (v") (mod I(v)).

We now define a function from L to P.

Definition of p: L—~P.

If (z) is an eventually constant sequence with value x in N, then (z)p=path (x);
if (z) is a strictly increasing sequence in L, then (z)p is the infinite root path

1, 01,0050, ...
where
v,={ay, ..., ap_1, L)

if z,=n!4+Za;i!, for n=>1.

Now we equip the set P of maximal root paths in the tree T with a topology as
follows. For each vertex v of T, let B(v) denote the set of all paths in P which contain v.

5.1. Definition. The topology on P is determined by taking the collection of
sets B(v), véVer, as a basis.

Note that if v and v" are incomparable vertices, then B(v) N B(v") is empty, and
if v<v’, the intersection is B(v").

Recall the bijection p: L—~P above. The topology on L can be easily “seen”
in P.

5.2. Theorem. p is a homeomorphism.

Proof. Let B=B(v) be a basis set in P. If v is a leaf, B(v) is a singleton and
p~Y(B) consists of the eventually constant sequence with eventual value val (v).
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Otherwise, .
v={(a,...,a,y, L) so that

p~Y(B) = {{2)€L: z, = n!+Za;i!} =p;*(val v).

In either case, p~1(B) is a basis set in L. Thus, p is continuous. The argument
that p~1 is also continuous is equally easy and is omitted.

The frontzer of a subset 4 of a topological space is 4~ — 4. Using the above geo-
metric picture of the topology on P, we may describe the frontiers of subsets 4 of N
as follows. Each element x of 4 determines a finite path path (x) in P.(ending in a
leaf v with val (v)=x.) The collection of all the vertices in path (x) for x€4, deter-
mines a subtree of T, say T(4). The important fact about the tree representation is
this: if we identify the elements of N with their images under path, we obtain

The second representation theorem. The infinite paths in T(A) are precisely the
elements in the frontier of A.

For example, if we want to find a set 4 whose frontier is only countably infinite,
we might want T(4) to “‘look like” the tree in figure 5.2a. To do this, one may define
A as the set of all numbers of the form val(l,2,...,n,0,...,0,1) (for n,m=>g,
where there are m 0’s).

Since we want to characterize those subsets of N whose frontier in L (or P or
N ™) is uncountable, we will prove a theorem concerning those locally finite trees that
have an uncountable number of infinite paths.

5.3. Definition. B, is the complete binary tree — i.e. each vertex in B, has exactly
two immediate successors.

{1,0,1)

{1,0, 1) (12,0, 1)

{1,0,0, 1) {1,2,0,0,1)

Fig. 5.2a
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5.4. Definition. Let T;=(V;, E;), i=1,2 be rooted trees, with V; the-set of
vertices and E;, the set of (ordered) edges. An order embedding T,—~T, is function
Jf: Vi~V such that for each pair (v, v") of vertices in T, there is a path in T, from
v to v’ iff there is a path from vfto v’fin T,.

5.5. Theorem. Let T be a rooted locally finite tree. Then T has an uncountable
number of infinite paths iff there is an order embedding of B,—T.

Proof. Since clearly B, has uncountably many paths, it is easy to see that if
there is an order embedding of B; in 7, T has uncountably many paths as well. Now
to prove the converse, we use the following fact

5.6. Lemma. Let T be a locally finite tree with uncountably many paths. Then
there are two incomparable vertices v, and v, in T (i.e. it is not the case that v,<v,
or v,<v;) such that for /=1,2, T(v;) has uncountably many paths, where T'(v;)
is the subtree of T consisting of v; and all of its successors.

Proof of the Lemma. Since T is locally finite, for each n there are only finitely
many vertices in 7 of depth n. For some n there must be two distinct vertices at depth
n, say v; and v,, such that the subtrees 7'(v,) and T(v,) of all descendents of v; and
v, respectively both have uncountably many paths. Otherwise, T has only countably
many paths, a contradiction.

Using this lemma, we can define an-order embedding of B, in T, by induction
on the depths of the vertices in B,. The root of B, maps to the root of T. The two
successors of the root of B, map to the first pair of incomparable vertices v, and v,
in T such that T(v), /=1, 2 has uncountably many paths. Having defined the em-
bedding f on all vertices of B; of depth » such that for a vertex v in B,, the tree T(vf)
has uncountably many paths, we use the lemma again to extend the definition of f
one level further. The proof of the theorem is complete.

We may easily translate this result into an arithmetic form. For integers u and v,
define

uSv if u=v and u=v(modl(u));
ie. if ,
u=nl+a;i!
and

then uCSv iff n=m and a;=b; for i<n. Say that a subset W of N is “B,-like” if .
for all x in W there are y,z in W such that xSy and xSz and y and z are -
incomparable.

The translation of 5.5 is:

5.7. Proposition. A subset X of N has an uncountable frontier iff X contains a
nonempty B,-like subset.
We obtain the following number theoretic fact as a result.

5.8. Corollary. The set of squares contains a B,-like subset.
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6. Final Remarks

It appears that the cardinality of the frontier of a one letter language is not a
useful tool for making distinctions among languages. One might then ask whether the
consideration of the sequence of frontiers of a language XC N will be more useful,
where the sequence X=JX,, Xy, ... is defined by

Xn+1 = Xn— —Xn;
i.e. the n+ 1-st set is the frontier of the n-th. However, it is easy to show that for every
subset X of N, X,, and hence X, for n>2, is empty.

In Scott’s talk, several of the results given here were stated: the theorem in Sec-
tion 3 that F is isomorphic to the product of the p-adic integers; the fact that N~
formed a compact, zero-dimensional Hausdorff space and our Corollary 2.6; most
- importantly he stated a version of the first representation theorem for the sequences
in F.

The paper [B] has some results of a category-theoretic nature related to the
theorem in Section 3. We have not made any use of the fact that N~ forms a free
profinite monoid. The reader interested in other properties of N~ (and other free
profinite monoids) may consult [B2] and [R].

Some of the results in Section 1 and 2 can be generalized to the case of the struc-
ture of convergent sequences of words in an arbitrary alphabet. The interesting pro-
blem of finding a concrete representation of the equivalence classes of these sequences
is, as far as I know, still open. However, in the case that M is a finitely generated free
commutative monoid, the monoid M ~ is a finite power of N, as Z. Esik observed.

Addendum

In a recent conversation, Scott suggested modifying the definition of the fron-
tier of a subset S of N as follows. Instead of defining the frontier of ' as the closure
of §~ minus S, S~ —S, let:

fron (§)=S~—int (§7),

where “int” denotes the interior operator. This definition has the property that
exactly the regular sets have an empty frontier, since fron(S)=§ iff the closure of
S is clopen.

~ Does the cardinality of this ‘“‘new frontier” give more information about the
structure of the set? Not much. For example, when S is the set of squares, we have
already shown that the closure of S is uncountable. The interior of the closure is
empty, by the following observation.

Proposition.. Let S be an infinite subset of N. If C is the closure of S, cI(S),
O=int(C)\F is empty iff S contains no infinite regular subset. (Recall that F is
the set of infinite elements of c/(N), the closure of N.)

Proof. First suppose that S contains no infinite regular subset. If x€0, there
is a regular subset R of S such that x€cl(R), by the definition of the topology.
Since Ris finite, c/(R)=R, and xitself is a finite number. Now suppose that int(C)\ F
is empty but that R is an infinite regular subset of S. Then cI(R) is a clopen subset
of int(C) and contains uncountably many elements of F.

Applying this proposition to the set Sg of squares, we see that int (cI(Sq))
contains only the elements of Sq itself, since, by the pumpmg lemma, Sq contains
no infinite regular subset. Thus, the cardinality of fron(Sgq) is uncountable.

2 Acta Cybernetica VII/1
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We now show how to construct, for any subset A4 of integers, a set S=5(4)
such that fron(S) is also uncountable, and such that A is Turing equivalent to S.
(Thus, if 4 is nonrecursive, so is S.) In this construction, we make use of the rep-
resentation of the elements of c/(¥N) as paths in the tree T defined in section 5, as
well as proposition 5.7. We define the vertices in a subtree 4(T) of T by induction:
First assume that the vertex {0, 0,0, 1) belongs to A(T);

Now assume that for 4 <n, the set of vertices ¥V,_; of length <n which belong to
A(T) have been defined. For each vertex v€¥,., which is not a leaf, write v as

v={ay, ..., Gp-q, L)

Then define:
vl (={ay, ., G-y, 1))EV, iff n€ A; furthermore, define, for j=0 and j=1
v L (=(ay, .5 Qu-1,J, L)EV, iff n€A; if nis not in A4, then for j=2 and 3,
yLey,. :

Otherwise, vj and vj 1 do not belong to V,.
This completes the definition of the set of vertices of the tree A(T).

Note that the tree B, may be order embedded in T(A4), so that by proposition
5.7 the set S determined by the leaves of T'(4) has an uncountable closure. More-
over, T(A) does not contain all infinite paths containing a particular vertex, and
hence S does not contain any infinite regular subset. Lastly, it is clear that 4 and
S are Turing equivalent.
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