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0. Introduction 

A general approach to characterizing the inherent complexity of computational 
problems is given by the quantitative analysis of the extent of the data flow that has 
to be performed during the solution of these problems. On the other hand, any 
parallel processing system possesses a restricted ability for fast data transfer deter-
mined essentially by the interconnection pattern of the processing elements. In 
the present paper, these general observations, as previously mentioned by Gentleman 
(1978), Siegel (1979), Abelson (1980), or Klette (1980), will be transformed into : 
precise definitions of local, global and total data transfer within SIMD systems, 
and the corresponding definitions of local, global and total data dependencies for 
computational problems as well. The basic relation between these corresponding 
notions — the computational time must at least be sufficient for realizing the 
necessary extent of data transfer — will be represented in a so-called data transfer 
lemma that outlines the starting point of our formalized method of obtaining lower 
time bounds by data flow analysis. This approach will be illustrated by application 
to a variety of different parallel processing architectures where the unifying feature 
will be that we shall use SIMD models that employ an interconnection network 
and use no shared memory. Our parallel processing systems will be abstract models 
of computation where the level of abstraction may be compared with that of a random 
access machine (RAM); cp. Aho et al. [2] for this model of serial computation. 
For computational problems such as those mentioned in the present paper the author 
was inspired by the digital image processing area, where reference is made to Rosen-
feld et al. [9] and Klette [5]. But, of course, this does not represent a serious restric-
tion; e.g., matrix multiplication or pattern matching are computational problems 
of general importance. 

The general SIMD model as used in this paper is characterized by a finite or 
infinite set of processing elements (PEs), an interconnection network, and a central 
processing unit (CPU). For a rough scheme of an SIMD system which the reader 
may have in mind throughout this paper, see Fig. 1. 

CPU. The CPU has a (central) random access memory which consists of 
a finite or infinite sequence of registers /•<,, ... with a distinguished accumu-
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Figure 1. 
Scheme of an SIMD system 
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lator r0. Let DcPU be the depth of this random access memory, i.e., the number 
of CPU registers, for ls£>C P USo°. Furthermore, let WCPV be the word length 
of these registers (number of bit positions), which is assumed to be constant for 
all CPU registers, for 1 ^ WCPV ^ <*>. The CPU spreads a single instruction stream 
to the synchronized working PEs. The programs of the system are stored in a, 
potentially size-unlimited, special program memory of the CPU. Part of any instruc-
tion addressed to the PEs is an enable/disable mask to select a subset of the PEs 
that are to perform the given instruction; the remaining PEs will be idle. The CPU 
may read the accumulator contents of any one PE of a specified subset of all PEs, 
and is able to transfer its accumulator contents to some of the PE accumulators. 
Any data transfer between CPU and PEs is restricted to serial mode. 

PEs. Each PE has some (local) random access memory which consists of a finite 
or infinite sequence of registers r0, r2, ... with a distinguished register r0 called 
the accumulator. Let DPE be the depth of these random access memories, i.e., 
this depth is assumed to be constant for all PEs of a given system, fór 1 SZ)P ES 
Furthermore, let WPE be the unique word length of the PE registers, for 1 S IVPE^<=°. 
Each PE is capable of performing some basic operations which take place in its 
accumulator. Direct data access is restricted to its own registers, to the accumula-
tors of the directly connected PEs in the sense of the given interconnection network, 
and, possibly, to the accumulator of the CPU. The PEs are indexed by integers 
or tuples of integers. Each PE knows its index. Let NPE, 0 S JVPE S °O, be the number 
of PEs of a given system, and ind = ( j y , j2 , ...,ylVpE} be the set of all PE indices of 
a given SIMD system. 

Interconnection network. Each PE is located in a node of a given undirected 
graph representing the two-way interconnection scheme. Any PE may uniquely 
identify the different edges connected to its node by using a given coding scheme. 
Let N w be the branching degree of the network, i.e., the maximum degree of the 
nodes of the given graph, for 0 ̂  Nm < 

For the selection of a specialized SIMD model the following system features 
may be concretely specified: 

• off-line or on-line communication with the outside world, 
• special values for NPE, jVin, DCPU, DPE, WCPV, or WPE, 
• the set ind, 
• the interconnection network structure including the edge coding scheme, 
• the CPU instruction set including the available set of enable/disable masks 

as well as the method of the data exchange between CPU and PEs, and 
• the restrictions on the system in communication with the outside world, 

i.e., input and output management. 
Note that as regards the technical realization of an SIMD computing facility, in 
principle, one implementation may offer different ways to run such a system, i.e., 
the working principles of several SIMD models as considered in the present paper 
may be unified within one implementation. Essentially, this is the problem of 
constructing a flexible interconnection network with reconfigurability, and/or of 
running a system using different modes. 

The outline of this paper is as follows. In the first section we shall present 
some standardized system description features for specifications of SIMD models. 
In Section 2 we shall describe how the data flow of an SIMD system may be measured 
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by functions in a quantitative way. Then, in Section 3 the corresponding notions 
of data dependencies will be explained for computational problems. In Section 4 
the data transfer lemma will be given as well as some applications of this lemma to 
different models of computation for lower time bound determination. Our concluding 
remarks are given at the end of the paper. 

The standard SIMD models as described in Section 1 constitute the frame-
work of a parallel simulation system (PARSIS) presently under implementation; 
cp. Legendi [7] for a similar project for simulation of cellular processors. 

1. OFF-NETs and ON-NETs 

In our experience in parallel program design the exclusion of given technical 
restrictions, e.g., on NPE, Nw, etc., in the first steps of problem solutions, enables 
us to find important methods of parallelization of solution processes as well as 
general features for system description. Of course, for concrete implementation 
quite a lot of time must be spent in taking given restrictions for jVPE, Nw, etc. 
into consideration. The present paper is concerned with the first phase, the theore-
tical preparation for the second phase, which is the concrete implementation. In 
this sense, we shall deal with abstract SIMD models throughout this paper. More 
detailed discussion will be the subject of forthcoming papers, depending on the 
progress of the PARSIS project. 

The common one-accumulator computer, e.g., the random access machine 
(RAM) in the sense of Aho et al. [2], may be considered as the simplest example 
of an abstract SIMD system — NPE = 0 and JDCPV=fVCPlJ = <=°. We shall use the 
RAM as the underlying model for serial data processing where, in distinction to [2], 
infinite precision, real number arithmetic is assumed, which is convenient for our 
theoretical considerations of computational problems such as the Fourier transform, 
or for operations on finite sets of points in the real plane, by avoiding discussions 
of round-off errors. In this sense, our standardized system description features 
start with the declaration of abstract registers. 

Abstract registers. For an SIMD system with abstract registers we assume that 
any register may store one real number at a time, without any special encoding 
tricks. For our theoretical considerations in this paper, it is not important to specify 
how the reals are stored in these abstract registers by special bit representations. 

Standard register enumeration. We assume a unique enumeration of all registers 
as follows. For registers rm of the PE with index j or ( j , k), called PE (J) or 
PE (j,k) in the sequel, we use the integer tuples ( j , m) or ( j , k, m), respectively, 
and for register rm of the CPU just the integer m. 

Uniform network structure. Either TVIN=0, or Nlfi=p^l and the network 
structure is characterized by p different functions / 0 , / i , •••,fP~i on the set ind 
of all PE indices in the following way. For j, A:£ind, PE(y') and PE(fc) are directly 
connected iff there exists an i, Osi^p — l, such that fi(j)=k. Because of our 
assumption that all connections are two-way it follows that 

(A j, fee ind) [(v«e {o, I , ..., p-imu) = k = (v/i€ {o, 1,..., P - i » fh(k) =j]. 
In [10] the functions / 0 , / i , •••,fp-1 were called interconnection functions. With 
the exception of a fixed set of PEs at the network border, we also claim that all 
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PEs are directly connected to exactly p different PEs. When fi(j)=k, PE(/c) 
is called the ith neighbor of PE (J). In this way, the edge coding scheme for uniform 
networks is defined. For each PE, the neighborhood consists of all (i.e., at most p) 
neighbor PEs. Examples of infinite networks as well as finite networks matching 
our uniformity demand are given in Table 1. In the sequel we shall use these networks 
as defined here. 

Some remarks are necessary regarding Table 1. The left-right 2' (LR2I) net-
work and the left-right-up-down 2' network (LRUD2I) network were used for 
vector machines in Pratt et al. [8] and Klette et al. [6], respectively, without the re-
striction by an integer m as stated in Table 1. Note that we have restricted our-
selves to interconnection networks with finite branching degree. The special form 
of the set ind in the Quadtree network is determined by our standard PE address 
masking scheme as defined later on. The finite uniform networks mentioned in 
Table 1 were studied by Siegel [10] — the perfect shuffle (PS), the ILLIAC, the 
Cube, the pliis-minus 2' (PM2I), and the wrap-around plus-minus 2' (WPM2I) 
network, with the modification that the PS network is an undirected graph to match 
our uniform network convention, i.e., for the PS network the inverse shuffle func-
tion was added in comparison to [10]. For y'£ind = {0,1, ..., 2m — 1} let ... a^a0 
denote the binary representation of j and a¡ denote the complement of a¡. Then 

exch (am_1...a1a0) = am^1...a1a0, 

shuf (am-1...a1a0) = a m _ 2 . . . a 1 a 0 f l m _ 1 , 

shuf_ 1(am_1 . . .a1a0) = a0am_1 . . .a2a1 , 

cub e¡(am_1...ai+1aiaí„1...a0) = ám-1...ai+1aiaiJ1...a0, 

WPM+i(flm_1...fl i...fl0) = bm_1...bi...b0, 

where ¿>,_i... b0bm.y... bi+1bi = (ai^1... a0am.1... a ;+1a¡) + 1 mod2m, 

W P M _ ( a m _ I . . . A , - . . . A 0 ) = bln.1...bi...b0, 

where ... b0bm^1 ... bi+1bi=(ai^1 ... a0am^1 ... ai+1a¡) — 1 mod2m, for 0 s i ' < m 
and m S l . 

Standard PE masking scheme. As standard masks we shall use the simple bit 
patterns for PE indices as used, for example, in [10]. In the case of integer indices, 
a standard PE address mask is given by an arbitrary, non-empty word on the alphabet 
{0,1, x} enclosed by brackets, where x represents the "dont't care" situation. 
The only PEs that will be active are those whose address (i.e., index) matches the 
másk from right to left, where the indices are given in binary representation; 0 mat-
ches 0,1 matches 1, and either 0 or 1 matches x. For example, by mask [x] all 
PE's are activated. For the representation of concrete standard masks within 
programs, etc. we take liberties such as [all PE's] instead of [x], or [odd PE's] 
instead of [lx] if the rightmost bit position is assumed to be the sign position. 
In the case of integer tuple indices, the standard PE address masks are arbitrary 
tuples of non-empty words on {0,1, x} enclosed by brackets. Note that for infinite 
networks as given in Table 1 any given PE address mask activates an infinite mani-
fold of PE's. For example, the mask [Oxx] applied to the bintree network will 
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Table 1. Uniform networks 

Network ind Nin Case 
Edge coding scheme 

Network ind Case 
o 1 2 3 4 5 6 7 

LINEAR integers 2 ail 7 - 1 — — — — — — 

LR2Im integers 2 m ail fuU)=j + 2l and / 2 i + iO')=y- 2' for O s i < m and m S 2 

BINTREE positive 
integers 

3 j—2 
ail 

0/2j 
2j 2y+l — — — — — 

TRIANGLE positive 
integers 

5 j—2 
ail 
i* 2' 

L//2J 
2j 2j+ 1 

y - i 

— 

— — 

— 

y V 2 ' - l — — — y + i — — — 

QUADTREE U • 5 
J * 4 
al! 

"J/4i 
4; 4/4-1 4j + 2 4 / + 3 

— — — 

HEXAGONAL tuples of integers 3 ail 

even J 
j+k\ 
odd / 

a * - « (j>k+ 1) 

O - l ,k) 

(j+hk) 

— — — — — 

SQUARE tuples of integers 4 all ( j , k - l ) (/,*+» U-hk) U+hk) — — — — 

TRIAGONAL tuples of integers 6 all (J,k-1) 0 , ^ + 1 ) 0 - 1 ,k) (j+hk) C / - U - D 0 + i , f c + i ) — — 

DIAGONAL tuples of integers 8 all (j;k— 1) 0 , * + D (j+hk) 0 - U - D 0 + U + D O - U + 1 ) O + U - 1 ) 

LRUD2Im tuples of integers 4 m all /«(À k) = ( j + 2l, k), /4i + 1(y, k) = (j—2', k), ftl + t(J, k) = 0 , * + 2'), 
fu + a(j,k)=(j,k-2'), for 0 â i < m and m s 2 

PSm {0,1, ...,2m — 1} 3 all exch shuf shuf"1 
— — — — — 

ILLIACm {0,1, ...,2m — 1} 4 all + lrnod2m — lrnod2m m 
+ — m o d 2 m 

2 
m 

mod2m 

2 
— — — — 

CUBEm {0,1, ...,2m~1} m all / , 0 ) = cube i0), for OS/ -<m 
PM2Im {0,l,...,2m_1} 2 m all /aiO) = / + 2 ' mod 2 m , / 2 i + 1 0 ) = ; —2' mod 2m, for 0 s i - = m 
WPM2I™ {0,1,... ,2""») 2 m all /»<0')=-WPM+,0"), / 2 i + iO)=WPM_,(/'), for 0 s / < m 
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activate the processing elements PE(2) and PE(3) on layer 1 of the bintree, 
disables layer 2, enables the first four PE's of layer 3, and so on, where the common 
binary representation of non-negative integers is assumed for the PE indices of the 
bintree network. 

Abstract CPU instruction set. For any one of our theoretical SIMD systems, 
we shall assume that its CPU instruction set may be obtained by special interpretation 
and selection of the instructions of an abstract CPU instruction reservoir defined 
as follows. There are two different types of instructions, parallel instructions for 
activating some of the PEs, and serial instructions where the CPU itself is addressed 
for certain activity. Any parallel instruction consists of a PE address mask, an 
operation code (READ, WRITE, LOAD, STORE, OP, or OP1+1, / si), and an 
operation address a where we shall use the standard register enumeration for 
explaining the meaning of these operation addresses. For the serial instructions, 
we assume branching instructions JUMP b, JGTZ b, JZERO b, JLTZ b (where b 
symbolizes an instruction number in a CPU program and the contents of the CPU 
accumulator are tested), the HALT instruction, and instructions consisting of an 
operation code (READ, WRITE, LOAD, STORE, OP l 5 or OP2). See Table 2 

Table 2. Abstract CPU instruction set without test and stop instructions 

Instruction Possible operation address a 

[mask] READ a m; *m 
[mask] WRITE a m\ *m 
[mask] LOAD a m\ - - *m\- : i 
[mask] STORE a m\ *m; : ii, h, 
[mask] OPj a m; *m; : i 
[mask] OP2 a m; *m; : i 
[mask] OP, + 1 : «1, ¡i, ... h 

READ a m; *m 
WRITE a = x; m\ *m 
LOAD a = x; m; *m; 0 ) 
STORE a m; *m\ U) 
OP2 a = * > m\ *m\ 0 ) 
OP2 a — x; m\ *m; U) 

for the complete abstract CPU instruction set without jump and stop instructions. 
In the case of a parallel instruction, OPj denotes a unary operation determining 
the new accumulator contents of all activated PEs by a certain transformation of 
the contents of the register addressed by a as well as thé old accumulator contents 
of the activated PEs; and OP / + 1 denotes an (/+l)-ary operation in the same sense. 
For the activated PE(y') the operation address m indicates the contents of register 
(J, m), "m indicates the contents of register ( j , n) if the nonnegative integer n is 
the contents of register (J, m) at that moment (i.e., indirect operand addressing, 
in any situation of incorrect programming ; e.g., in the case that (J, m) does not 
have a nonnegative integer contents at that moment, an interrupt of the programmed 
system is assumed), and the operand : i1,i2,...,ii for 1 indicates the contents 
of the accumulators of those neighbors of the activated PEs that are encoded by 

6* 
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i„is, ..., /, according to the edge coding scheme of the interconnection network. 
LOAD and STORE have the obvious meanings that the accumulator contents of the 
activated PEs are replaced by the addressed value, or copied to the addressed 
registers, respectively. READ and WRITE denote the necessary operations for 
communication with the outside world where the source and the destination of the 
data in the "outside world" remain unspecified (certain places within a computing 
environment not belonging to the given SIMD system itself). In the case of a serial 
instruction, the unary operation OP t and the binary operation OP2 produce new 
CPU accumulator contents by a certain transformation of the addressed values, 
where in the case of OP2 the old CPU accumulator contents is used as the operand 
in the first position. READ, WRITE, LOAD, and STORE have the obvious fixed 
meanings. The operands —x, m, *m, and (J) indicate the data unit x itself, 
the contents of CPU register m, the contents of CPU register n if register m 
contains the nonnegative number n at that moment, and the contents of register 
(J, 0), respectively. Note that with this abstract CPU instruction set data transfer 
between the CPU and the PEs is possible via the accumulators in serial mode only. 
Furthermore, for a specialized SIMD model, it is convenient to identify the basic 
computational power of the PEs and the CPU with that of the RAM as represented 
by the RAM instruction set [2, Fig. 15], roughly speaking. In this way, an interesting 
point is provided by the description of how the PEs are able to perform local logical 
decisions in SIMD mode as we shall explain in Example 1 by equation (1) for a spe-
cial SIMD model. 

Off-line I/O convention. For the off-line communication of an SIMD system 
with the outside world we assume that a special set of input registers of the system 
is fixed such that all other registers of the system contain value zero at the beginning 
of any computation (moment i=0) as it is assumed for those input registers not 
actually needed for the placement of input data. Each of the input registers may 
contain at most one data unit of the input data. Thus, for concrete problem solu-
tions, it is necessary to specify 

• what data structure is assumed for the given input data, and 
• how the data are placed in the given input register set. 

Also, a set of output registers of the system must be fixed. In this sense, for concrete 
problem solutions it has to be clear 

• what is the desired data structure for the output data, and 
• how this data structure has to be stored, or computed in the predetermined 

output register set. 
As off-line I/O convention we declare that for a certain L, the 
CPU registers 0,1, ...,L— 1 are fixed to be input and output registers, and for 
any PE(y'), if there exists a certain mSO such that register ( j , m) is fixed to be 
an input register (output register) then register (/, 0) is an input register (output 
register) as well. What is true for the register holds for the accumulator, too. 

On-line I/O convention. For the on-line communication of an SIMD system 
with the outside world some registers are predetermined to act as input and/or 
output registers. As on-line I/O convention we adopt the same rules as in the off-
line case. But, at the beginning of any on-line computation (moment t=0) , all 
registers of the system are assumed to hold value zero. Input data or output data 
may enter or leave the system at a moment as specified by the CPU program according 
to READ or WRITE instructions. In any correct program these input (output) 
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instructions have to be addressed to a proper subset of all registers specified as 
input (output) registers. For the input (output) data it is assumed that there exists 
a memory facility in the outside world from where (to where) the input (output) 
data are obtained (given) by the system. Thus, for concrete problem solutions it is 
necessary to specify 

• what data structures are assumed for the input and output data, and 
• how these data are partitioned into waves of information such that one wave 

may enter (leave) the system per input (output) operation as performed 
according to the CPU program. 

The size of these waves of information, i.e., the number of data units forming those 
waves, may alter during a computation process, and just one data unit, for example 
by LOAD = x, will be considered to be the simplest case of a wave of information. 

Uniform cost criterion. For measuring the time complexity of computations, 
we assume that any (basic) instruction of the SIMD system needs one unit of tjme 
for performance on this system. 

Definition 1. A model of computation SYS is called a standard off-line network 
system (SYS £ OFF-NET) iff SYS is defined by 

• a CPU and a fixed set of indexed PEs, with concrete values for Z>CPU 
and A > E , 

• abstract registers if not otherwise specified, and the standard register enume-
ration, 

• a uniform interconnection network with 0 ̂  vVIN < 
• the standard PE masking scheme, 
• a special interpretation and selection of instructions of the abstract CPU 

instruction set where 
(OFF. 1) no READ and WRITE instructions are contained in the instruction set 

of SYS, 
(OFF. 2) for the CPU all RAM instructions [2, Fig. 1.5] except READ and WRITE 

are avilable, 
(OFF. 3) for Ar1N=/?sl at least one instruction of the type [all PE's] OPp + 1 : 

0,.,...,p— 1 is available, and 
(OFF. 4) for any output register ( j , 0), i.e., accumulator of PE(y), at least one 

instruction of the type OP2(/) is available, i.e., the CPU may have con-
trol of any outputting PE, 

• the off-line I/O convention, and . 
• the uniform cost criterion. 
For the defined class OFF-NET we may define subclasses — e.g., OFF^NETp 

to be the set of all SYS£OFF-NET having the branching degree p=Nm, OFF-
SQUARE to be the set of all SYS 6 OFF-NET having a square network as defined 
in Table 1, OFF-BINTREE with the same reference of Table 1, OFF-PS = 

= u OFF-PSm, or just OFF-RAM. 
m = l ' 

Example 1. Let us consider the following special SIMD system EXAM PI £ 
€ OFF-SQUARE. Let DCPU = DPE = oo. Additionally to the CPU . registers 
0,1, ...,L — 1 for a certain 1, all the accumulators (j,k, 0), OMj^M and 
0^k<N for some M, /Vs 1, are fixed as input and output registers of EXAMP1. 
The system possesses the following instruction set: 
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[mask] ADD a, a for m, *m, :ilt ..., /, for ilt ..., /(€{0,1, 2, 3}, 
[mask] OP, a, a for m,*m, :/ for /£{0, 1,2, 3},/ = 1,2, 
[mask] LOAD a, a for m, *m, :i for /£ {0, 1,2, 3}, 
[mask] STORE a, a for m, *m, :ix, ...,il for /j, ...,/,£ {0, 1, 2, 3}, 

LOAD a, a for =x , m, *m, ( j , k), 
STORE a, a for m, *m, ( j , k), 
OP2 a, a for =x, m, *m, ( j , k), 

JUMP b, JGTZ b, JZERO b, JLTZ b, and HALT. 
Here, [mask] represents an arbitrary PE address mask, OPx is ABS (absolute value) 
or SIGN (signum function), OP2 is ADD, SUB, MULT, or DIV, for the tuples 
(j,k) with 0 £ j < M and 0^k<N. 

To give a short illustration of the computing power of EXAM PI let us consider 
the computation of the parallel Roberts gradient (cp. [9] for its importance to digital 
image processing), where the input image A=(ajk) of size MxN is assumed 
to be stored in the PE input registers (aJk in register (J, k, 0)) at the beginning 
of the computation. At the end Of the computation, value max \\ajk—aJ+ltk+1\, 
\aj+i,k~ aj,k+i\} has to be present in register (j,k, 0). 

By performing the following sequence pf parallel instructions, 
1. [all PEs] STORE 1 7. [all PEs] STORE 3 
2. [all PEs] LOAD :2 8. [all PEs] LOAD 1 
3. [all PEs] STORE 2 9. [all PEs] LOAD :1 
4. [all PEs] LOAD :1 10. [all PEs] SUB 2 
5. [all PEs] SUB 1 11. [all PEs] ABS 0 
6. [all PEs] ABS 0 12. [all PEs] STORE 4 

all registers (j,k, 3) contain value \aJk—aJ+1>k+1\, and all registers (j,k,4) 
contain value \aj+l k—aj k+1\, for and O^k^N. These values may be 
considered as two MXN matrices B and C. For max (B, C)=(max {bJk, cjfc}) 
we have 

max (B, C) = 5Xsign (5—C)+CXsign (C—5)+5—5Xsign \B — C\, (1) 

where X means the parallel MULT operation (cross product of two matrices), 
and sign the parallel SIGN operation. Using this formula, the parallel Roberts 
gradient may be computed on the defined special OFF-SQUARE system within time 
29 or less, independent of the values of M and N, as the reader may check easily. 
Note.that formula (1) describes a way in which the PEs are able to perform local 
logical decisions in SIMD mode. 

Example 2. By some easily described modifications, the system EXAMP1 
may be altered dramatically. Replace the square network by LRUD2Im, for 
m<max {log2M, log2jV}, let WfE = 1, and replace the parallel operations ADD, 
OPi and OP2 by logical operations AND, NOT, and OR, respectively. What results 
is a special OFF-LRUD2Im system EXAMP2 which essentially coincides with the 
PBS (paralleles Binarbildverarbeitungssystem). The computational power of the 
PBS was extensively studied in [4]. 

Definition 2. A model of computation SYS is called a standard on-line network 
system (SYS 6 ON-NET) iff SYS is defined by 
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• a CPU and a fixed set of indexed PEs, with concrete values for Z)CPU 
and DPE, • 

• abstract registers if not otherwise specified, and the standard register enu-
meration, 

• a uniform interconnection network with 0 g Nm 
• the standard PE masking scheme, 
• a special interpretation and selection of instructions of the abstract CPU 

instruction set where, for yVIN ^2 , an integer tuple (p, q) may be denoted 
to be the characteristic of SYS in the following sense: 

(ON. 1) P=Ar,N and 1 
(ON. 2) a proper subset {ils i2, ..., /,} of all directions {0,1, ..., p — 1} is specified, 
(ON. 3) at least one instruction of the type [all PE's] OP4 + 1 : il9 i2, ..., iq is avaible, 
(ON. 4) for any of the instructions [mask] LOAD : j or[mask]OP fc(+1):y1,y2>--,A, 

1, it follows that j,j\,j2, ...,jk(L {h, i2, -.,/„}, 
(ON. 5) for any of the instructions [mask] STORE : ji,j2, ..., jk, kisl, it follows 

that j \ , J 2 , ...,./'t€{0, 1, . . . , / J - l } - { / 1 , i 2 , ...,iq), i.e., the result sof con-
secutive parallel operations may be shifted through the system in directions 
{0, 1, ..., p— 1}— {/1; i2, ..., iq) only, and, furthermore 

(ON. 6) for the CPU all RAM instructions are avilable including READ and 
WRITE, 

(ON.7) for any output register (/', 0), at least one instruction of the type OP2(y) 
is available, 

• the on-line I/O convention, and 
• the uniform cost criterion. 

For the defined class ON-NET we may define subclasses — e.g., ON-NETp.9 
, to be the set of all ON-NET systems with characteristic (p, q), ON-LR2Im to be 
the set of all SYS 6 ON-NET having a left-right 2' network as defined in Table 1, 

ON-ILLIACm with the same reference to Table 1, ON-PM2I= Q ON-PM2Im, 
m = l 

or just ON-RAM. 
Any infinite network class OFF-LINEAR or ON-DIAGONAL may be con-

sidered as an abstraction of a finite network system, or as the union of classes of 
finite network systems in the following way. 

Definition 3. Let OFF-IN be the set of all OFF-NET systems which are defined 
a special infinite network IN, e.g., IN=LINEAR or IN=LRUD2Im . A model 

of computation SYS is called a finite OFF-IN system (SYS6 F1N-OFF-IN) iff there 
exists a system SYS0£ OFF-IN such that SYS may be obtained as a restriction of 
SYS0 in the following sense: 

Let ind0 and DpE be the PE index set and the PE memory depth for SYS„, 
respectively. A finite cut-off of the PE register set of SYS0 is defined by a certain 
finite subset ind of ind0 and a (possibly infinite) memory depth DpE-^DpE. The 
work of SYS may be described as follows. All registers in a certain finite cut-off 
of SYS0 are available in SYS but all registers not in this finite cut-off will be con-
sidered to be dummy registers, i.e., they are assumed to store value zero if addressed 
as an operand, and to "forget" any value handed over to them; this is the only 
difference between SYS0 and SYS. 
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Analogously the set FIN-ON-IN may be defined. 

Example 3. An example of a FIN-ON-BINTREE system may be specified 
as follows. Let 1 ) ^ = 00 and DeE = m^2. The finite cut-off of the bintree net-
work is given by ind= {1,2, ..., 2m —1}. Additionally to the CPU accumulator 
which acts as an input and output register (L=1), the registers (2m_1, 0), 
(2m_1 +1, 0), ..., (2m — 1, 0), i.e., the accumulators of the 2m _ 1 leaf node PEs, 
are fixed as input registers, and register (1,0), i.e., the accumulator of the top node 
PE, is fixed as an output register. The system possesses the following instruction set: 

[mask] ADD a, a for m, *m, : 1, : 2, : 1,2, 
[mask] OP, a, a for m,*m, : 1, : 2 and /=1 ,2 , 
[mask] LOAD a, a for m, *m, : 1, : 2, 
[mask] STORE a, a for m, *m, : 0, 
[subset leaf nodes] READ 0, 
[top node] WRITE 0, 

LOAD a, a for = x, m, *m, (1), 
STORE a, a for m, *m, (1), 
OP, a, a for =x , m, *m, (1), a n d / = 1, 2, 
READ 0, 
WRITE a, a for =x , 0, 

JUMP b, JGTZ b, JZERO b, JLTZ b, HALT. 
Here, [mask] represents an arbitrary PE address, OPx either ABS or SIGN, 

OP2 one of the operation codes ADD, SUB, MULT, or DIV. Altogether, a FIN-
ON-BINTREE system EXAMP3 is defined which may be obtained by a restriction 
of an infinite ON-BINTREE model where infinite sets of input and output PE 
registers are available in the infinite origin. 

To give a short illustration of the computational power of the system EXAMP3 
] JV-l 

let us consider the computation of the arithmetical average — 2 "i> A r=2n _ 1 and 
•<» i=0 

n odd, for M consecutive waves of information (an, . . . ,%_,) where a, is 
fed to the accumulator of the PE(2n _ 1 + /), for / = 0, 1, ..., N— 1. In order of 
the M consecutive waves of information the arithmetical average have to leave 
the system via register (1,0). 

For initialization of the system, at first the instruction LOAD = iV, STORE (1), 
[top node] STORE 1 will be performed in this order. For M ^ ( n —1)/2 the following 
sequence of instructions is executed (« —1)/2 times: 

[leaf nodes] READ 0, 
[all PEs] A D D : 1,2, 
[leaf nodes] LOAD 1, 
[all PEs] A D D : 1,2, 

followed by the following sequence of instructions which is executed M—[(« —1)/2] 
times: 

[top node] DIV 1, 
[top node] WRITE 0, 
[leaf nodes] READ 0, 
[all PEs] ADD : 1, 2, 
[leaf nodes] LOAD 1, 
[all PEs] A D D : 1,2. 
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Finally, the following sequence of instructions is executed («—3)/2 times: 
[top node] DIV 1, 
[top node] WRITE 0, 
[all PEs] ADD : 1, 2, 
[all PEs] ADD : 1,2, 

followed by the last two instructions [top node] DIV 1 and [top node] WRITE 0. 
Thus, altogether, the arithmetic averages of —1)/2 consecutive waves of 
information (a0, alt ...,aN-1) may be computed within 6M+n basic operations 
of EXAMP3, instead of O(N-M) basic operations in the serial case using a RAM 
as model for computation. 

In conclusion, we point out that SIMD now denotes not a general concept 
(single-instruction, multiple data) but an exactly defined class of models for computa-
tion, namely the union of all system classes given by Definitions 1, 2, and 3. 

2. Local, global, and total data flow measures 

Let SYSiSIMD; throughout this paper such a special parallel processing 
system will be used as a standard system for considerations of data transfer re-
strictions in computing systems. Any computational process performed on such 
a model SYS may be uniquely specified by a CPU program n and a concrete input 
situation I characterized by the placement of input values into the set of input 
registers if off-line mode is used, or by the partition of the input data into consecutive 
waves of information fed to some of the input registers of the system from the out-
side world if on-line mode is used. 

As suggested by applications to visual perception, the set of input registers of 
the model SYS may be considered as the retina of the system, and any new wave 
of information to this set of input registers represents a snapshot of the outside 
world. In this sense, after t steps of a computational process characterized by 
a program n and an input situation I, for any register r of the system we may 
mark out a certain receptive field rec£ (r, t) containing all the names of those input 
registers which have had any influence on the contents of register r up to the moment 
t, where new waves of information to the retina of the system create new names 
of the input registers, formally represented by r(0), r ( 1 \ r(2), ..., r(i), ... for register r. 

Standard register names. At time t=0 of any computational process, each 
register r in our standard enumeration possesses the name rw. At t=0 let the 
wave number WN=0 also. At time t-f 1 assume that a serial or parallel READ 
instruction, or an instruction LOAD=x, OPj=x , or OP 2 =x has to be performed. 
Then, by this operation we obtain WN+1 and the new names r(WN) for 
all registers which were addressed by these instructions. For example, the number 
( j , c(j, mffWN) in the case of an instruction [mask] READ *m for all activated 
processing elements PE(y), where c(j, m) denotes the actual contents of register 
(j,m), or the name 0(W,JV) in the case of an instruction OP2=x. 

Definition 4. Let SYS £ SIMD. Standard register names are assumed. For 
a program n of SYS, an input situation / of SYS, a register r of SYS, and an 
arbitrary moment /=0 , the receptive field rec£ (r, t) is recursively defined as 
follows: 
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moment t=0: 

rec'„ (r, 0) = 
{rt°>} if input register r stores an input value according 

to I, for off-line mode, 
empty set, otherwise 

moment t+1, t SO: 
At moment / + 1 a certain instruction has to be applied according to n and / , 
or the- HALT instruction is assumed for this moment. 

(i) Depending on this instruction, if it is one of those listed in Table 3, the 
changes of receptive fields are defined as given in this Table where we omit the 
indices n and / for simplification of the expressions. In the case of parallel instruc-
tions, the mentioned changes are valid for all activated PEs PE ( j ) where j matches 
[mask]. 

Table 3. Changes of receptive fields in step t + 1 

Instructions Changes of receptive fields 

[mask] OPl m 
[mask] OPi *m 
[mask] OP1 :i 
[mask] OPi m 
[mask] OPt *m 

[mask] OPl+l : ilt i /", 

[mask] STORE m 
[mask] STORE *m 
[mask] STORE : ilt /,, ..., i, 

[mask] READ m 
[mask] READ *m 

rec (0', 0), t + l )=rec ({j, m), ' ) 
rec ((J, 0), / + l ) = r e c ( ( j , m), / )Urec ((;', c(J, m)), / ) 
rec (0', 0), i + l )=rec ((/¡(y), 0), / ) 
rec (0', 0), t + l ) = r e c ((J, 0), / ) Urec Qj, ni), t ) 
rec (0', 0), t + 1 ) = r e c ((y, 0), t) U 
Urec ( 0 , m), / ) Urec ((y, c(J, m», / ) 
rec ((j, 0), / + 1 ) = r e c ((J, 0), / ) U rec ((/; 0 ) , 0), t ) U 
Urec ((/¡t0'), 0), i ) U . . . Urec (( / ¡ ,0) . 0) | t ) 
rec ((;, m), t + l ) = r e c (( j , 0), / ) 
rec ((/, c(J, m), t+ l ) = r e c ({j, 0), f )Urec ((j, m), t ) 
rec ((/¡(J), 0), / + l ) = r e c (<J, 0), / ) , rec ((/;. (J, 0), t + 1 ) = 
=rec ( 0 , 0), /), -, rec (i/^U), 0), f + l )=rec ( j j , 0), t ) 
rec ( j , m), / + 1 ) = {(/, m)<"' f0} 
rec (O-, c(J, m), t + 1 ) = r e c (0', m\ t ) U { ( j , c{j, m))<H'w'} 

ÖP1 = x rec (0, i + l )={0 < H r i °} 
OPi m rec(0, i + l )=rec (m, t) 
OPi *m rec (0, t+ l )=rec (m, t)Urec (c(m), t ) 
OPi (J) rec (0, / + l )=rec ((/, 0), / ) 
OP*=x rec (0, / + I)=rec (0, / )U {O'^1"} 
OP2 m rec (0, t + l )=rec (0, OUrec (m, /) 
OPt *m rec (0, / + l )=rec (0, OUrec (m, t)Urec (c(m), t ) 
OP, 0") rec (0, / + l )=rec (0, t)Urec ( ( j , 0), / ) 
STORE m rec (m, t-f l )=rec (0, t) 
STORE *m rec (c(m), t +1) = rec (0, t) Urec (m, / ) 
STORE 0 ) rec (0", 0), / +1 )=rec (0, /)) 
READ m rec (m, / + 1 ) = {m l l , , i"} 
READ *m rec (dm), t + l) = rec (m, r)U {c(/«)(H'i"} 
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(ii) For the parallel or serial LOAD instructions the changes of receptive 
fields are the same as for the corresponding OPx instructions. 

(iii) In the case of a WRITE, JUMP, or HALT instruction no changes of 
receptive fields appear. 

(iv) In the case of a JGTZ, JZERO, or JLTZ instruction no changes of receptive 
fields appear in step i+1 , but the set rec (0, t) will be added at moment t'^t+2 
to any receptive field that alters at moment t' according to (i) or (ii), if at moment 
t' an instruction has to be performed covered by cases (i) and (ii). For example, 
the instruction [mask] OP2 m, at moment t'^t+2, will produce the changes 
rec((_/, 0), i') = rec((_/, 0), / ' - l )Urec ( (y , m), / ' - l ) U r e c ( 0 , /) for all activated PEs. 

For illustration of this definition, consider the special OFF-SQUARE system 
as defined in Example 1. Let / be any concrete input situation for computing 
the parallel Roberts gradient and let n be the sequence of the 12 parallel instruc-
tions as given there. At moment t—0 we have rec {¿j, k, 0), 0) = {(_/, k, 0)(0)}, 
for 0 s a n d and for any other register r of the system EXAMP 1, 
rec (r, 0) is the empty set. After performing the 12 instructions of n the reception 
fields of maximal cardinality 2 belong to the registers (J, k, 0), (J, k, 3) and (j,k, 4), 
for Osj^M-2 and O^k^N-2, where, e.g., rec (0", k, 0), 12) = { (7+1, k, 0)(0>, 
(J, k+1, 0)(0)}. For the system defined in Example 3, and the program and the 
input situation as described there, after performing the 6M+n instructions the 
receptive field of maximal cardinality NM+1 belongs to the register (1,0), i.e., 
to the accumulator of the top node PE. 

Definition 5. Let SYS^SIMD. For a set R of registers of SYS and a moment 
define the local data transfer function ASYs by 

ASYS (R, 0 = max max max card (rec1 (r, /)), it I r£R 

the global data transfer function ySYs by 

TSYSCK, 0 = max max card ( ( J rec'„(r, t)), 
* ' r£R 

the total data transfer function rSYS by 

TSYSCR,̂ -0 = max max card (rec£0% 0)-* 1 riR 

By this definition, it follows immediately that the functions l s y s , ySYs and 
Tgys a f e monotonically increasing for any set R of registers of SYS and increasing 
values of t. Furthermore, 

AsvsCR, 0 S ySYS(R ,t) ^ tSYS(R, t) (2) 

for all models SYS£ SIMD, sets R of registers and moments iSO. Also note that 
for any model SYS, if within t steps of an arbitrary program n for SYS starting 
with an arbitrary input situation I for SYS at most a)SYS(i) input data may be 
fed to the system, then 

7SYSCR, 0 cuSYS(i), and (3.1) 

tsvsOR, t) ^ XSYS(R, t) • card (R), (3.2) 

for any set R of registers of SYS and t ^ 0 . 
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Example 4. In Section 4 we shall characterize the way to use these data transfer 
functions for obtaining lower time bounds for concrete computational problems. 
For serial data processing we shall apply the system RAML , cp. [2, Fig. 1.5], as 
model for computation, where i?L={0, 1, 2, ..., L—1}, Z.S 1, is assumed to be 
the set of all input/output registers of such a machine (DcPV— jVpe=0, IVCPU = 
For i s 0 , we have COOFF—raml(0=^+' a " d «ON—raml(0 = /- F° r OFF-RAM = 

= U O F F - R A M l , note that coOFF_RAM(/)= max oj0FF—RAM, ( 0 is not defined. 
L=1 L 

Furthermore, we have 

A o f f - r a m . ^ l , 0 - [ [ i L + i ) / 2 l + t > o t h e r w i s e , ( 4 1 ) 

? O F F - R A M L ( ^ L , 0 =L + t, a n d ( 4 . 2 ) 

t o F F - R A M L ( ^ , 0 = ^ ( i - l i / 2 ] , + l) for t^[L/2J, (4.3) 

in the case of using the RAML in off-line mode, and 

^ • O N — R A M T ( ^ L , 0 = VON—RAM^C^L, ' ) = U 

(R A - I ' C + O / 2 F O R L = L (A* T O N - R A M , ( ^ ' Î > - ( I L ( ; _ ( L / 2 ) + 1 / 2 ) F O R ( 4 - 5 ) 

in the case of using the RAML in on-line mode. The maximal data flow for obtaining 
equation (4.1) is possible by indirect addressing OP2 *m, followed by O P 2 = x 
operations. For (4.3), the same sequence of operations is extended by L— 1 instruc-
tions STORE m. For (4.4), t operations of the type O P 2 = x may be considered. 
For small t the exact derivation of the function T 0 F F — R A M l represents a sophisticated 
problem already, for this quite simple model of serial computation. 

Example 5. For further illustration of the concrete derivation of these data 
transfer functions, let us consider both systems EXAMP1 and EXAMP3 as defined 
above. 

For the system EXAMP1, first we see that CJEXAMPI (t)=MN+L+t, for 
t^O. Let Rm n be the set {(/, k, 0) : O^j^M and 0^k<N} of all PE input/ 
iutput registers of the system. By using t operations of the type 

[all PE's] ADD :0, 1, 2, 3 

we obtain the maximal local and total data transfer within the field of PE accumula-
tors, where 

AEXAMPI 

CRM,N,t) = 2t*+2t+l, (5.1) 

(2/2+2t +1)MN--(/+1)2+ 2 ( ^ 1 ) 3 ) (M+N) S S t E X A M P i ^ (2i2+2i + 1 )MN, (5.2) 

[M, N}, by elementary combinatorial considerations and (3.2). 
• [N/2] we have 

MN+(t-to) — AEXAMPÎ M.N, 0 ^ MN+L+t. (4.3) 
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For t^t0=M+N—2 we can easily see that 

M2N2
 + (t-t0) S T E X A M P I ( ^ M , N , 0 MN(MN+L +t). 

Finally, for the case of global data transfer we obtain 

(5.4) 

VEXAMPI C^M, N S 0 — 

MN for t = 0 
MN+2t+\ for 2 i + l si, 
MN+[(L-l)/2\ + t for 2t+1 > L 

and t > 0 (5.5) 

where, for 2 i + l s L , the maximal global data transfer is possible by t operations 
of the type ADD *m, and one operation STORE ( j , k), e.g. 

For the system EXAMP3, at first we have a»EXAMP3(/) = / • N, for N=2"~1 

and t^O by using t operations of the type 
[leaf nodes] READ 0. 

Let R a={0, (1, 0)} be the set of the two distinguished output registers of this syste 
EXAMP3. By using the instruction pair 

[leaf nodes] READ 0, 
[all PEs] A D D : 1,2 

repeated (m—1) times, m ^ l ; the single instruction 
[leaf nodes] READ 0 

again; and finally (« — 1) instructions 
[all PEs] ADD : 1,2, 

we obtain the maximal local data transfer for register (1, 0) in any case t ^m. 
We have 

0 for i = 0 
2 ' - 1 for l S i S n - 1 
m-N for t — n+2m—l, m ^ 1 

and 1 = 1 or 1 = 2, 

^EX AMP 3 ( ^ 0 » 0 — 

for all t SO. Analogously, for the same set R0 and t ^ 0 

ÏEXAMP3 ( * 0 > 0 — 

0 
2 t - l 

m-N 
m-N+1 

TEXAMP3(^0> 0 

0 
2,-l 

2m-N 
2m • N+1 

for 
for 
for 
for 

for 
for 
for 
for 

t = 0, 
1 s t s n-1, 
t = n + 2 m - 2 , 
t = n + 2 m —1, 

m S 1, 
m S . l , 

t = 0, 
l S f S n + 1, 
t = n + 2m — 1, m s 1. 
i = n+2m, m s 1. 

Of course, the values of AE X AMF3> 7EXAMP3. and TEXAMP3 depend on the choice 
of the set R0, and may be quite different for some other sets of registers. 

Definition 6. Let CLASS ^ SIMD. The general data transfer functions are 
defined as follows, for such a set CLASS of models of computation, for ( ¡nS0 ; 

^CLASS(') denotes the maximal value of all ASYs(^> ')> 
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rCLASS(n, t) denotes the maximal value of all ySYs(^> 0 with card (R)=n, and 
TCLASS(n, t) denotes the maximal value of all rSYS(R, t) with card (R)=n, 
where SYS is an arbitrary element of CLASS, and R denotes a set of registers 
of SYS. 
Interesting examples of CLASS are sets like OFF-NETp , ON-NETp , , OFF-

SQUARE, OFF-BINTREE, or ON-HEXAGONAL, where these general data 
transfer functions are fully defined. 

Theorem 1. For standard off-line network systems and 2S / )<<»we have 

• ^ O F F - N E T , ( 0 — 

and 

2/+1 ' for p = 2 

+ l for 
P-

r* / . . A T* A .. A t*\ t n 
1 OFF-NET„V"> <•) — 1 OFF-NET„V' ' , L > — " ' ^ O F F - N E T . V ' J > » 0 L "> ' = 

Proof. First, let us consider the local situation. For p = 2 , the maximal transfer 
of data units is possible by indirect addressing to the CPU accumulator, e.g. For 

3, there exist special OFF-NETp models SYS, such that, according to (OFF.3), 
at any moment 1 ^s^t the maximal possible number of p(p — l f ~ l new names 
of input registers may enter the receptive field of a certain register r, for i^O. Thus, 

AsYs t(M, 0 = i + 2 p ( p - i y = p f ( p ~ 1 ) ' ~ 1 ) + !• 
5 = 0 v p — > 

For the total and global situation note that by choosing sufficiently complex SYS„ ( , 
for 0, the maximal local situations of data transfer characterized by receptive 
fields of cardinality A0FF—NETp(0 at moment t may appear in n different registers 
and time t such that these registers are far enough from one another so that their 
receptive fields are pairwise disjoint. • 

Example 6. By (4.1) andTheorem 1, it follows that / 1 O F F - R A M ( 0 = ^ O F F — N E T 2 ( ' ) = 

=2t+l, for / s 0 . Of course, this coincidence is not true in the total and global 
cases. According to Theorem 1 we have R 0 F F _ N E T 2 ( « , 0 = 7 O F F — N E T 2 ( « , t)=n(2t+ 1 ) , 

for n, ( S 0 , but by elementary considerations F o f f _ r a m ( « , t)=2/+n, for n g 1 
and T O F F - R A M ^ , t)=2n(t-n+2)-2, for 2. 

In Table 4 the general local data transfer functions are collected for some 
classes of off-line systems as defined in Section 1. For these classes, the functions 
AOFF—NET A S given in Theorem 1 act as upper bounds, where the proper value 
of p has "to be specified. The classes OFF-LINEAR, OFF-PS, OFF-BINTREE 
and OFF-QUADTREE represent examples for the maximal transfer situations 
as characterized by Theorem 1, for p=2, 3, 5, respectively. 

Some remarks about Table 4 and about the other networks which were defined 
in Table 1. 

1. For the bintree, triangle and quadtree network note that the maximal 
receptive fields may be obtained for central nodes of these tree structures only, and 
not at the top node. The maximal possible cardinalities of receptive fields of top 
node accumulators are given for illustration of this fact. 
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Table 4. General local data transfer functions for offline systems 

CLASS P ^OFF-CLASS(' ) t = 4 f = 8 

LINEAR 2 2 / + 1 9 17 

HEXAGONAL 3 
3 . 3 

— / a + — i + 1 
2 2 

31 109 

SQUARE or ILLIAC 4 2f2 + 3 / + 1 41 145 
TRIAGONAL „ 6 3<2+.3/+l 61 215 
DIAGONAL 8 4«2 + 4 i + l 81 289 
PS 3 3 • 2' — 2 46 766 
BINTREE 3 3 • 2' — 2 46 766 

top node 2t + 1 — 1 31 511 

TRIANGLE 5 3 • 2 e + 1 + —2i— 5 99 1,579 
top node 2t + 1 — 1 31 511 

QUADTREE 5 (5 • 4* — 2)/3 426 109,226 
top node (4 t + 1 —1)/3 341 87,381 

2. For all examples of CLASS given in Table 4, we have rOFF_CLASS(«, t) — 
= ^OFF—CLASS ("> t ) = n- /LOFF—CLASS(0> f o r = 0 . 

3. The hexagonal, square, triagonal, and diagonal networks are special examples 
of infinite graphs of constant degree p such that the general local data transfer 
function is equal to y t2+y t+1. Such networks correspond to usual digital metrics 

for- the orthogonal grid in a natural way, e.g., the metrics or d8 as used in 
digital image processing, cp. [9], to the square or diagonal network, respectively. 

4. For the networks CUBE"1, PM2Im, WPM2Im, LR2Im, or LRUD2Ira, the 
derivation of the three general data transfer functions represents a very sophisticated 
problem. Of course, the1 values of these functions depend on the value of m, and 
the consideration of classes like 

CUBE = IJ CUBE"* 
m®2 

would lead to undefined general data transfer functions. In, [4] the general local 
data transfer functions were analyzed for some concrete SIMD systems similar 
to FIN-OFF-LR2Im or FIN-OFF-LRUD2Im systems like EXAMP2 which was 
defined above. But, for the present paper, we recommend data transfer analysis 
for specialized (finite) SIMD systems to the interested reader, and are satisfied with 
some hints: 

CUBEM: For this system, the exact derivation of the local transfer function 
should be a solvable task. We have " -

OFF—CUBEM ( 0 
¿ ( 7 ) 

for t m 

s: 2m for i = m 
^ 2 m + 1 ( i - w ) ' for t > m. 

For example, we have / I Q F F — C U B E 2 5 6 (4) = 177,589,057 and /lOFF_CUBE256(8) is 
about 4 • 1014. 
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PM2r": For this, as for the other "power-of-two systems", the analysis of 
data flow represents quite a hard problem, cp. [4]. But, to give the reader some 
feeling about the complexity of the data transfer functions for these systems, some 
values will be collected: 

•^OFF-L OFF—PM2IM ( 0 

= 1 for t = 0 
= 2 for / = 1 
= 2 ( m - l ) ( m - 2 ) + 4 for t = 2 

sr 2m 

^ 2m+1(t — \m/2]) 
for t = \m/2] 
for t \m/2]. 

Note that exponential increase changes to linear increase at t=\m/2\. 

WP 
we have 

WPM2Im : It may be that this is the most complicated situation of any network ; 

•^OFF—WPM2I-" (01 

= 1 
= 2 

for t = 0 
for t = 1 

s 2m for t = \m/2] 
& 2m+1(i—fm/21) for t fm/21. 

This great difficulty in analyzing data paths should be a hint to the limited practical 
importance of this network. 

' 1 1 LR2Im : For brevity we shall use the function a(i)= 2 . / 2 =- t -0 '+1) -^ - ( ' + 1)2 + 

1 
J = I 

U/+1)3. We found the following interesting values: 

1 for t = 0 
2m+ 1 for t = 1 
2(m-2) 2 +4m + l for t = 2 
l + 6m+4(m—2)2+2 • a(m - 4 ) for t = 3 
l + 8m + 6(m-2)2+4-<r(m - 4 ) + 

•^OFF—LR2I™ 

+ 4 . 2 ff(0 
i = l 

l + 10m + 8 ( m — 2 ) 2 + 6 • <j(m —4)4-
m — 6 

+ 8 - 2 X 0 + 
¡ = 1 

Hi — 8 i 
+8 2 2°U) 

¡=i i 

2 m-t-c„ 

for t— 4 

for t = 5 

for t ë [(m—l)/2j 
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The contents cm depend on the value of m only, for example c 2 = — 1, c 3 = l , c4 —7, 
C5=25, CG= 71, c 7 = 185, C8=455, C9=1081, and c10=2503. Because the L R 2 F 
is an infinite n e t w o r k r 0 F F _ L R 2 1 m (n, t) = TOFF^hRnm(n, t)=n- AOFF_LK2im(t), 
for n, tssO. 

LRUD2Im: Of course, we have 
^ o F F - L R U D 2 I " . ( 0 = 2 - / l o F F - L R 2 I » . ( 0 - 1 ' for t= 0» and. because LRUD2Im 

is an infinite network we have F O F F LRUD2IM("» 0 = 7~OFF LRUD2IM ( " > T ) = N • 
• /10FF—LRUD2I-(0> F°R "» { 

Theorem 2. For standard on-line network systems and 2 1 ^ q ^ p — \ , 

a n d r O N _ N E T p > , ( n » 0 = TON—NETp,,(M> 0 = « • ^ O N - N E T p > , ( 0 . f or n, t £ 0 . 

Proof. Consider the local data transfer situation first. At / = 1 assume that 
a sufficiently large set of input registers obtain input data in parallel by a READ 
instruction. Then (q— l)l(q— l)=2t—1 = 1 for q^2, or t= 1. For <7=1, the 
maximal local transfer situation, i.e., the maximal transfer of data units to a given 
register, is possible by indirect addressing. Thus, /10N—NETP,I(0—^2/— 1 for t ^ 1. 
For q=s2, according to (ON.3) it follows that 

where these maximal cardinalities of receptive fields may be obtained in certain 
PE accumulators. For given n, t ^ 0 , by choosing a sufficiently large field of PEs 
obtaining input data in their accumulators at the first instruction ( /= 1), n receptive 
fields of maximal cardinality /ION—NETP,9(0 m a y be pairwise disjoint. • 

Example 7. By (4.4) we know that ylON—RAM(0=^ON—RAM(«> T ) = U for and 
i s 1,and thus /ION-RAM (0 < ^ON-NET,,, , (0 aswellasrO N_R A M(«, 0N-NETP > 1(", 0 

for t S 2 and n s l . Furthermore, T^N—RAM(W> t)—n^t — Y + Y ) > F°R * — « = 1, 

and thus rON-RAM("» 0^ON-NET , , ,xfaO for 1 = " = 2 . 
In table 5 for classes of on-line systems mentioned in Section 1 some results 

on the analysis of general local data transfer functions are collected. For these 
classes the functions given in Theorem 2 act as upper bounds where the proper 
values of p and q have to be correlated. By ON-IN{ili ia we denote a special 
O N - I N system with fixed set '{/1} /2, ..., /,} according to ( O N . 2 ) . The classes 
O N - L I N E A R { 0 ) , O N - B I N T R E E { I > ? ) , and ON-QUADTREE { 1 j 2 i 3 > 4 ) represent 
examples for maximal transfer situations as characterized by Theorem 2. 

Some remarks about Table 5 and about the other networks which were defined 
in Table 1: 

1. For all examples of CLASS in Table 5 we have rON_CLASS(«, t) = 
^TW-CLASSI", t)=n • /FON—CLASS(0' FOR / S O . 

0 

^ON-NETP ,„(0 = 2 / - 1 

for t = 0, 
for t & 1 and q = 1, 

(q'-l)/(q-l) for i S l and q & 2, 

,..(0= 2 = !)/(?-1). 
t - i . 

¡=0 

6 Acta Cybernetica VI/4 
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Table 5. General local data transfer functions for on-line systems 

CLASS P {/,, /,, ..., (',} 'toN—CLASS ( 0 f = 4 f = 8 

LINEAR 2 {0} 2f — 1 7 15 

HEXAGONAL 3 {0,1} 
{0} 

'( ' +1) /2 
2i — 1 

10 
7 

36 
15 

SQUARE or 
ILLIAC 4 {o, 1, 2} 

{0, 2} 
{0, 1}, {0} 

t2 

' ( ' +1) /2 
2 / - 1 

16 
10 
7 

64 
36 
15 

TRIAGONAL 6 {0, 1, 2, 3, 4} 
5 5 

— t* i + 1 
2 - 2 

31 121 

iA 1 1 yll l"> -»» 

{o, 2, 4} 

3 1 
— ; 2 1 
2 2 
t2 

22 

16 

92 

64 

DIAGONAL 8 {0, 1, 2, 3, 4, 6, 7} 
7 7 

— I2 / + 1 
2 2 

43 197 

BINTREE 3 {1,2} 
{0,1} 

2' — 1 
'(' +1) /2 

15 
10 

255 
36 

TRIANGLE 5 {1,2, 3 ,4} 2' — 1 15 255 

QUADTREE 5 {1,2, 3, 4} ( 4 ' - l ) / 3 85 21,845 

PS 3 {0, 1} ([(l + /5 ) ' + S - ( l - ^ 5 ) t + 3 ] / 
/ 5 -2t + 3) —2 11 87 

2. The class GN-PS{0,i} denotes special SIMD systems using the PS network 
in its original [10] meaning. Let / 0 = l , / i = l , / a = 2 , ...,/B+2==/B+/B+1, ..., where 

/„ = [(1 + /5)"+1 -(1 -i5)n+1l\5 • 2"+1 

t 
denotes the wth Fibonacci number, « s 0 . We have ^ O N — P S / 0 U ( 0 = 2 f n = f n + 2 ~ 2 , 

' " = 1 

for i^O; cp. [3] for a similar result. 
3. For the bintree, triangle, and quadtree network note that the maximal 

receptive fields may be obtained for the top node accumulator, for {il5 /2 , . . . , ig} 
equal to {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4}, respectively. 

4. The analysis of the general data transfer functions for classes ON-CUBEm, 
ON-PM2I"1, ON-WPM2Im, ON-LR2I"1, and ON-LRUD2Im will not be considered 
in the present paper. 
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3. Local, global, and total data dependence measures 

For parallel processing systems, the optimal time for the solution of a computa-
tional problem depends upon the data transfer abilities of the given system as well 
as on the principal possibilities of parallelization of a solution process for a given 
problem. The first may be characterized by the data transfer functions /fSYS, 
AYS> TSYS by a general system analysis as considered in Section 2. The second 
property, however, requires individual consideration of the "given computational 
problem. 

For example, consider the multiplication of two NXN real matrices A B—C. 
For a given system SYS assume that all N2 elements of matrix C have to be 
computed in N2 different output registers represented by the set -ROUT- Let 
r^RouT ^OUT' and R} be the set of N distinctive registers for outputing 
the N diagonal elements of C. Then it follows that XSYS(r, t*)^2N, ySYS(^i, '*) = 

N2 and Tsys(/?„> ' * ) — - c a r d (/?0) if the product A • B is to be computed 
on SYS within time t*. Thus, if the functions ASYS, rSYS or TSYS are known, 
lower time bounds are derivable from these inequalities for the solution time t* 
immediately, where the maximal lower time bound from the three possible values 
is taken as the result. For example, according to our considerations in Section 2 
for the system EXAMP1 we have 1 under the assumption that M=2N. 
But note that a better lower time bound for this system and the matrix multiplication 
problem may be obtained by more specialized considerations as demonstrated by 
Gentleman [3, Theorem 1]. Because each data unit transfer from a certain 
register rx to a certain register r2 of the system EXAMP1 may be performed in 
the reverse direction, from r2 to in the same time, the proof of Theorem 1 
in [3] matches the situation given by the system EXAMP1, i.e., for /-£7?oux we 

have 1EXAMP1 (r,2t*)^N2, and thus t*^j(2N2-l)1/2-j. 

For a general approach to the derivation of lower time bounds for parallel 
processing systems we shall use the quantitative description of data dependencies 
of the desired output data in relation to the input data specification, for computa-
tional problems which may be identified with special functions as described later on. 

Definition 7. Let «, m & 1. Let / be an «-ary function defined on a certain 
set domain ( / ) of «-tuples of real numbers, and into the set of m-tuples of real numbers. 
For an «-tuple (x l s x2, ..., x„)£domain(f), define 

sub, (*!, x 2 , ..., xn) = {j: 1 ^ n & ( W ^ x j f a , x2, ..., Xj_x, x', xj+l, ..., x„)€ 

domain (J) & pToji(f(x1, x2, ..., *„)) ^ proj,- ( / (x 1 ; x2, ..., x', xj+1, ..., x„))} 

to be the set of all positions j such that changes in the /th component of , x2, • • •, x„) 
have an effect on the projection p ro j ; / , for l ^ i ^ m . Then, define 

Xr — max max card (sub; x2, ..., *„)), J (x t , JC2, . . . ,x n ) l ^ i ^ m 

yf = max card ( u sub;(x1; x2, ..., x J , 
t . ; = 1 .. ) 

6* 
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and 
m 

x f = max 2 ! c a r d (sub,- (*i, *2, • • • > *„))• 

The function / is called locally d-dependent iff globally d-dependent iff 
dSyf, and totally d-dependent iff for an integer d s O . 

By this definition, for arbitrary functions / defined on «-tuples of real numbers 
and into the set of m-tuples of real numbers, it follows immediately that Xf=yf=xf 
if m = l, and for m ^ l 

(7.1) 

(7.2) 
and 

xf m • Xf. (7.3) 

For example, in the case of the following function / . 

we have subx x2, x3, x4, 0) = {1, 2, 5} if x1+x29ix3+x4, and s u ^ (j^, x2, x3, 
xn 0 ) - {1,2} if x1+x2=x3+xi. Because of Xf=yf = xf=3, this function is 
local, global, or total 1-, 2-, and 3-dependent, but not 4- or 5-dependent. 

Now, in a sequence of examples, the data dependence measures as given by 
Definition 7 will be analyzed for certain computational problems. The results 
are collected in Table 6, i.e., the following examples may be considered as explanatory 
remarks to this table. 

Example 8. The multiplication of two NXN real matrices may be considered 
as a 2N2-ary function into the set of JV2-tuples of real numbers. For this computa-
tional problem, it is evident that 

^•MATRIX—MULTIPLICATION = 2 N , 

VMATRIX—MULTIPLICATION = 2 N 2 , a n d ^MATRIX—MULTIPLICATION — 2 N 3 , 

where these maximal values of data dependence are true for each input vector of 
length 2N2 containing non-zero values in all positions. By this example it follows 
that the upper bounds (7.2) and (7.3) cannot be reduced in general. The inversion 
of an NXN real matrix in place may be considered as an N2-ary function into 
the set of A^-tuples of real numbers. We have 

^-MATRIX—INVERSION—IP — VMATRIX—INVERSION—IP = N 2 , 
and 

TMATRIX—INVERSION—IP = N 4 , 

where this maximal case of data dependence appears for any matrix containing 
non-zero values in all JV2 positions. These data depence quantities may be con-
sidered as a direct consequence of the data dependence quantities for the determinant 
of an NXN real matrix, 

¿DETERMINANT " ^DETERMINANT = T DETERMINANT = N 2 . 
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The solution of a system of N linear equations in TV unknowns may be considered 
as an (¿V2+A0-ary function into the set of TV-tuples of real numbers. We obtain 

^-LINEAR—EQUATIONS = ^LINEAR—EQUATIONS — TV2+TV, 
and 

^LINEAR—EQUATIONS = N3+N2. 
Transposing an NX N real matrix in place may be considered as an TV2-ary function 
into the set of 7V2-tuples of real numbers, 

•^TRANSPOSITION—IP = 1 > AND ^TRANSPOSITION—IP = "^TRANSPOSITION—IP = N 2 , 

but for binary operations on permutated NXN real matrices in place, 

(au)i,j=0,1 n - i => (0P2 (¿¡ l j , ani',j)))i,j=0,1 J*-l» 

considered as TV2-ary functions into the set of TV2-tuples of real numbers, 

M̂ATRIX—it—IP = 2 for 71 id, 

Y MATRIX—JT—IP — N 2 , and 
^MATRIX—7I—IP = 2A'2—card {(¿J):0 sS i , j =§ N - i & n(i,j) = ( I , j)}, 

the transposition may be considered as a special permutation n*, t m a t r i x — i p = 
= 2 N 2 — N , and op2 as the exchange operation in this case, op2(ajj, aK*(iiJ)) — 
=(a„*(i?Jrj, atj), where the second component of these resulting tuples will be 
considered as a dummy result. 

Example 9. In this example, three two-dimensional transforms of NXN 
pictures will be dealt with. First, the Fourier transform of an NXN complex matrix 
(2D-DFT, two-dimensional discrete Fourier transform, cp. [9]) may be considered 
as a 2TV2-ary function into the set of 2TV2-tuples of real numbers. In this case, we have 

2 T V 2 - 4 S ¿ 2 D _ D F T 2 T V 2 - 1 , 

7.d-dft = 2N2, and IN4 T2D_DFT si AN4-IN2, 
where these maximal values of data dependence are true for each input vector of 
length 2N2 containing non-zero values in all positions. For the exact determination 
of dft ar*d t2d—dft > the influence of different values of N has to be studied. 
The Walsh transform of an NXN real matrix (2D-WT, two dimensional Walsh 
transform, cp. [9]) may be considered as an TV2-ary function into the set of TV2-tuples 
of real numbers, 

X20—WT = ?2D—WT — N2, and T2D_wt = N4, 
where these maximal values of data dependence are true for any input vector of 
length TV2. The computation of the parallel Roberts gradient (see Example 1) on 
images of size MXN may be considered as an MN-ary function into the set of 
MTV-tuples of real numbers. For this function, 

^ROBERTS—GRADIENT ~ 4 , 

YROBERTS—GRADIENT = MN, and ROBERTS-GRADIENT = 4MTV-2M-2TV-2, 
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by considering the case of non-zero values in all MN positions, and by paying 
attention to border effects. 

Example 10. The computation of the convex hull of a simple polygon, cp. [5]' 
where the N extreme points of the polygon are given by coordinate tuples of real 
numbers starting with the uppermost-leftmost point, may be considered as a 2/V-ary 
function into the set of 2yV-tuples of real numbers. In the resulting vector of length 
2N, there appear all coordinate tuples of the extreme points of the convex hull of 
the given polygon in order, starting with the uppermost-leftmost point, and with 
the same run orientation as the given polygon. Positions actually not needed in 
this resulting 2/V-tuple contain value zero by assumption. In this case, it follows that 

¿CH-SIPOL = VCH-SIPOL = 2N, and 2A^2-8yV+12 S TCH_sipol S 4JV2 

by analyzing the input situation of special convex polygons with N extreme points 
as illustrated in Fig. 2, for N =s4. The computation of the convex hull of N planar 

Figure 2. 
Convex polygon for analyzing the 
maximal possible data dependence 

situation, for N ^ 4 

points, cp. [5], given by coordinate tuples of real numbers, may be considered as 
a 2N-ary function into the set of 2Ar-tuples of real numbers as described above, 
analogously to the simple polygon situation. For this problem, 

^CH—POINT — VCH—POINT — 27V, a n d TCH—POINT = 4 N2, 

where these maximal values are true for any input situation. The computation of 
the Voronoi diagram of N planar points, cp. [5], given by coordinate tuples of real 
numbers, may be considered as a 2iV-ary function into the set of (18JV—33)-tuples 
of real numbers in the following sense. The Voronoi diagram may have 2N—5 
vertices at most, and, as a special planar graph, 3N—6 edges at most, for N^3. 
See Fig. 3 for an illustration of the construction of such a "maximal Voronoi dia-
gram", where the number v(N) of vertices, and the number e(N) of edges satisfy 
the recursive equations 

w(3) = 1, e(3) = 3, 

v(N+l) = v(N) + 2, and e(W+l) = e(A0 + 3 
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N= 4 
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Figure 3. 
Voronoi diagrams for JV=3, 4, 5, 6 with 2JV-5 = 1, 3, 5, 7 verticesand 3TV-6=3, 6, 9 ,12 | 

edges, respectively 

for TVs 3. The 187V—33 = 3(27V—5)+4(37V—6) positions of the resulting vector 
of a Voronoi diagram computation we consider as a unique characterization of 
a Voronoi diagram by linearization of adjacency lists for this special graph structure 
with the positions for each vertex where two are reserved for the coordinate values 
and one for a common pointer, and two times two positions for each edge — for 
the index of the vertex at the other end of the edge, of for the slope of the edge, 
and for a common pointer. For concrete inputs of TV points, positions actually 
not needed in the resulting (187V—33)-tuple contain value zero by assumption. 
Then, we have .. 

^-VORONOI—DIAGRAM = V VORONOI—DIAGRAM = 2 7 V , 
and 

127V—3 3s tVORONOI—DIAGRAM = 27V(187V—33), 

for TVs3, where the local and global case may be analyzed by using a regular 
7V-gon, and for the total case a Voronoi diagram in the sense of Fig. 3, with 27V—5 
points, was used where each point of the diagram essentially depends on there 
input points, i.e., on six coordinate values. 
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Example 11. Matching of a pattern of length M against a string of length 
N ( M ^ N and the elements of pattern and string are assumed to be reals) may be 
considered as a (N+M)-ary function into the set of (N—M+ l)-tuples on {0, 1} 
where, for 

/PATTERN—MATCH1NG(PI> P2> •••> Pm> Sl> S 2> •••5 S M) = ( e l > E 2» •••> EN-M + l ) 

we have ^¡=1 iff si+J=pJ+1, for all j=0, 1, ..., M— 1, and e,=0 otherwise, 
for /=1, 2, ..., N—M+l. We have 

^•PATTERN—MATCHING — 2 M , 

7 PATTERN—MATCHING = M+N, and ^PATTERN—MATCHING = 2M(N-M+l). 

In all three cases, the maximal dependence may be analyzed for the trivial input 
situation p.=sj = const, for i — 1,2, ..., M and j — l, 2, ..., N. Detection of 
a pattern of length M within a string of length N, M^N, may be considered as 
an (N+M)-ary function into the set {0, 1} where the output is equal to 
max {E,: / =1 ,2 , ..., N—M+l & /PATTERN—MATCHING (Pi, Pi, —,PM.\•••,%) = 
=(ei> e2> •••> eJv-M+i)} for input ipi,pi,...,pM-,s1,si,...,sN). Then, 

max {2M, M+[N/M]} =S AP ATTERN-SIGNALIZATION ^ M+N. 

Note that this represents the first example of a computational problem where the 
equality yf=n remains an open problem, for an «-ary function / with n—N+M 
in the case of pattern detection. As a last example, sorting of N real numbers 
may be considered as an N-ary function into the set of iV-tuples of real numbers. 
For this very important problem, we have 

^•SORTING = ^SORTING ~ N , A N D R50RTING = N 2 , 

where these maximal values are true for N pairwise different input values. 

4. Data transfer lemma and applications 

Between the quantitative descriptions of data transfer for SIMD systems 
(Section 2) and of data dependence for computational problems (Section 3), the 
following direct relation holds. 

Lemma 1. (Data Transfer Lemma). Let SYSgSIMD, and let n be an ar-
bitrary program for SYS for the computation of a function / which is n-ary and 
has m-tuple values. Let R denote the set of output registers of SYS where the 
w-tuples appear at the end of the computation (card (R)=m, off-line mode), or 
those output registers of SYS via which the computed values of the m-tuples leave 
SYS in certain waves of information (card (R)^m, on-line mode). Then, the 
computation of f(xi, x2, ...,x„) on SYS by n requires at least /„ steps of com-
dutation for a given input (xl5 ..., x0)6domain ( f ) , where /lSYS(/0)=^/, 
rSYS(caTd(R),t0)^yf, and TSYS(card (R), t0)^if. 

Proof. Let us consider the local off-line or on-line situation. Assume that 
Ay=card (subfC*!, x2, x„)), for a given input vector (xj, x2, ..., xn), and for 
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a given position i, l^i^m. Let subi{x1,x2,...,xn)={j1,j2,...,jl/}. For any 
position ik, k = \, 2, ..., Xf, either the name of an input register receiving value 
xjk at a given moment will be transferee! to the receptive field rec[Xl' x»> (rco, /*) 
by some operational instructions only, if value p r o j i ( f { x 1 , x2, ..., x„)) appears 
in register at time t*^t0 of computation, or during the t* steps of compu-
tation of proj^/Ocj, x2, ..., x„)) at least one test instruction JGTZ, JZERO, 
or JLTZ must be performed where the contents of the CPU accumulator depends 
on the input value xjk at the moment of testing. In the second case, if the test 
instruction is followed by certain operational instructions directed to register r(0 

the name of the input register receiving value xJk at a given moment will be trans-
ferred to the receptive field rec£Xl'*2 Xn> (r(,), t*), too; cp. (iv) in Definition 4. 
Without loss of generality, assume that j\,j2, v = Xj-, denote all the positions 
which have produced register names in the receptive field rec£Xl,X2 x">(r{l),i*). 
If v — 71 j-, then Tty^card (rec[Xl'Xz Xn)(r<-i), t*))^XSYS(t0) follows immediately. 
For u < / / , let /,, t2, ..., tw be all the moments where test instructions have to be 
performed according to n and input (x l5 x2, ..., xn) such that the contents of the 
CPU accumulator depend on one of the input values xJv+1, • ••, xJx at least,.at 
the moments of testing. Consider the following program n' computing something 
unspecified, produced by n and (x,, x2, ..., xn) in the following way: 

— all test instructions at moments t 1 , t 2 , . . . , t w will be deleted in n, and 
— all other instructions of n will be performed according to it: and input 

(x^ x2, ..., x„), in the same order, where all instructions LOAD a or 
OPj a, for a equal to =x , m, *m, or (/), will be replaced by OP2 a, for 
the same value of a, if such instructions appear in n. 

Thus, the receptive field of register 0, i.e.', the CPU accumulator, will increase 
monotonically according to n' and (x,, x2, ..., x„). After t*—w operations 
according to n', rec(0, t*—w) contains all input register names for the input 
data x j v t l , ..., Xjx . This receptive field will be combined with rec£*1,Xz Xn> 

(r( i ),/* —vf)sreciJCl ,*2 '--x» )(/ i ), i*) at moment by adding an 
instruction OP2 a (see conditions (OFF.2) and (ON.6)) or OP2(/) (see conditions 
(OFF.4) and (ON.7)) to %'. Thus, X f ^ c a r d ( r e c i ^ x * - - - x J ( 0 , t * - w + l ) ) m 
— /1SYS( '* — U ' + ^ S Y S ( ^ O ) ' Note that the off-line or on-line I/O convention 
is necessary to ensure that a non-accumulator PE register r(i) may be replaced by 
the accumulator of the same PE which is an output register, too. For this replace-
ment, parallel STORE instructions may be replaced by parallel OP, instructions 
using the same masks for PE addresses. 

What we have explained is one of the possible ways to ensure the necessary 
data transfer within time limit l„, for. the local off-line or on-line situation. The 
essential point in the program transformation from n to n' may be characterized 
by the word "linearization", because all test instructions could be deleted, in fact. 
This linearization approach may be used for the local, global and total situation 
in the following way. 

For the given program n and an input situation 7, all the performed instruc-
tions will be written as a linear sequence S0. We obtain sequence SV by deletion 
of all instructions JLTZ, JZERO, JGTZ, JUMP, WRITE, and HALT in sequence S0. 
Now, for the special case of an on-line program, if in sequence »S0 there were some 
STORE instructions in front of a WRITE instruction directed to certain output 
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registers r€ R, then these STORE instructions will be shifted to the end of sequence . 
In the resulting sequence S8, all serial or parallel OPj a or LOAD ot instructions will 
be replaced by an O P s a instruction formally, in the same position for the same 
value of a. For the resulting sequence S3 we have monotonically increasing re-
ceptive fields for all accumulators, for the CPU and PEs. Also, by the described 
step from St to S2, for sequence S3 the receptive fields of output registers will be 
monotonically increasing for consecutive output waves of information. Now, if 
in the original sequence S0 there was no test instruction, our program linearization 
is finished. In the other case, in S3 we shall place an instruction JZERO, e.g., in 
that position where the last test instruction was located in sequence S0. Now con-
sider an arbitrary output register /•£ R. If there is an operational instruction behind 
the JZERO instruction directed to r then register r will obtain the receptive field 
of the CPU accumulator containing all the register names corresponding to tested 
input values, cp. (iv) in Definition 4. If there is no operational instruction behind 
the JZERO instruction directed to r then we shift the last instruction directed to 
r in front of the JZERO instruction to a position behind this instruction. By corn 
sideration of all registers r£R, our program linearization is finished. Note that 
the length of the resulting linear instruction sequence is restricted by the length of 
the original sequence S0. 

Now assume that A /=card (sub,-^, x2, ..., *„)) for a certain i, l^i^n, 
m m 

V/=card((J subj(y!, y2, •••, y„)) and zf= card (sub; (z1? z2, . . . jZn), for certain 
>=i ¡=i 

input vectors x2, ..., xn), (ylf y2, ...,yn), (z1? z2, ..., z„). These input vectors 
characterize input situations IX,IY,IZ for SYS. By linearization of -N according 
to these input situations we obtain linear programs n x , i t y , n 2 , respectively, all 
of length ^ t0. Thus, we have 

' " V , , ^ ; . 
vl?-' i^-Vf, 
-(zi,Z2 r ) _ (R,t0) = 

which proves our statements. • 

Corollary 1. Let CLASSgSIMD. For any system SYS6CLASS, the compu-
tation of a function / which is into the set of m-tuples of real numbers requires 
at least t0 steps of computation in the worst case, where /1CLASS('O)=^/» 
JCLASS(™> to)^y f , and r C L A S S ( m , f 0 )Sx f . 

Proof. Immediately by Lemma 1 where the generalization about all programs 
computing the function / is used as well as about all systems of CLASS. For the 
on-line case note that there may already be a certain m 0 ^ m such that 
AXASS (m 0 , to) = yf, a n d TCLASS(m0, /0) = */- • 

Example 12. Let CLASS = {EXAMP1} and consider the computation of the 
parallel Roberts gradient as described in Example 1. In this case we get the trivial 
lower time bound 1 only; an upper bound was 29. Now, let CLASS = {EXAMP3} 
and consider the computation of the arithmetical averages of M consecutive waves 
of information of length N=2"~1 as described in Example 3. Here, by Corollary 1 
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we obtain the lower time bound n+2M—2=max {«— 1, n+2M—2, n+M—1}, 
cp. equation (6.1), (6.2), (6.3), for values lf=N, yf=N-M and r f = N - M . An 
upper bound was 6M+n. 

Using common asymptotic notations, for both examples the optimal times 
0(1) and d(M+n) are known as a result. 

Theorem 3. For any system SYS€OFF-NETp, p ^ 2 , the computation of 
a function / which is into the set of m-tuples of real numbers requires at least 
f0 steps of computation in the worst case, where 

t0 S max {(d1 —l)/2, (d2—m)/2m, (d3—m)/2m} 

for p—2, and for p^3 

t0 s max {log,_1 (dt (p - 2) + 2) -1.586, 

logp _ j (d2 (p -2) + 2) - log, _! m -1.586, 

logp-x (d3 (p- 2) + 2) - logp _! m -1.586}, 
% 

if / is locally ^-dependent, globally cf2-dependent, and totally ¿4-dependent. 

Proof. Immediately by Theorem 1, Definition 7 and Corollary 1 where the 
relation log , , - ! /» 1.586, p ^ 3 , was used. • 

In Table 7 are collected, for the classes of off-line systems defined in Section 1, 
the lower time bounds that may be obtained by using Corollary 1. Because the 
classes OFF-LINEAR, OFF-PS, OFF-BINTREE and OFF-QUADTREE represent 
examples for the maximal transfer situation as characterized by Theorem 1, for these 
classes the lower time bounds are as given by Theorem 3. If a function / into the 
set of m-tuples is globally or totally ¿'-dependent, then the value d has to be replaced 
by d'/m in the lower time bounds given in Table 7, to obtain the corresponding 
values for the global or total situation. 

Theorem 4. For any system SYS£ON-NETPi9, 1 the compu-
tation of a function / which is into the set of m-tuples of real numbers requires at 
least t„ steps of computation in the worst case, where 

i0 S max {(dx +1)/2, (d2 + m)/2m, (d3 + m)/2m) • 

f o t 9 = 1, and for 
ft 

t0 S max{log?(d1(9—1) + 1), log,(d2(q — l)/m +1), 
9 

logq(d3(q-l)/m + lT}, 

if / is locally ^-dependent, globally <f2-dependent, and totally ^-dependent. 
Proof. Immediately by Theorem 2, Definition 7 and Corollary 1. • 

In Table 8 are collected, for the classes of on-line systems defined in Section 1, 
the lower time bounds that may be obtained by using Corollary 1. Because the 
classes ON-LINEAR{0), ON-BINTREE{1>2), and ON-QUADTREE(1>2i3j4) re-
present examples for maximal transfer situations as characterized by Theorem 2, 
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for these classes the lower time bounds are as stated by Theorem 4. As in the case 
of Table 7, if a function / into the set of m-tuples is globally or totally ¿/'-dependent, 
then the value d has to be replaced by d'/m in the lower time bounds given in 
Table 8, for obtaining the corresponding values for the global or total situation. 
Note that value m may be replaced by a value m0^m for special ON-NET systems. 

5. Conclusions 

In this paper we have given a general framework for the description of parallel 
processing systems, and explained how data flow may be used for analyzing lower 
time bounds in general. Note that this approach may be applied to supercomputers 
as well as to on-chip realizations. Problems connected with the technical features 

Table 6. Local, global and total data dependence measures 

Computational 
problem / n m 5V» 

MATRIX 
MULTIPLICATION 2N2 N2 2 N 2N2 2N3 

MATRIX 
INVERSION IP N2 N 2 N2. N2 N1 

DETERMINANT . N2 1 N2 

LINEAR 
EQUATIONS N2 + N N N2 + N N2 + N N3 + N2' 

TRANSPOSITION IP N2 ' N2 1 N2 N2. 

MATRIX Ti IP TV2 N2 

for 
2 

n^id 
N2 2N2-#{(i,n-: 

j) = (i, j)} 

2D—DFT 2 N2 2 N2 ï=2Ar2-4 
s2Ar2— 1 

2 N2 ' ^ 2 N" 
S4N1-2N2 

2D—WT N2 N2 N2 N2 Nl 

ROBERTS 
GRADIENT MN NM 4 MN 4MN-2M-2N-2 

CH SIPOL 2N 2N .. 2N 2 N ë2N2 — 8N+ 12 
S 4 N2 

VORONOI 
DIAGRAM 

2N 18 N- 33 2 N 2N ë \ 2 N — 30 
3 36JV2 —66iV 

PATTERN 
MATCHING N+M N—M+ 1 2 N M+N 2M(N-M+\) 

PATTERN 
SIGNALIZATION N+M 1 S max {2M, M+[N/M\), S.M+N 

SORTING N N N N2 
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of architecture elements were by passed by the selected level of abstract system de-
scription. Thus, in the discussion of parallel algorithms for a given model SYS6 
gSIMD we may have in mind quite different technical implementations, but we 
may discuss parallel algorithms for all of them at once using the abstract model 
SYS6SIMD. For example, an important problem is given by the necessary decision 
between different structures of parallel processing systems to ensure efficient algo-
rithmic solutions for classes of computational problems such as mentioned in 
Example 8 (matrix-type computations), 9 (two-dimensional transforms), 10 (geo-
metric problems), or 11 (combinatorial problems). According to our considerations 
in [4] the selection of parallel algorithms crucially depends on the given parallel 
processing system and comparisons between different SIMD systems on the basis 
of knowledge about optimal algorithms represents quite a hard task. Also, there 
are nearly as many different models for parallel processing as papers on this topic, 
making comparative studies of different parallel structures nearly impossible. In 
the present paper an attempt was made to propose a classification of special parallel 
processing systems which have been of widespread interest in the past. The proof 
of the practicability of the proposed exact definition of SIMD systems will be the 
subject of forthcoming papers; the first programs of the PARSIS project fit well 
into this framework. 

By using Tables 6, 7, and 8 the interested reader may obtain lower time bounds 
for different combinations of SIMD systems and computational problems, e.g., 
the lower time bound log2(Af2 +1) for the two-dimensional Walsh transform on 

Table 7." Lower time bounds for off-line systems in OFF-CLASS 
for computing a local ¿-dependent function 

CLASS P lower time bound < / = 1 2 8 d= 128« 

LINEAR 2 (d- l ) / 2 6 4 8, 192 

HEXAGONAL 3 9 105 

SQUARE or ILLIAC 4 ((2d-lW*-l)/2 8 91 

TRIAGONAL 6 ( ( 4 - 4 r - ) A 7 7 4 

DIAGONAL 8 (din — 1 ) / 2 6 6 4 

PS 3 logs W + 2 ) - 1 . 5 8 6 6 13 

BINTRE 
top node 

3 log2 (d+2)-1.586 
log2 ( d + l ) - l 

6 
7 

13 
14 

TRIANGLE 
top node 

5 t0 s l o g 2 (d-1S + 2f„ + 5) - 2.586 
l o g 2 ( < / + l ) - l 

5 
7 

12 
14 

QUADTREE 
top node 

5 log4 (3rf+2)— 1.161 
log* ( 3 < / + l ) - l 

4 
5 

7 
7 
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Table 8. Lower time bounds for on-line systems in ON-CLASS 
for computing a local ¿-dependent function 

CLASS P {'i, • ••,' ,} Lower time bound ¿ = 1 2 8 d= 128® 

LINEAR 2 {0} ( ¿ + D/2 65 8,193 

HEXAGONAL 3 {0,1} ((8d+ I)1'*- l ) /2 16 181 

SQUARE or ILLIAC 4 {0, 1,2} d1/2 12 128 

TRIAGONAL 6 {0, 1, 2, 3, 4} ((T'-T)"-OA 7 81 

DIAGONAL 8 {0, 1, 2, 3, 4, 6, 7} ((t"-T)'"-¥ 6 64 

BINTREE 3 {1,2} log2 ( ¿ + 1) 8 15 

TRIANGLE 5 {1,2, 3, 4} l o g s W + l ) 8 15 

QUADTREE 5 {1,2, 3 ,4} log4 (3 d+1) 5 8 

PS 3 {0, 1} / ( o + 2 = £ d + 2 for the 
Fibonacci numbers 
fo, f l , f , , • • • 

11 21 

ON-TRIANGLE systems. The characterization of data dependencies for computa-
tional problems as given by Definition 7 may be refined, e.g., by consideration of 
changes of function values not only by changing arguments in one position but in 
several positions. 

Abstract 

Starting with an exact definition of classes of SIMD (single instruction, multiple data) systems, 
a general approach to obtaining lower time bounds by data flow analysis is presented. Several 
interconnection schemes, such as the square net, the perfect shuffle, the infinite binary tree, etc. 
are analyzed with respect to their data transfer possibilities. For some types of computational 
problems the data dependencies are analyzed in a quantitative way. From both types of analysis, 
lower time bounds result for many combinations of SIMD systems and computational problems, 
for example, 0( log N) for on-line quadtree-net systems and the computation of Voronoi diagrams 
for N planar points, O(N) for off-line diagonal-net systems and the two-dimensional discrete Fourier 
transform, and for off- or on-line Illiac-net systems and sorting of N items. 
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