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I. Introduction and basic terminology 

8 1 . 

The main aim of this paper is to study the partitions n of the vertex set of 
a finite directed graph G such that n satisfies the following condition: if the vertices 
a, b are in a common class modulo n and the edges ac, bd exist in G, then 
c, d are also in a common class. These partitions will be called partitions having 
property P in the paper. 

My attention was called to studying these partitions by the automaton-theoreti-
cal articles [7], [9], [10]. The majority of the present paper is written, however, 
from a graph-theoretical point of view. 

Sections 3—5 are devoted to introducing the notions which are basic for the 
paper, and to exposing a few simple consequences of the definitions. 

In Chapter II a description of the P-partitions of functional graphs will be 
given. The results of Chapter II will be generalized in Chapter III into an overview 
of the P-partitions of all (finite, directed) connected graphs in which no vertices 
with out-degree zero occur. 

Chapter IV contains comments of several types. The extension of the former 
results to non-connected graphs is sketched, their extension to graphs with sinks 
is questioned and examples answering some arising questions will be given. § 12 
is an appendix to the paper; it starts with lemmas on a sequence of partitions of the 
state set of a Moore automaton, later these facts lead to a proof solving a problem1 

on the complexity and state number of Moore automata. 

1 Conjecture 1 in [4]. 
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§ 2 . 

The idea of studying the P-partitions by graph-theoretic methods was suggested 
by the articles [7], [9], [10] of Gill, Flexer and Hwang. They have dealt with questions 
concerning automata. The mentioned partition type is the same as the "partitions 
with substitution property" in their papers.2 

Gill, Flexer and Hwang discussed mainly the partitions of the state set of an 
automaton such that the factor automaton (modulo the partition in question) 
exists and is a cycle. It turns out from their articles that the overview of these parti-
tions has a certain technological significance.3 

Yoeli and Ginzburg [14] introduced the P-partitions under the name "admissible 
partitions". They investigated chiefly the atoms4 in the lattice of these partitions. 

Dvorak, Gerbrich and Novotny deal in their most recent paper [5], essentially, 
with connected directed graphs in which no out-degree exceeds one. They describe 
all the possible homomorphisms (if there exists any) of a graph onto another. 

The question, to whose solution Chapter II of the present paper is devoted, 
is the same (apart from terminological differences) as the problem of describing 
the congruences of connected finite unary algebras with one operation. The papers 
[11], [15], [16], [17] of Kopecek, Egorova and Skornjakov deal with somewhat 
related questions. 

The. autonomus semiautomata (possibly infinite ones) which are investigated 
by Machner and Strassner in [12] are essentially the same as the functional graphs 
in. our terminology. Theorem 3 and Corollary 6' in [12] concern to finite functional 
graphs, these results correspond to certain considerations in our Chapter II. The 
mentioned results are derived by Machner and Strassner as consequences of their 
investigations dealing with the infinite case. 

§3. 

By a graph, we mean a connected directed finite graph. Parallel edges with the 
same orientation are not permitted. We allow, however, loops and oppositely 
oriented parallel edges. Sometimes we regard a graph G as a relational structure, 
this means that we say "the relation aG(a, b) holds" instead of saying "the edge 
from the vertex a to the vertex b exists in G".5 

: ; The most familiar notions of the theory of directed graphs are supposed to be 
known; especially, the notions, of path and cycle. These are understood always 
in directed; sense, and with pairwise different vertices. (Of course, the first vertex 
of a cycle and the last; one are the same.) 

The notion of circuit originates from the notion of cycle by the modification 
that the edges are considered as non-directed ones. 

2 In [7], [9], [10] automata without output signs are considered. Actually, the graph of an 
automaton is studied rather than the graph itself. 

» See the middle of Section 1 in [7] and Section VII of [9]. 
• n is called an atom if nzio holds and n~3.it'z>o implies n=n' (where n, n' are 

P-partitions). 
6 The subscript G is possibly dropped in <xG if its absence cannot cause a misunderstanding. 

Similar notational simplifications may occur in other cases, too. 



ш A. Ádám: On certain partitions of finite directed graphs and of finite automata 

A vertex with in-degree zero is called a source. A vertex with out-degree zero 
is called a sink. 

The lattice of all partitions of the vertex set V of a graph G is denoted by 
L(V); as usual, tz,gn2 means that % ( € L ( V ) ) is a (proper or non-proper) refine-
ment of 7 T 2 ( € J L ( F ) ) . I is the partition having one class only, and o is the partition 
each class of which consists of a single element. 

Consider a partition n(^L(V)). We say that n possesses the property P (or-, 
simply, that n is a P-partition) if 

(a = b (mod 7t)&a(a, c ) & a ( b , d))=>c = d(modn) 

holds universally (i.e., for every choice of the vertices a, b,c,d). 
Denote by [a]^ (or simply by [a]) the class (modulo n) containing á vertex a. 

The factor graph G*=G/n is defined in the following manner : 
the vertices of G* are the classes of V modulo n, 
a*([a], [6]) holds6 if and only if there exist two vertices a'(EV), b'(£V) such 

that a'£[a], b'd[b] and a {a', b'). 
It is clear that Gjn can have loops even if G is loop-free. 
We end this § by asserting two obvious statements concerning the above notion 

of the factor graph. The first of them is an analogon of one of the general isomorphism 
theorems of universal algebras. 

Lemma 1. Let nu n2 be two partitions of the vertex set V of a graph G. 
Suppose 7r1£7r2; denote by n^ the following partition of the vértex set of Gjn1: 
M»,=[&]«i ( m o d n'2) if and only if a=b ( m o d n2). Then G/7t2 and (G/n^/n^ are 
isomorphic. 

Lemma 2. Let n be a partition of the vertex set of a graph G. If there is no 
source (or no sink) in G, then there is no source (or no sink, resp.) in Gjn, too. . 

§ 4. 

A graph G is called a functional graph if the out-degree of each vertex of G is 
one. A simple structural description of the finite functional graphs is due to Ore (see 
[13], § 4.4; [1], Chapter I); his theorem states that a connected graph G is functional 
if and only if 

G has precisely one circuit, 
the circuit in G is a cycle, and 
each other edge of G is directed towards the cycle. 
By its definition, a functional graph G does not contain a sink: G contains 

at least one source unless G is a cycle. 
The vertices and edges of the cycle of a functional graph G are called cyclic. 

Each other vertex and edge of G is said acyclic. (A source is always acyclic:) 
If a is a vertex of a functional graph G, then we denote by cpG (a) the (uniquely 

determined) vertex b for which aG(a,b) is true. We define (p'(a) by (p'(a)= 
= (p((pi~1(a)) recursively; we agree that cp°(a)=a. 

6 We write a* instead of a. 
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Let a, b be two vertices of a functional graph. If there is a number i(feO) 
such that q>'(a)=b, then we denote by x(a, b) the smallest of these numbers. 

Let a path in a functional graph G be considered whose vertices are 

Oi, at, ..., a„ (sl=r 2). (4.1) 

If flj, a2, ..., a , - ! are acyclic vertices and as is cyclic, then we call (4.1) a principal 
path. To each acyclic vertex alt there is exactly one principal path starting from at. 

Let B be a subset of V such that every element of B is an acyclic vertex. 
B is called a basic set if, to each b(£B), the principal path starting with b contains 
no other element of B than b. The empty set is regarded to be basic, too. (Thus 
each functional graph — even a cycle — has at least one basic set.) The set of all 
sources of a functional graph is always basic. For any basic set B, a principal 
path may contain at most one element of B. 

Consider a basic set B of a functional graph. A vertex a is called outer with 
respect to B if a is acyclic and the principal path starting with a contains an 
element of B. The remaining vertices are called inner (with respect to B). The 
following lemma is obvious: 

Lemma 3. Let B be a basic set in a functional graph. Then 
(i) each element of B is outer with respect to B, 

(ii) each cyclic vertex of the graph is inner with respect to B, and 
(iii) if a is inner with respect to B, then (p{a) is also inner. 

In the last assertion of this § we state a connection between the P-partitions 
and a slight extension of the class of functional graphs. 

Proposition 1. Let G be a graph and n be a partition of its vertex set. n has 
the property P if and only if each out-degree in the factor graph G/n is either zero 
or one. 

Proof. The out-degree of a vertex [a] of Gin is at least two if and only if 
there exist four vertices bi,b2,c,d in G such that ¿>i€[a], b2^[a], a(61; c), a(62, d) 
and c ^ d (mod n). This condition is precisely the negation of the property P. 

§ 5 . 

In this last section of Chapter I, a few concepts of the theory of automata will 
be recalled or introduced. These notions are referred to in § 2 and § 12 only. 

The notion of the Moore automaton is well-known, we denote such an auto-
maton by A=(A , X, Y, 6, A). 

Let a, b be two states; the length of a shortest (input) word p such that A (<5 (a, p)) 
X(5(b,p)) is denoted by m(a,b). The maximum of co (a, fa) (taken for pairs 

of different states) is called the complexity of A. 
Let us define the partitions7 t]k in its state set A in such a manner that a=b 

' It follows from Proposition 16 of [2] that each r/k is really a partition. In [2], I have written 
Rk instead of rjk. 
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(mod »7*) holds exactly when a>(a,b)^k. It is obvious that 

fo i m i I2 i »73 i ••• (5.1) 

and tj0 equals the maximal partition of A. 
If we consider an automaton A such that the output set Y and the output 

function A are not taken into account, then we speak of an automaton without 
output signs. 

Let A be an automaton. Let us construct a directed graph G in the following 
way: 

the states of A are the vertices of G, and 
aG(a, b) holds if and only if there is at least one x(£.X) satisfying 5(a, x)=b. 
Then G is called the graph of the automaton A. (It is clear that we have re-

garded A as an automaton without output signs in this definition.) 

Construction I. Let G be a functional graph, B a basic set in G and d 
a divisor of the length of the cycle of G. 

We form an augmenting sequence 

of induced subgraphs of G such that 
(a) the vertex set V1 of G1 equals the set of inner vertices (with respect to B), 
(f}) the vertex set Vt of Gt consists of the vertices a which satisfy (p(a)£Vi^1 

(K(_i is the vertex set of G ^ ; 2 ^ i s t ) , 
(y) the sequence (6.1) terminates when we reach G (in the form of G,).8 

Let us construct a sequence 

(C) Suppose that the partition (of V{~i) has already been defined (where 
2 ^ i ^ t ) . Denote by rt the following partition of Vt: a=b (mod t ;) precisely if 

either a=b, 
or a£Vi~Vi-X, beVi-Vi-! and q>{a)=<p(b) ( m o d ^ - i ) . 

G I , G 2 , . . . , G, (6.1) 

7TJ, JT2> .••» = JT 

(of partitions) according to the following rules (A)—(F): 
(A) n{ is a partition of Vi (where l ^ i ' S i ) -

(B) (Initial step) Choose a cyclic vertex c of G. Let 

a = b (mod Jtx) 

hold for a(€Fx) and b(€Vi) exactly when 

X(a, c) = x(b, c) (mod d). 

(6.2) 

8 It is clear that V,=BU V1. 
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(D) Assume that the partition (of V t-j) has already been defined (where 
2==/==/). Denote by n't the subsequent partition of a=b (mod 7T-) exactly if 

either a=b, 
or b€Vi~i and a=b (mod n^J. 
(E) (Ordinary step) Choose an arbitrary partition n* of Vt such that 

Form the union n*Uni and denote it by n t. 
(F) The construction of the sequence (6.2) contains an initial step and t—1 

ordinary steps. 

Remarks. If aZVj-! and b^Vi—Vi_1, then a^b modulo any of the parti-
tions iii, n i + 1 , ..., n,(—n). — If a£V{ and ¿6F,-, then either the congruence a=b 
is true for all of the partitions, n^ n i + l , ..., n, or it is false for all of them. — The 
following three assertions are equivalent (for a performance of Construction I): 

(1) B is empty, 
(2) every vertex is inner and the construction collapses to the initial step, 
(3) Ojn is a cycle.. , 

If G is a cycle, then the assertions (1), (2), (3) are true. — If B is empty and d= 1, 
then n equals the maximal partition i of V. — If B is chosen as the set of all 
acyclic vertices a fulfilling the statement that <p(a) is cyclic, the number d is 
chosen as the cycle length of G and each n* is the minimal partition of Viy then 
7t equals the minimal partition o of V. 

Lemma 4. The initial step of Construction I is independent of the choice of the 
cyclic vertex c. 

Proof. Apply the initial step with c(1) and c(2), resp. (instead of c). Denote 
X(c(1), c(2)) by q. Let the originating partitions be 7t|1) and 7r{2). 

Suppose a=b (modrt^). Denote. 

X(a, cM)-x(b, c ( 1 ) ) 
d 

by k and pld by m where p is the length of the cycle of G. It is easy to see that 
X(a, c(2)) equals either y(a, c(iy) + q or y(a, cw)—(p — q) and a similar assertion 
holds with b (instead of a). A discussion shows that /(a, c(2))—x(b, c(2)) is equal 
to one of kd,(k+m)d, (k—m)d. Hence' x(a, ci2))=x(b, e(2)) (mod d) and a=b 
(mod Tri2>). 

An analogous inference shows that a=b (mod 7ti2)) implies a s f t (mod itj1'). 

Proposition 2. Consider two performances of Construction I for a graph G; 
suppose that we start with the pairs (B(1>, dm) and (fi(2), dm), respectively. Denote 
the obtained partitions by nw and n(2). If 71(1> = tc(2), then dm=dm 

and the 'two 'performances are stepwise'coinciding. 

Proof. We verify the statement indirectly. 
If Bm7iB(i), then there is a vertex a which is inner with respect to one of 
B(2) (e.g. to Bm) and outer with respect to the other one. Thus a=b (mod 7t(1)) 

is satisfiable with at least one cyclic vertex b, but a=b (mod 7T ( 2 ) ) is not satisfiable 
by any cyclic b. 
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Let da), d(2) be different, we can suppose d{1)<di2). Choose a cyclic vertex a. 
a and (pdU (a) are congruent modulo 7T (1) but they are incongruent modulo 7R (2). 

Finally, we consider the case when Bw—Bi2), dm=d(2} and the two perfor-
mances of Construction I differ from each other. The first difference between them 
will appear in the following manner: in two ordinary steps (corresponding to each 
other in the performances), n*(1), n?(2) act differently on the set Vi~Vi-l. It is 
evident (by the second sentence of the remarks above) that the partitions n m 

acton Fj—Fj-x in the same manner as n*m and n*(2), respectively. 
We have got it ( 1 )^n i 2 ) when the two performances do not agree with each 

other completely. 

Theorem 1. The following three assertions are equivalent for a partition n of 
the vertex set V of a functional graph G: 

(I) Gin is a functional graph, 
(II) n has the property P, 

(III) 7i can be obtained by Construction I. 

Proof. The equivalence of (I) and (II) follows immediately from Proposition 1 
and Lemma 2. In what follows, we strive to show the equivalence of (II) and (III). 

(II)=>(III). Let us start with a P-partition n of V. Our aim is to determine 
a performance of Construction I such that n is obtained by this performance. 
In details the determination of the performance will consist of the following phases 

(a) we determine a basic set B, 
(P) we determine a divisor d of the length of the cycle of G, 
(y) we prove that if we choose two vertices a l 5 a2 and two elements bt, b2 

of B such that the numbers yfa^, bx) and x(a2> b2) are defined and they do not 
coincide, then at ^ a2 (mod ri), 

(<5) we determine the partitions nl, 713,714,..., 
(E) we show that each n* is a refinement of r ( . 
We turn to elaborate the parts of the proof (of (II)=>(III)) exposed above, 
(a) Denote by C the set of all vertices a of G such that [a]„ contains at 

least one cyclic vertex. Denote by B the set of vertices b such that b$C and 
q>{b)iC are valid. It is clear that B consists of acyclic vertices. We are going to 
show that to any b(£B) no positive i can satisfy b = (p'(b) (mod 7t). Suppose 
the contrary. It is easy to see (by the property P) that b, <p (b), (p2i(b), <p3i(b),... 
belong to a common class modulo n, this is impossible since [£>]„ cannot contain 
a cyclic vertex. 

(/?) Let a be an element of C, denote by r\{a) the smallest positive integer 
i such that a=(p{(a) (mod 71). 

Consider a vertex a(£C), let i be the (minimal) number occurring in the de-
finition of t](a). Then 

§ 7 . 

( « M e ) : 

hence 
<p(a) = <p((p'(a)) = (p'((p(a)) (mod n), 

t](a) is ri((p(a)). (7.1) 
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If (7.1) is applied for the vertices of the cycle of the graph, we get easily that 
rj(a) is common for the cyclic vertices. Denote this common value by d and the 
cycle length by p. 

Our next aim is to verify that d is a divisor of p. Let k be the smallest integer 
such that kd>p. Since the deduction 

c = (p"(c) = <pM(c) = <pM(c) = . . . = <pw(c) = <pki~p(c) (mod n) 

holds for an arbitrary cyclic vertex c, we have kd—p^t](c)(—d) by the minimality 
condition in the definition of tj. On the other hand, the minimality condition in 
the definition of k implies kd—p^d. Consequently kd—p=d, thus (k — l)d=p 
and d\p. 

Consider now an acyclic vertex a(£C), let c be a cyclic vertex such that 
a=c{modri). We have (p'(a)=<pl(c) (mod it) for every i, this fact implies 
t]{a) = n{c)=d. 

(y) We can suppose x{aL, ¿¡)< b2) without an essential restriction of 
the generality. Denote x(ai> b,) by j. It is clear that <pj+1(a1)£C and (pJ+1(a2)$C, 
hence ax ̂  a2 (mod it). 

(8) Denote by Vt (where * = 1) the set of vertices a satisfying (p'~1(a)£C. 
(It is clear that if Let n* be a partition of Vt defined by what 
follows: a=b (mod n*) (where a£ Vt, b£V:) if and only if 

either a = b 

or a ^ V i - x , b^.V i_1 a n d a = fc(mod7t). 

(e) is obviously true with the above definition of the partitions nf. 
We have completed the determination of the "parameters" B, d and 7t|, ... 

occurring in Construction I. A routine inference shows (together with (y)) that 
we obtain just n if we perform the construction with these "parameters". 

(III)=>(II). Consider a partition n which has been obtained by Construction I. 
Similarly to the preceding part of the proof, we denote by C the set of those vertices 
a for which [a]n contains a cyclic vertex. 

Suppose a=6(mod7t) where a ^ b . 
If a£C, then clearly b£C. Let us choose an arbitrary cyclic vertex c. Either 

X{(p(a),c) = x(a, c ) - l 
or 

x(<p(a), c) = p - l = - l = x(a, c ) - l (modd) 

(according as aj^c or a=c), and the analogous statement holds for b (instead 
of a). Therefore we have 

x((p(a), c) = x(a, c ) - l = x(b, c ) - l = x(v(b), c) (mod d), 

thus cp(a) = (p(b) (mod n). 
If a and b do not belong to C, then they are necessarily contained in the 

same difference set Vi — Vi-1. a=b is valid modulo each of n=nt, n,_1,7r(_2, ..., 
...,n,,nf and Tf (by the construction). We get (p(a) = q>(b) (mod rc^) by the 
rule (C), hence the elements <p(a) and <p(b) of Vi-1 are congruent modulo each 
of n t , n i + 1 , ..., n ,=n, too. 
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The fulfilment of the property P is proved. 

The next assertion is an easy consequence of the procedure described in Con-
struction I and of the notion of factor graph: 

Proposition 3. Let G be a functional graph and n be a partition (in G) pro-
duced by Construction /. The cycle length of the factor graph G/n equals d. Gin 
is a cycle if and only if B is empty. 

HI. Partitions having the property P in arbitrary sink-free graphs 

§ 8 . 

Let G be a directed graph. We introduce a quaternary relation x and some 
binary relations in the set V of vertices of G. 

Let x(a,b,c,d) hold for the (not necessarily different) vertices a,b,c,d 
if there is a positive integer k and there exist 2k vertices / i , / 2 , ...,fk, glf g2,..., gk 
such that the equalities 

a =fi, b =fk, c = g l5 d — gk (8.1) 

and the 2k—2 relations 

« ( / i , / 2 ) , « ( / 2 , / 3 ) , . . . , « ( / * - „ / » ) , (8.2) 

<*(gi> g2>» a(ga, gs). •••, a(g*-i, gk) (8.3) 

are true. x(a, a, c, c) is regarded to be always valid (with the choice k— 1) both 
when a=c and when a^c. It is clear that x(a,b,c,d) and x(c,d,a,b) are 
equivalent. 

Let e(a,b) be true if there is a c(£V) such that x(c,a, c,b). Denote the 
transitive extension of q by e. 

In Chapter III, our aim is to characterize the P-partitions of the sink-free graphs 
by use of the partition s. 

Remark. If G is a functional graph, then e = o. 

§9. 

Lemma 5. If nx and n2 are partitions with property P, then 7rin7r2 is a 
P-partition, too. 

Proof. If a~b (mod n^n^), ct(a, c) and a(b, d) are true, then both of 
c = d ( m o d n j , c=d(mod 7T2) hold. 

Proposition 4. There is a (uniquely determined) P-partition n* such that n* Q n 
for each P-partition. 

Proof. G is a finite graph, hence the intersection n* of all P-partitions possesses 
property P by a successive application of Lemma 5. 
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Proposition 5. We have 

Proof. Let a, b be two vertices such that g(a, b). There is a vertex c such that 
x(c, a, c, b). Consider the 2k vertices occurring in (8.2), (8.3). (These vertices 
fulfil now c=fi=g1, a=fk, b=gk instead of (8.1).) Since n* has property P, 
fi=gt (mod n*) follows inductively; especially, 

a — fk — Sk = Hmod n*). 

We have shown that g(a,b) implies a=b (mod n*). Consequently, a=b (mod e) 
implies a=b (mod ti*) (because i is the transitive extension of q). 

Lemma 6. If G has no sink, then e is a P-partition. 

Proof. Assume q(a, b), a,(a, c) and a(b, d) for some vertices a, b, c, d. Then 
there is a vertex h such that x(h,a,h,b), hence x(h,c,h,d), thus e(c,d). 

Suppose a=b (mod s), a(a, c), u(b, u) for an arbitrary quadruple a,b,c,d. 
There exist vertices alf a2, ..., ak such that g(ai-1,ai) for each i and 
ax=a,ak—b. We can choose k—2 vertices c2, c3, ..., ck_x such that a(a i5 c;) 
holds (2^i^k—1). By the beginning sentences of the proof, o(ci^1, ct) if 
3^/sA:—1; furthermore, q(c, C2) and g(ck-1,d). Therefore e(c,d). 

Proposition 6. If the directed graph G has no sink, then n*=e. 

Proof. Tt*2e was stated in Proposition 5. nMQe is an immediate consequence 
of Proposition 4 and Lemma 6. 

Propositions 1, 6 and Lemma 2 imply 

Corollary 1. If G has no sink, then G/e is a functional graph. 

Construction II. Let G be a graph without sinks. Denote the factor graph 
G/e by G*. Choose a partition n' of the vertex set of G* such that n' is obtained 
by Construction I. Define a partition n in the vertex set V of G in the following 
manner: a=b (mod ri) holds for a(£V), b(£V) exactly when [a]£=[6]£ (mod n'). 

Theorem 2. Let G be a directed graph without sinks. The following three 
assertions are equivalent for a partition n of the vertex set of G : 

(i) G/n is a functional graph, 
(ii) n has the property P, 

(iii) 7r can be obtained by Construction II. 
Proof. The theorem becomes clear by comparing the following earlier results: 

Theorem 1, Propositions 1,4,6, Corollary 1, Lemmas 1 and 2. (Now Lemma 1 is 
applied for £ and n instead of 7z1 and n2, resp.) 

Proposition 7. Let G be a graph without sinks. The length p of the cycle of the 
functional graph G/e divides the greatest common divisor p* of all cycle lengths 
of G. 

Sketch of the proof. Choose an arbitrary cycle Z ' in G, denote the length 
of Z' by p'. Let us start with a vertex of Z' and pass through all the vertices of 
Z ' ; consider the corresponding vertices of G/e. We have passed through the 
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cycle Z of G/e either one or more times; in any case, the number of surround-
ings of Z is an integer. Thus p\p'. 

Since the same assertion holds for each choice of Z ' , we have p\p*. 

Corollary 2. Let G be a graph without sinks. Then the following two numbers 
are equal: 

(a) the number of partitions n such that Gjn is a cycle, 
(b) the number of divisors of the cycle length p of G/e (including 1 and p). 

Proof. Recall Construction II, Theorem 2 and Proposition 3. It is clear 
that Gin is a cycle if and only if n' is constructed (in G/e) by such a performance 
of Construction I that B is empty. This means that we have (precisely) the 
freedom of choosing a divisor of the cycle length of G/e arbitrarily. 

IV. Remarks, examples; an appendix 

§ 10. 

1. In the previous sections, a complete description of the partitions having 
property P of connected finite directed graphs without sinks was obtained. In 
the present remark, we shall outline how this description can be extended to non-
connected graphs. 

Let G be a non-connected directed graph containing no sink. Then G can be 
represented (in at least one manner) as the disjoint union of two graphs9 Gj, G2. 

" "Consider a partition n of the vertex set; V of G; denote by 7r; (where i can be 
1 or 2) the restriction of n to the vertex set Vt of Gt. Let [a]K be an arbitrary 
7r-class; evidently, either [a\n=[a]ni or [a]K=[a]„2 (where necessarily a(iV1 or 
a£V2, resp.) or = U [ ¿ > 2 ] r e 2 with suitable vertices b^V,) and b2(£V2). 
It is easy to see the validity of the following assertion : 

Proposition 8. A partition n of V has property P if and only if 
n1, 7t2 are P-partitions, and 
whenever a (a, b) holds in G and [a]„is the union of a nx-class and a n2-class, 

then the same statement holds for [b]K, too. 

The above idea can be utilized in such a way that first we form G/e (which is 
clearly the disjoint union of GJb and GJE), we apply the proposition for G/e,GJe 
and G2/e (instead of G, G1, G2, resp.), and we form the P-partitions of G by 
using the P-partitions of G/e (analogously to Construction II). 

2. The exposed theory admits a dualization with respect to reversing the orienta-
tion of edges. (The dual of a functional graph is a graph in which all in-degrees 
are one. Sources and sinks are dual to each other. The duals of the P-partitions 
are the partitions satisfying 

(c = ¿(mod n) & a (a, c) & a(b, d))=>a = b (mod n). 

9 Each connected component of G is either a connected component of or a connected 
component of Gt. 
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The dual of g(a, b) is true exactly if there is a c such that x(a, c, b, c) holds. 
And so on.) 

3. It can be shown that the P-partitions of a sink-free graph form a lattice. 
The maximal element of this lattice is i, its minimal element is e. 

4. In [7], [9], [10] also "input-independent partitions" have been studied. This 
notion is a slight modification of the concept of "partition with substitution prop-
erty" (i.e., with property P). In our terminology, a partition n is called input-
independent when 

(a (a, c) & a (a, d)) => c = d (mod n) 
is universally true. 

It is easy to see that this property is satisfied exactly when 7r j2e* holds where 
£* is the transitive extension of the following relation q* : g*(a, b) is valid if either 
a=b or there exists a c such that a (c, a) & a (c, b). 

5. We finish the section with exposing two open questions. 

Problem 1. Let an overview of the P-partitions of the finite directed graphs 
containing sinks be given. 

Problem 2. When does p=p* hold in Proposition 7? 

§ 1 L 

In this section, we shall see some examples. The first example is used for 
illustrating how Constructions I, II are performed. This example and the two 
subsequent ones will serve for deciding the following questions: 

(A) Is the relation g always transitive, or is it really needed that it should be 
extended transitively? (Cf. § 8.) 

(B) Can it happen that 7tz>e for a sink-free graph, but n does not possess 
property P? (Cf. Propositions 4, 6.) 

(C) Is the condition that sinks are not allowed indispensable in Proposition 6? 
(D) Is p<p* possible in Proposition 7? 
First, let us consider the graph Gx seen on Fig. la. Since g{c,f) and g(f,g) 

are valid but q(c, g) does not hold, the transitive extension is a proper step when 
e is formed. The classes modulo e are: 

{a}, {b, d), {c,f, g}, {e}. 

(a) (b) 
Fig. 1. 
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Fig. lb shows the factor graph GJe. (We write e.g. a instead of [a]„.) In GJe, 
there is only one choice for d, namely d= 1. We have six possibilities for choosing 
B, and Construction I can be performed in eight manners, the resulting partitions 
are seen on Table 1. (If \B\=2, then we have two possibilities for the choice of 
7IA, because T2 is the maximal partition of B.) The vertex set of GJe has fifteen 
partitions; the remaining seven ones — among these, 

<{5,c} , {&}, {e}) (11.1) 

— do not have property P. 

Table 1. 

The elements 
of B 

The classes modulo 
n 

— (a, b, c, e) 

ä {b, c, e) 

b {a}, {b}, {c- e) 

e {ä, b, c}, {e) 

{d}, {e}, {b, c) 
ä, e 

{ä, e), {b, c} 

b, e 
{d}, {b), <e), {c} 

b, e 
{ä}, {b, e), {c} 

Let us apply Construction II (with the partitions % of GJe in the role of n'), 
we get that <?i has eight P-partitions (from among the 15 partitions n fulfilling 
n^e) . E.g., 

<{«}, {b, C, d,f, g}, {e}> 

is a P-partition of G1 (obtained from the fifth row of Table 1), but 

({a, c,f, g}, {b, d}, M> (11.2) 

(got from (11.1)) is not a P-partition; in fact, a(a,b) , a(c, c) hold and a=c but 
b ^ c modulo the partition (11.2). 

The relation e for the graph G2 in Fig. 2 (containing three sinks) has the 
following equivalence classes: 

{a}, {b}, {c,d,e}, {/}, {g}. 

e does not possess property P because c=e but f ^ g (mod e). Therefore e^n* 
in G2. 
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Consider the graph G3 in Fig. 3a. s has (on G3) the equivalence classes 

{a}, {b, c, d, e , f , g}. 

G3/e is seen in Fig. 3b. We can observe that p = l < 6 = p * (with the notations of 
Proposition 7). 

(a) 
Fig. 3. 

o 
(b) 

Summarizing, the examples show that the answers to the questions (A), (B), 
(C), (D) are: "the transitive extension is really needed", "yes"/ "yes", "yes", 
respectively. 

Each counter-example given above contains a source. 

Problem 3. Do the above answers to the questions (A)—(D) remain unchanged 
when we restrict ourselves to graphs without sources? 

§ 12. (Appendix) 

In this section our aim is to give a simple proof10 for Conjecture 1 posed in [4]. 

Lemma 7. Consider the sequence r]0, r}1,t]2, ... of partitions of the state set 
A of a finite Moore automaton A = (A, X, Y, ô, A). If rji_1=rii for some positive 
i, then Ti—Tji+i. 

10 It should be noted that the idea of the present considerations is similar to a thought occurring 
in [8], p. 14. 
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Proof. Suppose t]iZ)t]i+1, we are going to show . , i) | .pi) j . . The .supposition 
means that there are two states a, b such that at (a, b)=i. We have : 

(o(ô(.a,x), Ô(b,x))^i-l (12.1) 

for each choice of x(£X) andthere isan x*(£X) for which equality holds in (12.1) 
The state pair S (a, x*), S(b, x*) is congruent modulo iji-i but incongruent 
modulo ijt. ' , " ' 

The next assertion is an easy conséquence of Lemma 7. 

Lemïna 8 . Let A be as in the preceding lemma, denote \A\ by v. Lèt m 
be the smallest number such that t]m—t]m+1. Then mSv—1. 

Lemma 9. Let A, v,m be as in Lemmas 7, 8. If two states a,b satisfy 
<o(a,b)^v—1, then co(a,b)=°°. 

Proof. Assume that a,b are congruent modulo They are congruent 
modulo r\m by Lemma 8 and (5.1); consequently, by the definition of m and 
Lemma 7, they are congruent modulo each of rjm+1, rim+2, >/m+3,... (ad infinitum). 

Proposition 9 ([4], Conjecture 1). Let A be a finite Moore automaton such 
that the number v of its states satisfies v^2. Denote the complexity of A by k. 
If k is finite, then k^v—2. 

Proof. By the finiteness of k, a>(a, b) is infinite (if and) only if a=b. Lemma 9 
assures a>(a,b)^v—2 whenever a^b. 

Corollary 3 of [3] shows that Proposition 9 cannot be sharpened. 
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