Decidability results concerning tree transducers II

By Z. Ésik

1. Introduction

Let $\tau \subseteq T_F \times T_G$ be an arbitrary tree transformation induced by a top-down or bottom-up tree transducer A. It is said that A preserves regularity if $\tau(R)$ is a regular forest for each regular forest $R \subseteq T_F$. It is natural to raise the question whether the regularity preserving property of tree transducers is decidable or not. This question was positively answered for bottom-up transducers in [4]. Even more, it was shown that a bottom-up transducer preserves regularity if and only if it is equivalent to a linear bottom-up transducer. Concerning top-down transducers we have quiet different results. Although every linear top-down transducer preserves regularity as linear top-down tree transformations form a (proper) subclass of linear bottom-up transducers having no linear bottom-up equivalent. Another distinction lies in the fact that there is no algorithm which can decide the regularity preserving property of top-down transducers (cf. Theorem 2). However, restricting ourselves to deterministic top-down transducers we obtain positive result (cf. Theorem 1).

The notations will be used in accordance with [1]. Recall that a top-down tree transducer $\mathbf{A} = (F, A, G, A_0, \Sigma)$ is called uniform if each rewriting rule in Σ is of the form $af \rightarrow q(a_1x_1, ..., a_nx_n)$ where $n \ge 0, f \in F_n$, $a, a_1, ..., a_n \in A$ and $q \in T_{G,n}$. In addition, if q is always linear (cf. [2]) then \mathbf{A} is called linear. These concepts extend to top-down tree transducers with regular look-ahead, as well. Furthermore, one-state top-down tree transducers and their induced transformations will be called homomorphisms. If \mathbf{A} is a homomorphism then we omit the single state in the presentation of Σ .

Z. Ésik

2. Deterministic top-down transducers

Let $A = (F, A, G, a_0, \Sigma)$ be an arbitrary deterministic top-down transducer kept fixed in this section. Put $\tau = \tau_A$. If there exist

 $n_1, n_2, m_1, m_2 \ge 0, \ \mathbf{a} \in A^{n_1}, \ \mathbf{b} \in A^{m_1}, \ \mathbf{c} \in A^{n_2}, \ \mathbf{d} \in A^{m_2}, \ p_0, p_1 \in \hat{T}_{F,1}$

$$p_2 \in T_F, \quad q_0 \in T_{G,n_1+m_1}, \quad \mathbf{q}_1 \in T_{G,n_2}^{n_1}, \quad \mathbf{r}_1 \in T_{G,m_2}^{m_1}, \quad \mathbf{q}_2 \in T_G^{n_2}, \quad \mathbf{r}_2 \in T_G^{m_2}$$

such that we have

$$\begin{aligned} a_0 p_0 &\stackrel{*}{\Rightarrow} q_0(\mathbf{a} \mathbf{x}_1^{n_1}, \mathbf{b} \mathbf{x}_1^{m_1}), \\ a_1 p_1^{n_1} &\stackrel{*}{\Rightarrow} \mathbf{q}_1(\mathbf{c} \mathbf{x}_1^{n_2}), \quad \mathbf{b} \mathbf{x}_1^{m_1} \stackrel{*}{\Rightarrow} \mathbf{r}_1(\mathbf{d} \mathbf{x}_1^{m_2}), \\ \mathbf{c} \mathbf{p}_2^{n_2} \stackrel{*}{\Rightarrow} \mathbf{q}_2, \quad \mathbf{d} \mathbf{p}_2^{m_2} \stackrel{*}{\Rightarrow} \mathbf{r}_2, \\ \{a_i | i \in [n_1]\} &= \{c_i | i \in [n_2]\}, \quad \{b_i | i \in [m_1]\} = \{d_i | i \in [m_2]\}, \end{aligned}$$

and both q_1 and r_1 contain an occurrence of a symbol from G then we say that A satisfies condition (*). Observe that our conditions imply that $n_i, m_i > 0$ (i=1, 2).

We are going to prove that A preserves regularity if and only if (*) is not satisfied by A. The necessity of this statement can be proved easily.

Lemma 1. If A preserves regularity then A does not satisfy condition (*).

Proof. Assume that A satisfies condition (*). Then, using the notations of the definition above, set $R = \{p_0(\underbrace{p_1(\dots(p_1(p_2))\dots)}_{n \text{-times}}) | n \ge 0\}$. *R* is regular and $\tau(R)$ consists

of trees $q_0(\mathbf{r}_n, \mathbf{s}_n)$ $(n \ge 0, \mathbf{r}_n \in T_G^{n_1}, \mathbf{s}_n \in T_G^{m_1})$ with the property that $n < \operatorname{rn}(\mathbf{r}_n) < \operatorname{rn}(\mathbf{r}_{n+1})$, $n < \operatorname{rn}(\mathbf{s}_n) < \operatorname{rn}(\mathbf{s}_{n+1})^1$. Suppose that $\tau(R)$ is recognizable by a deterministic tree automaton $\mathbf{D} = (G, D, D_0)$. Let $n > m_1(1 + \nu(G) + \ldots + \nu(G)^{|D|-1})$ be an arbitrary fixed integer. As $(q_0(\mathbf{r}_n, \mathbf{s}_n))_{\mathbf{D}} \in D_0$ also there is a vector of trees $\mathbf{s} \in T_G^{m_1}$ with $dp(\mathbf{s}) < |D|$ and $(q_0(\mathbf{r}_n, \mathbf{s}))_{\mathbf{D}} \in D_0$. However, as $dp(\mathbf{s}) < |D|$ we obtain that $\operatorname{rn}(\mathbf{s}) \le$ $\le m_1(1 + \nu(G) + \ldots + \nu(G)^{|D|-1})$. This contradicts $\tau(R) = T(\mathbf{D})$. Therefore, $\tau(R)$ is not regular, as was to be proved.

To prove the converse of Lemma 1 first we show that $\tau(\operatorname{dom} \tau)$ is regular if A does not satisfy (*). This will be carried out by constructing a linear deterministic top-down tree transducer with regular look-ahead such that $\tau(\operatorname{dom} \tau) =$ $= \tau_{A'}(\operatorname{dom} \tau_{A'})$. The construction of A' will be made by the help of other tree transformations. Thus, we shall have the transformations indicated by the figure below:

¹ rn $(\mathbf{r}_n) = rn (r_{n_1}) + ... + rn (r_{n_{n_1}}), rn (s_n)$ is similarly defined.

We begin with the definition of F''. First let $\overline{F} = \bigcup_{n \ge 0} F_n$, $\overline{F}_n = \{(f, C, \varphi, \psi) | f \in F_n, C \subseteq B, \varphi: B \to P(A), \psi: A \to A \text{ for a subset } B \subseteq A\}$, i.e. φ is a mapping of B into the power-set of A and ψ is a partial function on A. Now the type F'' is defined by $F''_n = F_n \cup \overline{F}_n$ $(n \ge 0)$.

The \overline{F} -depth $(\overline{dp}(p))$ and \overline{F} -width $(\overline{wd}(p))$ of a tree $p \in T_{F''}$ are defined by

$$\overline{\mathrm{dp}}(p) = 0, \quad \overline{\mathrm{wd}}(p) = \overline{\mathrm{wd}}_0(p) = 0 \quad \text{if} \quad p \in F_0,$$
$$\overline{\mathrm{dp}}(p) = 1, \quad \overline{\mathrm{wd}}(p) = \overline{\mathrm{wd}}_0(p) = 1 \quad \text{if} \quad p \in \overline{F}_0,$$

 $\overline{\mathrm{dp}}(p) = \max\{\overline{\mathrm{dp}}(p_i)|i\in[n]\}, \quad \overline{\mathrm{wd}}(p) = \max\{\sum_{i=1}^n \overline{\mathrm{wd}}_0(p_i), \quad \overline{\mathrm{wd}}(p_i)|i\in[n]\},\$

$$\begin{split} \overline{\mathrm{wd}}_0(p) &= \sum_{i=1}^n \overline{\mathrm{wd}}_0(p_i) \quad \text{if} \quad p = f(p_1, \dots, p_n) \quad \text{with} \quad n > 0, \quad f \in F_n, \\ p_1, \dots, p_n \in T_{F''}, \\ \overline{\mathrm{dp}}(p) &= 1 + \max \left\{ \overline{\mathrm{dp}}(p_i) | i \in [n] \right\}, \quad \overline{\mathrm{wd}}(p) &= \max \left\{ 1, \overline{\mathrm{wd}}(p_i) | i \in [n] \right\}, \\ \overline{\mathrm{wd}}_0(p) &= 1 \quad \text{if} \quad p = f(p_1, \dots, p_n) \quad \text{where} \quad n > 0, \quad f \in \overline{F}_n, \\ p_1, \dots, p_n \in T_{F''}. \end{split}$$

If *n*, *m* are given nonnegative integers then $T_{(n,m)}$ denotes the set of all trees $p \in T_{F''}$ with $d\overline{p}(p) < n$ and $\overline{wd}(p) \le m$.

We shall frequently use an equivalence relation denoted by \sim on $T_{F''}$. Given $p, q \in T_{F''}, p \sim q$ if and only if one of the following three conditions holds:

(i) $p, q \in T_F$,

- (ii) $p = f(p_1, ..., p_n), q = f(q_1, ..., q_n)$ with $n \ge 0, f \in \overline{F}_n, p_i, q_i \in T_{F''}$ and $p_i \sim q_i$ $(i \in [n]),$
- (iii) $p = p_0(p_1, ..., p_n), q = q_0(q_1, ..., q_n)$ with $n > 0, p_0, q_0 \in \tilde{T}_{F,n}, p_i, q_i \in T_{F''}, p_i \sim q_i, \operatorname{rt}(p_i), \operatorname{rt}(q_i) \in \overline{F}$ $(i \in [n]).$
- If $p \in T_{F''}$ then [p] denotes the block containing p under the partition induced by \sim . The next statement can be proved in an easy way.

Lemma 2. [p] is a regular forest for any $p \in T_{F''}$.

Now we introduce the transducer U. $U=(F, U, F'', u_0, \Sigma'')$ where

$$U = \{ (B, B', C, \varphi, \psi) | B \subseteq A, B' \subseteq B, C \subseteq B, \varphi \colon B \to P(A), \psi \colon A \to A \},\$$

 $a_0 = (\{a_0\}, \emptyset, \emptyset, \varphi, \psi)$ with $\varphi(a_0) = \{a_0\}$ and $\psi(a) = b$ if and only if $a = b = a_0$. Σ'' is determined as follows.

$$\begin{aligned} a_i f \to q_i(\mathbf{b}_{i1} \mathbf{x}_1^{k_{i1}}, \dots, \mathbf{b}_{in} \mathbf{x}_n^{k_{in}}) \in \Sigma \quad (i \in [l]), \\ a_{ij} f \to c_{ij} x_j \in \Sigma \quad (i \in [l_j], \ j \in [n]), \end{aligned}$$

where $k_{ij} \ge 0$ ($i \in [l], j \in [n]$), $q_i \in \hat{T}_{G,k_i} - X$, $k_i = \sum_{i=1}^n k_{ij}$ ($i \in [l]$), $\mathbf{b}_{ij} \in A^{k_{ij}}$ ($i \in [l], j \in [n]$), $c_{ii} \in A \ (i \in [l_i], j \in [n]).$

Then Σ'' is the smallest set of top-down rewriting rules satisfying (i) and (ii) below.

(i) If
$$|\{a \in B | \varphi(a) \cap \{a_1, ..., a_l\} \neq \emptyset\}| \ge 2$$
 or
 $|\{a \in B' | \varphi(a) \cap \{a_1, ..., a_l\} \neq \emptyset\}| \ge 1$ or
 $|\{a \in B - C | \varphi(a) \cap \{a_1, ..., a_l\} \neq \emptyset\}| \ge 1$ or
 $|C| \ge 2$ and $|\{a \in B | \varphi(a) \cap \{a_1, ..., a_l\} \neq \emptyset\}| \ge 1$
 $u_i = (B, B', C', \varphi_i, \psi_i)$ $(i \in [n]),$
 $C' = \{a \in B | \varphi(a) \cap \{a_1, ..., a_l\} \neq \emptyset\},$

and

$$\varphi_i(a) = \bigcup (B_{ji}|a_j \in \varphi(a)) \bigcup \{c_{ji}|a_{ji} \in \varphi(a)\} \quad (a \in B, i \in [n]),$$

ere B_{ii} denotes the set of components of the vector \mathbf{b}_{ii} ($i \in [1], i \in [n]$), $\psi_i(a) =$

=b where if and only if $a=b \in \bigcup \varphi_i(B)$ $(i \in [n]), f=(f, C', \varphi, \psi)$ then

$$uf \rightarrow \overline{f}(u_1x_1, \ldots, u_nx_n) \in \Sigma''.$$

(ii) If not (i), i.e. l=0 or $l=1, C=\{a_1\}$ and $a_1 \notin B'$ and for each $i \in [n]$

 $u_i = (B, B', C, \varphi_i, \psi_i),$

 φ_i is the same as in the previous case, $\psi_i = \psi \circ \psi'_i$ with $\psi'_i(a) = b$ if and only if $a = a_{ji}$, $b = c_{ji}$ ($j \in [l_i]$),

then

$$uf \to f(u_1 x_1, \ldots, u_n x_n) \in \Sigma''.$$

Observe that U is a deterministic top-down relabeling. The following properties of U will be used without any reference. First, if $up \stackrel{*}{\Rightarrow} q(\mathbf{v}(x_1, ..., x_n))$ $(n \ge 0, u \in U, v \in U^n)$ and $p, q \in \tilde{T}_{F,n}$ then p=q. Secondly, let $a \in A^k$ $(k \ge 0)$ be arbitrary and identify **a** with the state $u = (B, B', \emptyset, \varphi, \psi)$ where $B = \{a_i | i \in [k]\}, B' = \{a_i | i \in [k], \exists j \in [k], i \neq j, a_i = a_j\}, \varphi(a) = \{a\}$ if $a \in B$ and $\psi(a) = b$ if and only if $a=b\in B$. Denote by σ_a the transformation $\tau_{U(a)}$ and similarly, put $\tau_{a_i}=\tau_{A(a_i)}$ $(i \in [k])$. Then, for any $p \in T_F$, $p \in \text{dom } \sigma_a$ if and only if $p \in \bigcap_{i=1} \text{dom } \tau_{a_i}$.

In the next few lemmata we shall point to further connections between A and U.

Lemma 3. If A does not satisfy condition (*) then $\overline{dp}(\sigma_a(p)) < 2|A|^2 ||A||^2$ holds for any $\mathbf{a} \in A^k$ $(k \ge 0)$ and $p \in T_F$ provided that $\sigma_a(p)$ is defined and there exist trees $r \in \hat{T}_{F,1}$ and $r' \in \hat{T}_{G,k}$ with $a_0 r \stackrel{*}{\xrightarrow{}}_{A} r'(\mathbf{ax}_1^k)$.

Proof. Let $L = |A|^2 ||A||^2$ and suppose that $a_0 r \stackrel{*}{\xrightarrow{}}_A r'(\mathbf{ax}_1^k)$ and $\overline{dp}(\sigma_a(p)) \ge 2L$. Then $k \ge 2$ and there exist $p_0, ..., p_{2L-1} \in \hat{T}_{F,1}, p_{2L} \in T_F, q_0, ..., q_{2L-1} \in \hat{T}_{F'',1}$ $q_{2L} \in T_{F''}, u_1, \ldots, u_{2L} \in U$ such that

$$p = p_0(\dots(p_{2L})\dots), \quad q = q_0(\dots(q_{2L})\dots),$$

$$a p_0 \stackrel{*}{\underset{u}{\Rightarrow}} q_0(u_1 x_1), \quad u_i p_i \stackrel{*}{\underset{u}{\Rightarrow}} q_i(u_{i+1} x_1) \quad (i = 1, \dots, 2L-1), \quad u_{2L} p_{2L} \stackrel{*}{\underset{u}{\Rightarrow}} q_{2L},$$

furthermore, rt $(q_i) \in \overline{F}$, say, rt $(q_i) = (f_i, C_i, \varphi_i, \psi_i)$ (i = 1, ..., 2L). Let $D_1 =$ $=C_1 \cup C_2, \dots, D_L = C_{2L-1} \cup C_{2L}.$ It is not difficult to see by the definition of **U** that for any $i \in [L]$ there exist indices $j_i \neq k_i (j_i, k_i \in [k])$ with $a_{j_i}, a_{k_i} \in D_i$. On the other hand, as $L = |A|^2 ||A||^2$, there exist $i_1 < i_2 (i_1, i_2 \in [L])$ such that $a_{j_{i_1}} = a_{j_{i_2}}, a_{k_{i_1}} =$ $=a_{k_{i_2}}$, $S_{i_1}=S_{i_2}$ and $T_{i_1}=T_{i_2}$ where S_i and T_i are defined by $S_i=\varphi_{2i-1}(a_{j_i})$ and $T_i = \bigcup (\varphi_{2i-1}(a_j)|j \in [k], j \neq j_i)$. Without loss of generality we may take $j_{i_1} = j_{i_2} = 1$ and $k_{i_1} = k_{i_2} = 2$. As $\sigma_{\mathbf{a}}(p)$ is defined also $\tau_{\sigma_i}(p)$ is defined for any $i \in [k]$. Thus, if $r_1 = 1$

 $=p_0(...(p_{2i_1-2})...), r_2=p_{2i_1-1}(...(p_{2i_2-2})...), r_3=p_{2i_2-1}(...(p_{2L})...)$ then the derivations

$$a_{1}r_{1} \stackrel{*}{\xrightarrow{}} s_{1}(c_{1}x_{1}^{n_{1}}), \quad (a_{2}, ..., a_{k})r_{1}^{k-1} \stackrel{*}{\xrightarrow{}} t_{1}(d_{1}x_{1}^{m_{1}}),$$

$$c_{1}r_{2}^{n_{1}} \stackrel{*}{\xrightarrow{}} s_{2}(c_{2}x_{1}^{n_{2}}), \quad d_{1}r_{2}^{m_{1}} \stackrel{*}{\xrightarrow{}} t_{2}(d_{2}x_{1}^{m_{2}}),$$

$$c_{2}r_{3}^{n_{2}} \stackrel{*}{\xrightarrow{}} s_{3}, \quad d_{2}r_{3}^{m_{2}} \stackrel{*}{\xrightarrow{}} t_{3}$$

exist where $s_1 \in \hat{T}_{G,n_1}$, $\mathbf{t}_1 \in \hat{T}_{G,m_1}^{k-1}$, $\mathbf{s}_2 \in \hat{T}_{G,m_2}^{n_1}$, $\mathbf{t}_2 \in \hat{T}_{G,m_2}^{m_2}$, $\mathbf{s}_3 \in T_G^{n_2}$, $\mathbf{t}_3 \in T_G^{m_3}$ and $\mathbf{c}_i \in A^{n_i}$, $\mathbf{d}_i \in A^{m_i}$ (i=1, 2).

Since $1, 2 \in D_{i_1}$ we have that both s_2 and t_2 contain an occurrence of a symbol from G. Furthermore, as the sets S_{i_1} , S_{i_2} , T_{i_1} and T_{i_2} coincide with the set of components of c_1, c_2, d_1 and d_2 , respectively, it follows that c_1 and d_1 have the same set of components as \mathbf{c}_2 and \mathbf{d}_2 .

By

$$a_{0}r(r_{1}) \stackrel{*}{\xrightarrow{A}} r'(s_{1}(c_{1}x_{1}^{n_{1}}), t_{1}(d_{1}x_{1}^{m_{1}})),$$

$$c_{1}r_{2}^{n_{1}} \stackrel{*}{\xrightarrow{A}} s_{2}(c_{2}x_{1}^{n_{2}}), d_{1}r_{2}^{m_{1}} \stackrel{*}{\xrightarrow{A}} t_{2}(d_{2}x_{1}^{m_{2}}),$$

$$c_{2}r_{3}^{n_{2}} \stackrel{*}{\xrightarrow{A}} s_{3}, d_{2}r_{3}^{m_{2}} \stackrel{*}{\xrightarrow{A}} t_{3}$$

this yields that A satisfies condition (*), which is a contradiction.

Lemma 4. Let $\mathbf{a} \in A^k$ $(k \ge 0)$ be arbitrary. Put $B = \{a_i | i \in [k]\}$ and assume that

$$a p_0 \stackrel{*}{\underset{u}{\rightarrow}} p_0(\mathbf{u}(x_1, \dots, x_n)), \quad a p'_0 \stackrel{*}{\underset{u}{\rightarrow}} p'_0(\mathbf{u}'(x_1, \dots, x_n)),$$
$$u p \stackrel{*}{\underset{u}{\rightarrow}} q, \quad u' p' \stackrel{*}{\underset{u}{\rightarrow}} q',$$
$$rt(q) = rt(q') \in \overline{F}^n$$

where $n \ge 0, p_0, p'_0 \in T_{F,n}, p, p' \in T_F^n, q, q' \in T_{F''}^n, u, u' \in U^n$. Then $n \leq |A|$ and $\tau_b(p_0(\mathbf{p})) = \tau_b(p'_0(\mathbf{p}))$ for any $b \in B$.

6 Acta Cybernetica VI/3

Proof. Suppose that rt $(q_i) = (f_i, C_i, \varphi_i, \psi_i)$ $(i \in [n])$. It is not difficult to see by the definition of U that for any $i \in [n]$ there is a state $b \in B$ with $\psi_i(b)$ being defined and $bp_0 \stackrel{*}{\xrightarrow{A}} \psi_i(b)x_i$. Therefore, $n \leq |B|$ and also $n \leq |A|$. Similarly, for each $b \in B$ there is an integer $i \in [n]$ such that $\psi_i(b)$ is defined and $bp_0 \stackrel{*}{\xrightarrow{A}} \psi_i(b)x_i$, $bp'_0 \stackrel{*}{\xrightarrow{A}} \psi_i(b)x_i$. From this $\tau_b(p_0(\mathbf{p})) = \tau_b(p'_0(\mathbf{p}))$ follows immediately.

Lemma 5. Let $\mathbf{a} \in A^k$ (k>0) and define the set B as previously. Set $B' = \{a_i | i \in [k], \exists j \in [k] | i \neq j, a_i = a_j\}$ and assume that

$$\begin{aligned} \mathbf{a} p_0 \big(f(p_1, \dots, p_{i-1}, x_1, p_{i+1}, \dots, p_n) \big) &\stackrel{*}{\Longrightarrow} r_0 \big(\bar{f}(r_1, \dots, r_{i-1}, ux_1, r_{i+1}, \dots, r_n) \big), \\ \mathbf{a} p'_0 \big(f(p'_1, \dots, p'_{i-1}, x_1, p'_{i+1}, \dots, p'_n) \big) &\stackrel{*}{\Longrightarrow} r'_0 \big(\bar{f}(r'_1, \dots, r'_{i-1}, ux_1, r'_{i+1}, \dots, r'_n) \big), \\ u q_0 &\stackrel{*}{\Longrightarrow} q_0 \big(\mathbf{v}(x_1, \dots, x_m) \big), \quad u q'_0 &\stackrel{*}{\Longrightarrow} q'_0 \big(\mathbf{v}'(x_1, \dots, x_m) \big), \\ \mathbf{v} \mathbf{q} &\stackrel{*}{\Longrightarrow} \mathbf{s}, \quad \mathbf{v}' \mathbf{q}' &\stackrel{*}{\Longrightarrow} \mathbf{s}', \\ \mathrm{rt} (\mathbf{s}) = \mathrm{rt} (\mathbf{s}') \in \overline{F}^m, \end{aligned}$$

where n > 0, $m \ge 0$, $i \in [n]$, p_0 , $p'_0 \in \hat{T}_{F,1}$, $f \in F_n$, $\bar{f} = (f, C, \varphi, \psi) \in \bar{F}_n$, p_j , $p'_j \in T_F$, r_0 , $r'_0 \in \hat{T}_{F'',1}$, r_j , $r'_j \in T_{F''}$ $(j \in [n] - \{i\})$, q_0 , $q'_0 \in \bar{T}_{F,m}$, $q, q' \in T_F^m$, $s, s' \in T_{F''}^m$, $u \in U$, $v, v' \in U^m$. If $|C| \ge 2$ or $C \cap B' \neq \emptyset$ then $\tau_b(p_0(f(p_1, ..., p_{i-1}, q_0(q), p_{i+1}, ..., p_n))) =$ $= \tau_b(p_0(f(p_1, ..., p_{i-1}, q'_0(q), p_{i+1}, ..., p_n)))$ is valid for any $b \in B$. If |C| = 1 and $C \cap B' = \emptyset$ then we have the same equality for any $b \in B - C$. Furthermore, $m \le |A|$.

Proof. Similar to the proof of Lemma 4.

By succesive applications of the previous two lemmata we obtain

Lemma 6. Assume that $\mathbf{ap} \stackrel{*}{\xrightarrow{}} \mathbf{q}$ where $\mathbf{a} \in A^k$, $\mathbf{p} \in T_F^k$, $\mathbf{q} \in T_G^k$, $k \ge 0$. If $\sigma_{\mathbf{a}}(p_1) \sim \dots \cdots \sim \sigma_{\mathbf{a}}(p_k)$ then there is a tree $p_0 \in T_F$ with $\sigma_{\mathbf{a}}(p_0) \sim \sigma_{\mathbf{a}}(p_1)$ and $\mathbf{ap}_0^k \stackrel{*}{\xrightarrow{}} \mathbf{q}$. Furthermore, if $r \in \bigcap_{i=1}^k \operatorname{dom} \tau_{a_i}$ then $\overline{\operatorname{wd}}(\sigma_{\mathbf{a}}(r)) \le |A|$.

Lemma 7. Let $\mathbf{a} \in A^k$ $(k \ge 0)$, $f \in F_n$ $(n \ge 0)$, $\mathbf{b}_{ij} \in A^{m_{ij}}$ $(m_{ij} \ge 0, i \in [k], j \in [n])$ and $q_i \in \hat{T}_{G,m_i}$ $(i \in [k], m_i = \sum_{j=1}^n m_{ij})$. Assume that each of the productions $a_i f \rightarrow q_i(\mathbf{b}_{i1}\mathbf{x}_1^{m_{i1}}, \dots, \mathbf{b}_{in}\mathbf{x}_n^{m_{in}})$ $(i \in [k])$ is in Σ . Furthermore, let $p_i, p'_i \in T_F$, $\mathbf{c}_i = (\mathbf{b}_{1i}, \dots, \mathbf{b}_{ki})$ $(i \in [n])$. Then $\sigma_{\mathbf{c}_i}(p_i) \sim \sigma_{\mathbf{c}_i}(p'_i)$ $(i \in [n])$ implies $\sigma_{\mathbf{a}}(f(p_1, \dots, p_n)) \sim \sigma_{\mathbf{a}}(f(p'_1, \dots, p'_n))$.

Proof. The proof will be carried out in case of n=1 only. As n=1 we may simplify our notations: put $p=p_1$, $p'=p'_1$, $\mathbf{b}_i=\mathbf{b}_{i1}$ $(i\in[k])$, $\mathbf{c}=\mathbf{c}_1$. Moreover, let $B=\{a_i|i\in[k]\}, B'=\{a_i|i\in[k], \exists j\in[k] \ i\neq j, a_i=a_j\}, C=\{c_i|i\in[\sum_{j=1}^k m_j]\}, C'=$ $=\{c_i|i\in[\sum_{j=1}^k m_j], \exists i'\in[\sum_{j=1}^k m_j] \ i'\neq i, c_i=c_{i'}\}.$

4

As $p, p' \in \bigcap_{i=1}^{k} \bigcap_{j=1}^{m_i} \operatorname{dom} \tau_{b_{ij}}$ and the productions above exist also $f(p), f(p') \in \bigcap_{i=1}^{k} \operatorname{dom} \tau_{a_i}$. This implies that both $\sigma_{\mathbf{a}}(f(p))$ and $\sigma_{\mathbf{a}}(f(p'))$ are defined.

In the remaining part of the proof we shall make some transformations on the trees $f(\sigma_c(p))$ and $f(\sigma_c(p'))$ by the help of a deterministic top-down tree transducer $\mathbf{V} = (F'', V, F'', v_0, \Sigma_V)$. In this transducer $V = \{v_0\} \cup \{(D, \psi) | D \subseteq B, \psi : A \rightarrow A\}$ and Σ_V consists of the following five types of rules:

(i) If $q_i = x_1$ for every $i \in [k]$ then

$$v_0 f \rightarrow f((\emptyset, \psi) x_1) \in \Sigma_V$$

where $\psi(a)=b$ if and only if $a=a_i$ and $b=b_{i1}$ for an index $i\in[k]$. (ii) If $D=\{a_i|i\in[k], q_i\neq x_1\}$ is not empty then

$$v_0 f \rightarrow (f, D, \varphi, \psi)((D, \psi_1) x_1) \in \Sigma_{\mathbf{V}}$$

where $\varphi: B \to P(A)$, $\varphi(a) = \{a\} (a \in B)$; moreover, $\psi(a) = a$ if $a \in B$, $\psi(a)$ is undefined if $a \notin B$; $\psi_1(a) = a$ if $a \in C$, otherwise $\psi_1(a)$ is undefined.

(iii) $(D, \psi)g \rightarrow g((D, \psi)x_1, ..., (D, \psi)x_l) \in \Sigma_V$ for any $(D, \psi) \in V$ and $g \in F_l$ $(l \ge 0)$. (iv) If $(D, \psi) \in V$, $D' \subseteq C$ and either |D| > 1 or $D \cap B' \neq \emptyset$ or $\{a_i | \{b_{i1}, ..., b_{im_i}\} \cap D' \neq \emptyset\} \neq D$ then

$$(D,\psi)(g,D',\varphi',\psi') \rightarrow (g,D'',\varphi'',\psi'')\big((D'',\psi_1)x_1,\ldots,(D'',\psi_l)x_l\big) \in \Sigma_{\mathbf{V}}$$

for any $(g, D', \varphi', \psi') \in \overline{F}_i$ $(l \ge 0)$ with $\varphi': C \to P(A)$ where $D'' = \{a_i | i \in [k], \{b_{i1}, ..., b_{im_i}\} \cap D' \neq \emptyset\}; \varphi'': B \to P(A)$ and $\varphi''(a_i) = \bigcup_{j=1}^{m_i} \varphi'(b_{ij})$ $(i \in [k]); \psi'' = \psi \circ \psi'$ and $\psi_i(a) = b$ if and only if a = b and a occurs in the right side of a rule $cg \to s \in \Sigma$ with $c \in \bigcup \varphi'(C)$.

(v) If $(D, \psi) \in V$, $D' \subseteq C$, furthermore |D|=1, $D \cap B' = \emptyset$ and $\{a_i | i \in [k], \{b_{i1}, ..., b_{im_i}\} \cap D' \neq \emptyset\} = D$ then for every $(g, D', \varphi', \psi') \in \overline{F}_l$ with $\varphi' \colon C \to P(A)$

$$(D,\psi)(g,D',\varphi',\psi') \rightarrow g((D,\psi_1)x_1,\ldots,(D,\psi_l)x_l) \in \Sigma_{\mathbf{V}}$$

where $\psi_i = \psi \circ \eta_i$ and $\eta_i(a) = b$ if and only if $ag \rightarrow bx_i \in \Sigma$.

It can be seen that $\tau_{\mathbf{V}}(f(\sigma_{\mathbf{c}}(p))) = \sigma_{\mathbf{a}}(f(p))$ and $\tau_{\mathbf{V}}(f(\sigma_{\mathbf{c}}(p'))) = \sigma_{\mathbf{a}}(f(p'))$. On the other hand, by $\sigma_{\mathbf{c}}(p) \sim \sigma_{\mathbf{c}}(p')$ it follows that $\tau_{\mathbf{V}}(f(\sigma_{\mathbf{c}}(p))) \sim \tau_{\mathbf{V}}(f(\sigma_{\mathbf{c}}(p')))$. Therefore, $\sigma_{\mathbf{a}}(f(p)) \sim \sigma_{\mathbf{a}}(f(p'))$, as was to be proved.

We now turn to the definition of F'. For every integer $i \ge 1$ let K_i denote the maximal number of occurences of the variable x_i in the right side of a rule in Σ . Put $K = \max \{1, K_i | i \in [v(F)]\}, F'_{nK} = F_n (n \ge 0)$ and $F'_m = \emptyset$ otherwise.

As it was mentioned we introduce two homomorphisms $\varrho \subseteq T_F \times T_{F'}$ and $\varrho' \subseteq T_{F'} \times T_F$ connecting T_F and $T_{F'}$. The rules defining ϱ are $f \rightarrow f(\mathbf{x}_1^K, ..., \mathbf{x}_n^K)$ $(f \in F_n, n \ge 0)$, while the rules corresponding to ϱ' are $f \rightarrow f(x_{i_1}, ..., x_{i_n})$ $(f \in F_n, n \ge 0)$ with $i_1 \in [K], ..., i_n \in [nK] - [(n-1)K]$. Observe that ϱ is deterministic and we have $\varrho'(\varrho(p)) = \{p\}$ for any $p \in T_F$.

We continue by defining the transducer $A' = (F', A', G, a'_0, \Sigma')$. In this

system $A' = \{(a, B, B') | a \in B, B \subseteq A, B' \subseteq B\}, a'_0 = (a_0, \{a_0\}, \emptyset)$ and Σ' is the smallest set of rewriting rules with the following property.

Let l>0, $B = \{a_1, ..., a_l\} \subseteq A$, $B' = \{a_{m_1}, ..., a_{m_k}\}$ $(1 \le m_1 < ... < m_k \le l\}$, $a=a_1$. Assume that the rules $a_i f \rightarrow q_i(\mathbf{a}_{i1} \mathbf{x}_1^{k_{i1}}, ..., \mathbf{a}_{in} \mathbf{x}_n^{k_{in}})$ are in Σ where $n \ge 0$, $f \in F_n$, $k_{ij} \ge 0$, $\mathbf{a}_{ij} \in A^{k_{ij}}, q_i \in \hat{T}_{G,k_{i1}+...+k_{in}}$ $(i \in [1], j \in [n])$. Furthermore, let $r_j \in T(2|A|^2 ||A||^2, |A|)$, and set $R_j = \{p \in T_{F'}, |\varrho'(p) \le \sigma_{\mathbf{b}_j}^{-1}([r_j])\}$ $(j \in [n])$, where $\mathbf{b}_j = (\mathbf{a}_{1j}, ..., \mathbf{a}_{lj}, \mathbf{a}_{m_1j}, ..., \mathbf{a}_{m_kj})$. R_j is regular by Lemma 2 and some results in [2]. Finally, denote by B_j the set of components of \mathbf{b}_j and put $B'_j = \{b \in A | b \text{ occurs at least twice in } \mathbf{b}_j\}$ $(j \in [n])$, $c_{ij} = a_{1ij}$ $(i \in [n], j \in [k_{1i}])$, $k_i = k_{1i}$ $(i \in [n])$. Then the rule

$$((a, B, B')f \rightarrow q_1((c_{11}, B_1, B'_1)x_1, \dots, (c_{1k_1}, B_1, B'_1)x_{k_1}, \dots, (c_{n1}, B_n, B'_n)x_{(n-1)K+1}, \dots, (c_{nk_n}, B_n, B'_n)x_{(n-1)K+k_n}),$$

$$\underbrace{R_1, \dots, R_1}_{K \text{-times}}, \dots, \underbrace{R_n, \dots, R_n}_{K \text{-times}})$$

is in Σ' .

Observe that with the definition above A' becomes a linear deterministic top-down tree transducer with regular look-ahead. Just as in case of A" we may treat any vector $\mathbf{a} \in A^{l}$ — but now with l > 0 — as an element of A': if $\mathbf{a} \in A^{l}$ (l > 0)then identify \mathbf{a} with (a_{1}, B, B') where $B = \{a_{i} | i \in [l]\}, B' = \{a_{i} | i \in [l], J_{j} \in [l] i \neq j, a_{i} = a_{j}\}$. Assume that $\mathbf{a} p \stackrel{*}{\underset{A'}{\rightarrow}} q$ $(p \in T_{F'}, q \in T_{G})$. Then one can easily prove that $\varrho'(p) \subseteq$ $\subseteq \bigcap_{i=1}^{l} \text{dom } \tau_{a_{i}}$. However, there is a much more close connection between A and A'. This is shown by Lemmata 8 and 9. In these Lemmata we shall assume that A does not satisfy condition (*).

Lemma 8. $\tau(\operatorname{dom} \tau) \subseteq \tau'(\operatorname{dom} \tau')$.

Proof. We shall prove that if $a_0 p_0 \stackrel{*}{\underset{A}{\to}} q_0(\mathbf{ax}_1^k)$ and $\mathbf{ap}^k \stackrel{*}{\underset{A}{\to}} \mathbf{q}$ where k > 0, $p_0 \in \hat{T}_{F,1}$, $p \in T_F$, $q_0 \in \hat{T}_{G,k}$, $\mathbf{q} \in T_G^k$, $\mathbf{a} \in A^k$ then also $\mathbf{a}_{\ell}(p) \stackrel{*}{\underset{A'}{\to}} q_1$. From this the statement follows by taking $p_0 = x_1$.

If dp (p)=0, i.e. $p \in F_0$, then $\mathbf{a}\varrho(p) \stackrel{*}{\underset{A'}{A'}} q_1$ is obviously valid. We proceed by induction on dp (p). Therefore, suppose that dp (p)>0 and the proof is done for trees with depth less than dp (p). Then $p=f(p_1, \ldots, p_n)$ where n>0, $f \in F_n$, $p_1, \ldots, p_n \in T_F$ and dp $(p_i) < dp(p)$ $(i \in [n])$. As the generalization to arbitrary n is straightforward we shall deal with n=1 only. Since $\mathbf{ap}^k \stackrel{*}{\underset{A}{\to}} \mathbf{q}$ there exist rules $a_i f \rightarrow r_i(\mathbf{b}_i \mathbf{x}_1^{l_i}) \in \Sigma$ $(i \in [k], l_i \ge 0, r_i \in \hat{T}_{G, l_i}, \mathbf{b}_i \in A^{l_i})$ such that $\mathbf{b}_i \mathbf{p}_1^{l_i} \stackrel{*}{\underset{A}{\to}} \mathbf{s}_i$ and $q_i = r_i(\mathbf{s}_i)$ hold for some $\mathbf{s}_i \in T_G^{l_i}$. Put $l = l_1 + \ldots + l_k$, $\mathbf{b} = (\mathbf{b}_1, \ldots, \mathbf{b}_k)$, $B = \{b | b \text{ occurs in } \mathbf{b}\}$, $B' = \{b | b \text{ occurs at least twice in } \mathbf{b}\}$. As $a_0 p_0(f(\mathbf{x}_1)) \stackrel{*}{\underset{A}{\to}} q_0(r_1(\mathbf{b}_1 \mathbf{x}_1^{l_1}), \ldots, r_k(\mathbf{b}_k \mathbf{x}_1^{l_k}))$ and $\mathbf{bp}_1^{l} \stackrel{*}{\underset{A}{\to}} (\mathbf{s}_1, \ldots, \mathbf{s}_k)$ we have that $\sigma_b(p_1)$ is defined, $\sigma_b(p_1) \in T(2|A|^2 ||A||^2, |A||)$ (cf. Lemmata 3 and 6). Set $R = \{p' \in T_{F'} | \varrho'(p') \subseteq \sigma_b^{-1}([\sigma_b(p_1)])$. By the construction of

.

A' we know that $(af \rightarrow r_1((b_{11}, B, B')x_1, ..., (b_{1l_1}, B, B')x_{l_1}), \underline{R, ..., R})$ is in Σ . Now, if $l_1=0$ then we get $\mathbf{a}\varrho(p) \stackrel{*}{\xrightarrow{}} q_1$ immediately. If $l_1 > 0$ then we obtain $(b_{11}, B, B')\varrho(p_1) \stackrel{*}{\xrightarrow{}} s_{11}, ..., (b_{1l_1}, B, B')\varrho(p_1) \stackrel{*}{\xrightarrow{}} s_{1l_1}$ by the induction hypothesis. As $\varrho(p_1) \in R$ we again have $\mathbf{a}\varrho(p) \stackrel{*}{\xrightarrow{}} q_1$.

Lemma 9. $\tau' (\operatorname{dom} \tau') \subseteq \tau (\operatorname{dom} \tau)$.

Proof. We are going to show that if $\mathbf{a}p' \stackrel{*}{\Rightarrow} q$ where $\mathbf{a} \in A^{l}(l>0)$ $p' \in T_{F'}$, $q \in T_{G}$ then there exist trees $r \in T_{F''}$ and $p \in \sigma_{\mathbf{a}}^{-1}([r])$ with $\varrho'(p') \subseteq \sigma_{\mathbf{a}}^{-1}([r])$ and $a_{1}p \stackrel{*}{\Rightarrow} q$. If dp (p')=0 then it is trivial: take p=p', $r=\sigma_{\mathbf{a}}(p)$. Assume now that this statement is valid for trees with depth less than dp (p') and dp $(p') \ge 1$. Then $p'=f(p'_{1}, ..., p'_{nK})$ (n>0) with dp $(p'_{1}), ..., dp (p'_{nK}) < dp (p')$. We shall restrict ourselves to the case n=1. Since $\mathbf{a}p' \stackrel{*}{\Rightarrow} q$ we get

$$(af \rightarrow q_0((b_1, B, B')x_1, \dots, (b_k, B, B')x_k), \underbrace{R, \dots, R}_{K\text{-times}} \in \Sigma',$$
$$(b_i, B, B')p'_i \stackrel{*}{\xrightarrow{}} q_i \quad (i \in [k]), \quad p'_i \in R \quad (i \in [K]),$$
$$q = q_0(q_1, \dots, q_k)$$

for some
$$k$$
 $(0 \le k \le K)$, $b_1, ..., b_k \in A$, $B, B' \subseteq A$ with $\{b_1, ..., b_k\} \subseteq B$, $B' \subseteq B$,
 $q_0 \in \hat{T}_{G,k}, q_1, ..., q_k \in T_G$ and a regular forest $R = \{s \in T_{F'} | \varrho'(s) \subseteq \sigma_e^{-1}([r_1])\}$ where
 $r_1 \in T_{F''}$ and **c** is an arbitrary vector containing one component c_i for each element
 c_i of B and a distinct component c_j for each element c_j of B' . We have by the
definition of A' that $a_1 f \rightarrow q_0 (b_1 x_1, ..., b_k x_1) \in \Sigma$. Furthermore, as $\varrho'(p'_1), ...$
 $\dots, \varrho'(p'_K) \subseteq \sigma_e^{-1}([r_1])$, by Lemma 7 we have $\varrho'(f(p'_1, ..., p'_K)) \subseteq \sigma_a^{-1}([r])$ for a suitable
 $r \in T_{F''}$.

If k=0 then let $\bar{p}\in \varrho'(p_1')$ be arbitrary, $p=f(\bar{p})$. $a_1 p \stackrel{*}{\xrightarrow{}} q$ follows obviously. By $\bar{p}\in \varrho'(p_1')$ also $f(\bar{p})\in \varrho'(f(p_1',...,p_K'))$. Thus, $p=f(\bar{p})\in \sigma_{\mathbf{a}}^{-1}([r])$.

If k > 0 then there are trees $p_1, ..., p_k \in \sigma_c^{-1}([r_1])$ with $b_1 p_1 \stackrel{*}{\underset{A}{\to}} q_1, ..., b_k p_k \stackrel{*}{\underset{A}{\to}} q_k$. From this, by an application of Lemma 6, it follows that there is a tree $\bar{p} \in \sigma_c^{-1}([r_1])$ with $b_1 \bar{p} \stackrel{*}{\underset{A}{\to}} q_1, ..., b_k \bar{p} \stackrel{*}{\underset{A}{\to}} q_k$. Put $p = f(\bar{p})$. Again, we have $a_1 p \stackrel{*}{\underset{A}{\to}} q$. On the other hand, $p \in \sigma_a^{-1}([r])$. Indeed, let $\bar{p}_1 \in \varrho'(p_1')$ be arbitrary. Then, as $\sigma_c(\bar{p}) \sim \sigma_c(\bar{p}_1)$, $\sigma_a(f(\bar{p})) \sim \sigma_a(f(p_1))$ follows by Lemma 7. By $f(\bar{p}_1) \in \sigma_a^{-1}([r])$ this means that $f(\bar{p}) \in \sigma_a^{-1}([r])$.

Now we are ready to state the main result of this section:

Theorem 1. A deterministic top-down tree transducer A preserves regularity if and only if (*) is not satisfied by A. The regularity preserving property of deterministic top-down transducers is decidable.

Proof. The necessity of the first statement of our Theorem is valid by Lemma 1. To prove the converse suppose that $A = (F, A, G, a_0, \Sigma)$ does not satisfy condition (*), and take a regular forest $R \subseteq T_F$. R is recognizable by a deterministic tree automaton $B = (F, B, B_0)$. Without loss of generality we may assume that B is connected, i.e., for any state $b \in B$ there is a tree $p \in T_F$ with $(p)_B = b$.

First let B_0 be a singleton set, say $B_0 = \{b_0\}$, and take the deterministic topdown tree transducer $A' = (H, A \times B, G, (a_0, b_0), \Sigma')$ where $H_n = \{(f, b_1, ..., b_n) | | f \in F_n, b_1, ..., b_n \in B\}$ $(n \ge 0)$

$$\Sigma' = \{(a, b)(f, b_1, \dots, b_n) \rightarrow q((a_1, b_{i_1})x_{i_1}, \dots, (a_m, b_{i_m})x_{i_m}) | \\ |m, n \ge 0, \quad a, a_1, \dots, a_m \in A, \quad b_1, \dots, b_n \in B, \quad i_1, \dots, i_m \in [n], \\ af \rightarrow q(a_1x_{i_1}, \dots, a_mx_{i_m}) \in \Sigma, \quad b = (f)_{\mathbf{B}}(b_1, \dots, b_n) \}.$$

It is not difficult to see that $\tau_A(R) = \tau_{A'}(\operatorname{dom} \tau_{A'})$. On the other hand A' does not satisfy (*). By Lemmata 8 and 9, and the fact that linear top-down transducers with regular look-ahead preserve regularity (cf. [2], [3]), this implies that $\tau_A(R)$ is regular.

The general case, i.e. when B_0 is arbitrary, is reducible to the previous one. Indeed, if $B = \{b_1, ..., b_n\}$ then put $\mathbf{B}_i = (F, B, \{b_i\}), R_i = T(\mathbf{B}_i)$ ($i \in [n]$). Obviously, $\tau_A(R) = \bigcup_{i=1}^n \tau_A(R_i)$. As all the $\tau_A(R_i)$ are regular and regular forests are closed under union, it follows that $\tau_A(R)$ is regular, as well.

The second statement of Theorem 1 is a consequence of the first one because it is decidable whether (*) is satisfied by A.

As every uniform deterministic top-down transducer is equivalent to a nondeterministic bottom-up transducer, by the characterization theorem for regularity preserving bottom-up transducers in [4], it follows that a uniform deterministic top-down transducer preserves regularity if and only if it is equivalent to a linear bottom-up transducer. In general, we do not know any similar characterization for regularity preserving deterministic top-down transducers.

3. Nondeterministic top-down tree transducers

In this section we prove

Theorem 2. The regularity preserving property of nondeterministic top-down tree transducers is undecidable.

Proof. Let H be an arbitrary type containing unary operational symbols only. Take a Post Correspondence Problem (α, β) $(\alpha, \beta \in H^{+m}, m>0)$ and choose l in such a way that $|\alpha_i|, |\beta_i| < l$ $(i \in [m])$. Set $F_0 = \{\#\}, F_1 = [m]$ $([m] \cap H = \emptyset),$ $F = F_0 \cup F_1, G_0 = F_0, G_1 = F_1 \cup H \cup \{f\}$ $(f \notin F_1 \cup H), G_2 = \{g\}, G = G_0 \cup G_1 \cup G_2$. We shall give a top-down tree transformation $\tau \subseteq T_F \times T_G$ such that τ preserves regularity if and only if (α, β) has no solution. Consider the top-down transducer $A_1 = (F, \{a_0, a_1, a_2, b_1, b_2, b_3\}, G, a_0, \Sigma)$ with Σ consisting of the rules from (1) to (8) where $i \in [m]$:

....

(1)
$$a_0 i \to a_0 x_1$$
,
(2) $a_0 i \to g(f(a_1 x_1), \alpha_i(b_1 x_1)), {}^2$
 $a_0 i \to g(f(a_1 x_1), w(b_2 x_1)) \quad (w \in H^*, |w| \le |\alpha_i|, w \ne \alpha_i),$
(3) $a_1 i \to f(a_1 x_1), a_1 \# \to \#,$
(4) $b_1 i \to \alpha_i(b_1 x_1), b_1 i \to w(b_2 x_1) \quad (w \in H^*, |w| \le \alpha_i, w \ne \alpha_i),$
(5) $b_2 i \to w(b_2 x_1) \quad (w \in H^*, |w| \le \alpha_i, w \ne \alpha_i), b_2 \# \to \#,$
(6) $a_0 i \to g(a_2 x_1, w(b_3 x_1)) \quad (w \in H^*, 1 \le |w| \le l),$
 $a_0 i \to g(f(a_2 x_1), w(b_3 x_1)) \quad (w \in H^*, |\alpha_i| < |w| \le l),$
(7) $a_2 i \to a_2 x_1, a_2 i \to f(a_2 x_1), a_2 \# \to \#,$
(8) $b_3 i \to w(b_3 x_1) \quad (w \in H^*, |\alpha_i| \le |w| \le l), b_3 \# \to \#.$

Denote τ_{A_1} by τ_1 . It can be seen that τ_1 consists of all pairs $(i_1 \dots i_k(\#), g(f^{k-j}(\#), w(\#)))$ where $k \ge 1, 0 \le j \le k, w \in H^*, 0 \le |w| \le kl$ and $w \ne \alpha_{i_{j+1}} \dots \alpha_{i_k}$. Similarly, a top-down tree transducer A_2 inducing τ_2 can be constructed with τ_2 containing the same pairs as τ_1 with the exception that $w \ne \beta_{i_{j+1}} \dots \beta_{i_k}$. Taking the disjoint sum of A_1 and A_2 we obtain a top-down transducer A inducing $\tau = \tau_1 \cup \tau_2$.

Assume that (α, β) has a solution. Then let $i_1...i_k$ be a solution to (α, β) with minimal length. Put $L = \{(i_1...i_k)^n(\#) | n \ge 0\}, w = \alpha_{i_1}...\alpha_{i_k} (=\beta_{i_1}...\beta_{i_k}), T = \overline{\tau(L)} \cap \{g(f^r(\#), v(\#)) | r \ge 0, v \in H^*\}, R = \{g(f^{kn}(\#), w^n(\#)) | n \ge 0\}$. We are going to show that T = R. As the class of regular forests is closed under complementation and meet, furthermore, the forest $\{g(f^r(\#), v(\#)) | r \ge 0, v \in H^*\}$ is regular while R is not, from this follows that $\tau(L)$ is not regular. Since L is regular this implies that τ does not preserve regularity.

Suppose that $g(f^{kn}(\#), w^n(\#)) \in \tau(L)$. Then there exists an integer $r (0 \le n \le r)$ with $g(f^{kn}(\#), w^n(\#)) \in \tau((i_1 \dots i_k)^n(\#))$. Therefore, either $w^n \ne (\alpha_{i_1} \dots \alpha_{i_k})^n$ or $w^n \ne (\beta_{i_1} \dots \beta_{i_k})^n$. As $i_1 \dots i_k$ is a solution to (α, β) both cases yield a contradiction. Thus, $R \subseteq T$. To prove the converse suppose that $g(f^r(\#), v(\#)) \notin \{g(f^{kn}(\#), w^n(\#)) | n \ge 0\}$ $(r \ge 0, v \in H^*)$. Let $n \ge \max\{r, |v| \ne l\}$ be the least integer divisible by $k, j_1 \dots j_n = (i_1 \dots i_k)^{n/k}$. If r is a multiple of k, say r = kt, then $v \ne w^t$, i.e. $v \ne \alpha_{j_{r+1}} \dots \alpha_{j_n}$. If r is not a multiple of k then, as $i_1 \dots i_k$ was a minimal solution to $(\alpha, \beta), j_{r+1} \dots j_n$ is not a solution to (α, β) . Therefore, either $v \ne \alpha_{j_{r+1}} \dots \alpha_{j_n}$ or

² If \vec{F} is a unary type and $v = f_1 \dots f_k \in \vec{F}^*$ then we denote by v the tree $f_1(\dots(f_k(x_1))\dots) \in T_{F,1}$ as well.

. 4

ţ

0

 $v \neq \beta_{j_{r+1}} \dots \beta_{j_n}$. Moreover, as $n \ge |v| / l$, in both cases $|v| \le ln$. This together with n > 0 means that $g(f'(\#), v(\#)) \in \tau(j_1 \dots j_n(\#)) \subseteq \tau(L)$, as was to be proved. Next assume that (α, β) has no solution. Then $\tau(L) = \{g(f'(\#), v(\#)) | r \ge 0, v \in H^*\} - \{g(\#, \#)\}$ holds for any infinite $L \subseteq T_F$. Consequently, A preserves regularity.

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE 1 SZEGED, HUNGARY H-6720

References

- [1] Ésik, Z., Decidability results concerning tree transducers I., Acta Cybernet., v. 5, 1980, pp. 1-20.
- [2] ENGELFRIET, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems
- Theory, v. 9, 1975, pp. 198-231.
 [3] ENGELFRIET, J., Top-down tree transducers with regular lookahead, Math. Systems Theory, v. 10, 1977, pp. 289-303.
 [4] Greene F. Top-down tree transducers with regular lookahead, Math. Systems Theory, v. 10, 1977, pp. 289-303.
- [4] GÉCSEG, F., Tree transformations preserving recognizability, Proc., Finite algebra and multiplevalued logic, North Holland, 1981, pp. 251-273.

(Received Feb. 7, 1983)