Decidability results concerning tree transducers II

By Z. Ésik

1. Introduction

Let $\tau \subseteq T_{F} \times T_{G}$ be an arbitrary tree transformation induced by a top-down or bottom-up tree transducer \mathbf{A}. It is said that \mathbf{A} preserves regularity if $\tau(R)$ is a regular forest for each regular forest $R \subseteq T_{\mathbf{F}}$. It is natural to raise the question whether the regularity preserving property of tree transducers is decidable or not. This question was positively answered for bottom-up transducers in [4]. Even more, it was shown that a bottom-up transducer preserves regularity if and only if it is equivalent to a linear bottom-up transducer. Concerning top-down transducers we have quiet different results. Although every linear top-down transducer preserves regularity as linear top-down tree transformations form a (proper) subclass of linear bottom-up transformations (cf. [2]), there are deterministic regularity preserving top-down tree transducers having no linear bottom-up equivalent. Another distinction lies in the fact that there is no algorithm which can decide the regularity preserving property of top-down transducers (cf. Theorem 2). However, restricting ourselves to deterministic top-down transducers we obtain positive result (cf. Theorem 1).

The notations will be used in accordance with [1]. Recall that a top-down tree transducer $\mathbf{A}=\left(F, A, G, A_{0}, \Sigma\right)$ is called uniform if each rewriting rule in Σ is of the form $a f \rightarrow q\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ where $n \geqq 0, f \in F_{n}, a, a_{1}, \ldots, a_{n} \in A$ and $q \in T_{G, n}$. In addition, if q is always linear (cf. [2]) then \mathbf{A} is called linear. These concepts extend to top-down tree transducers with regular look-ahead, as well. Furthermore, one-state top-down tree transducers and their induced transformations will be called homomorphisms. If \mathbf{A} is a homomorphism then we omit the single state in the presentation of Σ.

2. Deterministic top-down transducers

Let $\mathbf{A}=\left(F, A, G, a_{0}, \Sigma\right)$ be an arbitrary deterministic top-down transducer kept fixed in this section. Put $\tau=\tau_{\mathbf{A}}$. If there exist

$$
\begin{gathered}
n_{1}, n_{2}, m_{1}, m_{2} \geqq 0, \quad \mathbf{a} \in A^{n_{1}}, \quad \mathbf{b} \in A^{m_{1}}, \quad \mathbf{c} \in A^{n_{\mathbf{z}}}, \quad \mathbf{d} \in A^{m_{2}}, \quad p_{0}, p_{1} \in \hat{T}_{F, 1} \\
p_{2} \in T_{F}, \quad q_{0} \in \hat{T}_{G, n_{1}+m_{1}}, \quad \mathbf{q}_{1} \in \hat{T}_{G, n_{2}}^{n_{1}}, \quad \mathbf{r}_{1} \in \hat{T}_{G, m_{2}}^{m_{1}}, \quad \mathbf{q}_{2} \in T_{G}^{n_{2}}, \quad \mathbf{r}_{2} \in T_{G}^{m_{2}}
\end{gathered}
$$

such that we have

$$
\begin{array}{cl}
a_{0} p_{0} \stackrel{*}{\Rightarrow} q_{0}\left(\mathbf{a x}_{1}^{n_{1}}, \mathbf{b} \mathbf{x}_{1}^{m_{1}}\right), \\
\mathbf{a}_{1} \mathbf{p}_{1}^{n_{1}} \stackrel{*}{\Rightarrow} \mathbf{q}_{1}\left(\mathbf{c} \mathbf{x}_{1}^{n_{2}}\right), & \mathbf{b x} \mathbf{x}_{1}^{m_{1}} \stackrel{*}{\Rightarrow} \mathbf{r}_{1}\left(\mathbf{d x}_{1}^{m_{2}}\right), \\
& \mathbf{c p}_{2}^{n_{2}} \stackrel{*}{\Rightarrow} \mathbf{q}_{2}, \\
\mathbf{d p}_{2}^{m_{2}} \stackrel{*}{\Rightarrow} \mathbf{r}_{2}, \\
\left\{a_{i} \mid i \in\left[n_{1}\right]\right\}=\left\{c_{i} \mid i \in\left[n_{2}\right]\right\}, & \left\{b_{i} \mid i \in\left[m_{1}\right]\right\}=\left\{d_{i} \mid i \in\left[m_{2}\right]\right\},
\end{array}
$$

and both \mathbf{q}_{1} and \mathbf{r}_{1} contain an occurence of a symbol from G then we say that A satisfies condition (*). Observe that our conditions imply that $n_{i}, m_{i}>0(i=1,2)$.

We are going to prove that A preserves regularity if and only if (*) is not satisfied by \mathbf{A}. The necessity of this statement can be proved easily.

Lemma 1. If A preserves regularity then \mathbf{A} does not satisfy condition (*).
Proof. Assume that A satisfies condition (*). Then, using the notations of the definition above, set $R=\{p_{0}(\underbrace{p_{1}\left(\ldots\left(p_{1}\right.\right.}_{n \text {-imes }}\left(p_{2}\right)) \ldots)) \mid n \geqq 0\} . R$ is regular and $\tau(R)$ consists of trees $q_{0}\left(\mathbf{r}_{n}, \mathbf{s}_{n}\right)\left(n \geqq 0, \mathbf{r}_{n} \in T_{G}^{n_{1}}, \mathbf{s}_{n} \in T_{G}^{m_{1}}\right)$ with the property that $n<\operatorname{rn}\left(\mathbf{r}_{n}\right)<\operatorname{rn}\left(\mathbf{r}_{n+1}\right)$, $n<\operatorname{rn}\left(\mathrm{s}_{n}\right)<\mathrm{rn}\left(\mathrm{s}_{n+1}\right)^{1}$. Suppose that $\tau(R)$ is recognizable by a deterministic tree automaton $\mathbf{D}=\left(G, D, D_{0}\right)$. Let $n>m_{1}\left(1+v(G)+\ldots+v(G)^{|D|-1}\right)$ be an arbitrary fixed integer. As $\left(q_{0}\left(\mathbf{r}_{n}, \mathbf{s}_{n}\right)\right)_{\mathbf{D}} \in D_{0}$ also there is a vector of trees $\mathbf{s} \in T_{G}^{m_{1}}$ with $\mathrm{dp}(\mathbf{s})<|D|$ and $\left(q_{0}\left(\mathbf{r}_{n}, \mathbf{s}\right)\right)_{\mathrm{D}} \in D_{0}$. However, as $\mathrm{dp}(\mathbf{s})<|D|$ we obtain that $\mathrm{rn}(\mathrm{s}) \leqq$ $\leqq m_{1}\left(1+v(G)+\ldots+v(G)^{|D|-1}\right)$. This contradicts $\tau(R)=T(\mathbf{D})$. Therefore, $\tau(R)$ is not regular, as was to be proved.

To prove the converse of Lemma 1 first we show that τ (dom τ) is regular if A does not satisfy (*). This will be carried out by constructing a linear deterministic top-down tree transducer with regular look-ahead such that $\tau($ dom $\tau)=$ $=\tau_{\mathbf{A}^{\prime}}\left(\operatorname{dom} \tau_{\mathbf{A}^{\prime}}\right)$. The construction of \mathbf{A}^{\prime} will be made by the help of other tree transformations. Thus, we shall have the transformations indicated by the figure below:

$$
{ }^{1} \mathrm{rn}\left(\mathrm{r}_{n}\right)=\mathrm{rn}\left(r_{n_{1}}\right)+\ldots+\mathrm{rn}\left(r_{n n_{1}}\right), \mathrm{rn}\left(s_{n}\right) \text { is similarly defined. }
$$

We begin with the definition of $F^{\prime \prime}$. First let $\bar{F}=\bigcup_{n \geqq 0} F_{n}, \bar{F}_{n}=\left\{(f, C, \varphi, \psi) \mid f \in F_{n}\right.$, $C \subseteq B, \varphi: B \rightarrow P(A), \psi: A \succ A$ for a subset $B \subseteq A\}$, i.e. φ is a mapping of B into the power-set of A and ψ is a partial function on A. Now the type $F^{\prime \prime}$ is defined by $F_{n}^{\prime \prime}=F_{n} \cup \bar{F}_{n}(n \geqq 0)$.

The \bar{F}-depth $(\overline{\mathrm{dp}}(p))$ and \bar{F}-width $(\overline{\mathrm{wd}}(p))$ of a tree $p \in T_{\mathrm{F}^{\prime \prime}}$ are defined by

$$
\begin{aligned}
& \overline{\mathrm{dp}}(p)=0, \quad \overline{\mathrm{wd}}(p)=\overline{\mathrm{wd}}_{0}(p)=0 \quad \text { if } \quad p \in F_{0} \\
& \overline{\mathrm{dp}}(p)=1, \quad \overline{\mathrm{wd}}(p)={\overline{\mathrm{wd}_{0}}(p)=1 \quad \text { if } \quad p \in \bar{F}_{0}}^{2}=
\end{aligned}
$$

$\overline{\mathrm{dp}}(p)=\max \left\{\overline{\mathrm{dp}}\left(p_{i}\right) \mid i \in[n]\right\}, \quad \overline{\mathrm{wd}}(p)=\max \left\{\sum_{i=1}^{n} \overline{\mathrm{wd}}_{0}\left(p_{i}\right), \quad \overline{\mathrm{wd}}\left(p_{i}\right) \mid i \in[n]\right\}$,

$$
\begin{gathered}
\overline{\operatorname{wd}}_{0}(p)=\sum_{i=1}^{n} \overline{\mathrm{wd}}_{0}\left(p_{i}\right) \quad \text { if } p=f\left(p_{1}, \ldots, p_{n}\right) \text { with } n>0, \quad f \in F_{n}, \\
p_{1}, \ldots, \dot{p}_{n} \in T_{F^{\prime \prime}}, \\
\overline{\mathrm{dp}}(p)=1+\max \left\{\overline{\mathrm{dp}}\left(p_{i}\right) \mid i \in[n]\right\}, \quad \overline{\mathrm{wd}}(p)=\max \left\{1, \overline{\operatorname{wd}}\left(p_{i}\right) \mid i \in[n]\right\}, \\
\overline{\mathrm{wd}_{0}}(p)=1 \quad \text { if } p=f\left(p_{1}, \ldots, p_{n}\right) \quad \text { where } n>0, . f \in \bar{F}_{n},
\end{gathered}
$$

$$
p_{1}, \ldots, p_{n} \in T_{F^{\prime \prime}} .
$$

If n, m are given nonnegative integers then $T_{(n, m)}$ denotes the set of all trees $p \in T_{F^{\prime \prime}}$ with $\overline{\mathrm{dp}}(p)<n$. and $\overline{\mathrm{wd}}(p) \leqq m$.

We shall frequently use an equivalence relation denoted by \sim on $T_{F^{\prime \prime}}$. Given $p, q \in T_{F^{\prime \prime}}, p \sim q$ if and only if one of the following three conditions holds:
(i) $p, q \in T_{F}$,
(ii) $p=f\left(p_{1}, \ldots, p_{n}\right), q=f\left(q_{1}, \ldots, q_{n}\right)$ with $n \geqq 0, f \in \bar{F}_{n}, p_{i}, q_{i} \in T_{F^{\prime \prime}}$ and $p_{i} \sim q_{i}(i \in[n])$,
(iii) $p=p_{0}\left(p_{1}, \ldots, p_{n}\right), \quad q=q_{0}\left(q_{1}, \ldots, q_{n}\right)$ with $n>0, p_{0}, q_{0} \in \tilde{T}_{F, n}, \quad p_{i}, q_{i} \in T_{F^{\prime \prime}}$, $p_{i} \sim q_{i}, \operatorname{rt}\left(p_{i}\right), \operatorname{rt}\left(q_{i}\right) \in \bar{F}(i \in[n])$.
If $p \in T_{F^{\prime \prime}}$ then $[p]$ denotes the block containing p under the partition induced by \sim.
The next statement can be proved in an easy way.
Lemma 2. $[p]$ is a regular forest for any $p \in T_{F^{\prime \prime}}$.
Now we introduce the transducer $\mathbf{U} . \mathbf{U}=\left(F, U, F^{\prime \prime}, u_{0}, \Sigma^{\prime \prime}\right)$ where

$$
U=\left\{\left(B, B^{\prime}, C, \varphi, \psi\right) \mid B \cong A, B^{\prime} \subseteq B, C \cong B, \varphi: B \rightarrow P(A), \psi: A>A\right\}
$$

$a_{0}=\left(\left\{a_{0}\right\}, \emptyset, \emptyset, \varphi, \psi\right)$ with $\varphi\left(a_{0}\right)=\left\{a_{0}\right\}$ and $\psi(a)=b$ if and only if $a=b=a_{0}$. $\Sigma^{\prime \prime}$ is determined as follows.

Let $u=\left(B, B^{\prime}, C, \varphi, \psi\right)$ be an arbitrary element of $U, f \in F_{n}(n \geqq 0)$. Assume that in Σ there is a rule with left side af for any $a \in \cup \varphi(B)$. That is, $\cup \varphi(B)=$ $=\left\{a_{1}, \ldots, a_{l}, a_{11}, \ldots, a_{l_{1} 1}, \ldots, a_{1 n}, \ldots, a_{l_{n} n}\right\}\left(l, l_{1}, \ldots, l_{n} \geqq 0\right)$ and

$$
\begin{gathered}
a_{i} f \rightarrow q_{i}\left(\mathbf{b}_{i 1} \mathbf{x}_{1}^{k_{i 1}}, \ldots, \mathbf{b}_{i n} \mathbf{x}_{n}^{k_{i n}}\right) \in \Sigma \quad(i \in[l]), \\
a_{i j} f \rightarrow c_{i j} x_{j} \in \Sigma \quad\left(i \in\left[l_{j}\right], j \in[n]\right),
\end{gathered}
$$

where $k_{i j} \geqq 0(i \in[l], j \in[n]), q_{i} \in \hat{T}_{G, k_{i}}-X, k_{i}=\sum_{j=1}^{n} k_{i j} \quad(i \in[l]), \quad b_{i j} \in A^{k_{t j}} \quad(i \in[l], j \in[n])$, $c_{i j} \in A\left(i \in\left[l_{j}\right], j \in[n]\right)$.

Then $\Sigma^{\prime \prime}$ is the smallest set of top-down rewriting rules satisfying (i) and (ii) below.
and

$$
\begin{gathered}
\text { (i) If }\left|\left\{a \in B \mid \varphi(a) \cap\left\{a_{1}, \ldots, a_{l}\right\} \neq \emptyset\right\}\right| \geqq 2 \text { or } \\
\left|\left\{a \in B^{\prime} \mid \varphi(a) \cap\left\{a_{1}, \ldots, a_{l}\right\} \neq \emptyset\right\}\right| \geqq 1 \text { or } \\
\left|\left\{a \in B-C \mid \varphi(a) \cap\left\{a_{1}, \ldots, a_{l}\right\} \neq \emptyset\right\}\right| \geqq 1 \text { or } \\
|C| \geqq 2 \text { and }\left|\left\{a \in B \mid \varphi(a) \cap\left\{a_{1}, \ldots, a_{l}\right\} \neq \emptyset\right\}\right| \geqq 1
\end{gathered}
$$

$$
\begin{gathered}
u_{i}=\left(B, B^{\prime}, C^{\prime}, \varphi_{i}, \psi_{i}\right) \quad(i \in[n]), \\
C^{\prime}=\left\{a \in B \mid \varphi(a) \cap\left\{a_{1}, \ldots, a_{i}\right\} \neq \emptyset\right\}, \\
\varphi_{i}(a)=\cup\left(B_{j i} \mid a_{j} \in \varphi(a)\right) \cup\left\{c_{j i} \mid a_{j i} \in \varphi(a)\right\} \quad(a \in B, i \in[n]),
\end{gathered}
$$

where $B_{j i}$ denotes the set of components of the vector $\mathbf{b}_{j i}(j \in[l], i \in[n]), \psi_{i}(a)=b$ if and only if $a=b \in \cup \varphi_{i}(B)(i \in[n]), f=\left(f, C^{\prime}, \varphi, \psi\right)$ then

$$
u f \rightarrow \vec{f}\left(u_{1} x_{1}, \ldots, u_{n} x_{n}\right) \in \Sigma^{\prime \prime}
$$

(ii) If not (i), i.e. $l=0$ or
$l=1, C=\left\{a_{1}\right\}$ and $a_{1} \ddagger B^{\prime}$
and for each $i \in[n]$
$u_{i}=\left(B, B^{\prime}, C, \varphi_{i}, \psi_{i}\right)$,
φ_{i} is the same as in the previous case,
$\psi_{i}=\psi \circ \psi_{i}^{\prime}$ with $\psi_{i}^{\prime}(a)=b$ if and only if $a=a_{j i}, b=c_{j i}\left(j \in\left[l_{i}\right]\right)$,
then

$$
u f \rightarrow f\left(u_{1} x_{1}, \ldots, u_{n} x_{n}\right) \in \Sigma^{\prime \prime}
$$

Observe that \mathbf{U} is a deterministic top-down relabeling. The following properties of \mathbf{U} will be used without any reference. First, if $u p \underset{\mathbf{u}}{*} q\left(\mathbf{v}\left(x_{1}, \ldots, x_{n}\right)\right)$ ($n \geqq 0, u \in U, v \in U^{n}$) and $p, q \in \tilde{T}_{F, n}$ then $p=q$. Secondly, let $\mathbf{a} \in A^{k}(k \geqq 0)$ be arbitrary and identify a with the state $u=\left(B, B^{\prime}, \emptyset, \varphi, \psi\right)$ where $B=\left\{a_{i} \mid i \in[k]\right\}$, $B^{\prime}=\left\{a_{i} \mid i \in[k], \exists j \in[k] i \neq j, a_{i}=a_{j}\right\}, \quad \varphi(a)=\{a\}$ if $a \in B$ and $\psi(a)=b$ if and only if $a=b \in B$. Denote by σ_{a} the transformation $\tau_{\mathrm{U}(u)}$ and similarly, put $\tau_{a_{i}}=\tau_{\mathrm{A}\left(a_{i}\right)}$ ($i \in[k]$). Then, for any $p \in T_{F}, p \in \operatorname{dom} \sigma_{a}$ if and only if $p \in \bigcap_{i=1}^{k} \operatorname{dom} \tau_{a_{i}}$.

In the next few lemmata we shall point to further connections between A and U.
Lemma 3. If \mathbf{A} does not satisfy condition (*) then $\overline{\mathrm{dp}}\left(\sigma_{\mathrm{a}}(p)\right)<2|A|^{2}\|A\|^{2}$ holds for any $\mathbf{a} \in A^{k}(k \geqq 0)$ and $p \in T_{\mathbf{F}}$ provided that $\sigma_{\mathbf{a}}(p)$ is defined and there exist trees $r \in \hat{T}_{F, 1}$ and $r^{\prime} \in \hat{T}_{G, k}$ with $a_{0} r \underset{\mathbf{A}}{*} r^{\prime}\left(\mathbf{a x}_{1}^{k}\right)$.

Proof. Let $L=|A|^{2}\|A\|^{2}$ and suppose that $a_{0} r \underset{\mathbf{A}}{\stackrel{*}{\Rightarrow}} r^{\prime}\left(\mathbf{a x}_{1}^{k}\right)$ and $\overline{\mathrm{dp}}\left(\sigma_{a}(p)\right) \geqq 2 L$. Then $k \geqq 2$ and there exist $p_{0}, \ldots, p_{2 L-1} \in \hat{T}_{F, 1}, p_{2 L} \in T_{F}, q_{0}, \ldots, q_{2 L-1} \in \hat{T}_{F^{\prime \prime}, 1}$,
$q_{2 L} \in T_{F^{\prime \prime}}, u_{1}, \ldots, u_{2 L} \in U$ such that

$$
\begin{gathered}
p=p_{0}\left(\ldots\left(p_{2 L}\right) \ldots\right), \quad q=q_{0}\left(\ldots\left(q_{2 L}\right) \ldots\right), \\
\mathbf{a} p_{0} \underset{\mathbf{u}}{\stackrel{*}{\Rightarrow}} q_{0}\left(u_{1} x_{1}\right), \quad u_{i} p_{i} \underset{\mathbf{u}}{*} q_{i}\left(u_{i+1} x_{1}\right) \quad(i=1, \ldots, 2 L-1), \quad u_{2 L} p_{2 L} \stackrel{*}{\Rightarrow} q_{2 L},
\end{gathered}
$$

furthermore, $\quad \operatorname{rt}\left(q_{i}\right) \in \bar{F}$, say, $\quad \operatorname{rt}\left(q_{i}\right)=\left(f_{i}, C_{i}, \varphi_{i}, \psi_{i}\right)(i=1, \ldots, 2 L)$. Let $D_{1}=$ $=C_{1} \cup C_{2}, \ldots, D_{L}=C_{2 L-1} \cup C_{2 L}$. It is not difficult to see by the definition of \mathbf{U} that for any $i \in[L]$ there exist indices $j_{i} \neq k_{i}\left(j_{i}, k_{i} \in[k]\right)$ with $a_{j_{i}}, a_{k_{i}} \in D_{i}$. On the other hand, as $L=|A|^{2}\|A\|^{2}$, there exist $i_{1}<i_{2}\left(i_{1}, i_{2} \in[L]\right)$ such that $a_{i_{i_{1}}}=a_{j_{i_{2}}}, a_{k_{i_{1}}}=$ $=a_{k_{i_{2}}}, S_{i_{1}}=S_{i_{2}}$ and $T_{i_{1}}=T_{i_{2}}$ where S_{i} and T_{i} are defined by $S_{i}=\varphi_{2 i-1}\left(a_{j_{i}}\right)$ and $T_{i}=\bigcup\left(\varphi_{2 i-1}\left(a_{j}\right) \mid j \in[k], j \neq j_{i}\right)$. Without loss of generality we may take $j_{i_{1}}=j_{i_{2}}=1$ and $k_{i_{1}}=k_{i_{2}}=2$.

As $\sigma_{\mathrm{a}}(p)$ is defined also $\tau_{a_{t}}(p)$ is defined for any $i \in[k]$. Thus, if $r_{1}=$ $=p_{0}\left(\ldots\left(p_{2 i_{1}-2}\right) \ldots\right), r_{2}=p_{2 i_{1}-1}\left(\ldots\left(p_{2 i_{2}-2}\right) \ldots\right), r_{3}=p_{2 i_{2}-1}\left(\ldots\left(p_{2 L}\right) \ldots\right)$ then the derivations

$$
\begin{aligned}
& a_{1} r_{1} \stackrel{*}{\underset{A}{*}} s_{1}\left(c_{1} \mathbf{x}_{1}^{n_{1}}\right), \quad\left(a_{2}, \ldots, a_{k}\right) r_{1}^{k-1} \stackrel{*}{\Rightarrow} \mathbf{t}_{1}\left(\mathbf{d}_{1} \mathbf{x}_{1}^{m_{1}}\right), \\
& \mathbf{c}_{1} \mathbf{r}_{2}^{n_{1}} \underset{A}{*} \mathbf{s}_{2}\left(\mathbf{c}_{2} \mathbf{x}_{1}^{n_{2}}\right), \quad \mathbf{d}_{1} \mathbf{r}_{2}^{m_{1}} \stackrel{*}{\underset{A}{*}} \mathbf{t}_{2}\left(d_{2} \mathbf{x}_{1}^{m_{2}}\right), \\
& \mathbf{c}_{2} \mathbf{r}_{3} \underset{\mathbf{A}}{\stackrel{*}{\Rightarrow}} \mathbf{s}_{3}, \quad \mathbf{d}_{2} \mathbf{r}_{3}^{m_{2}} \stackrel{*}{\underset{A}{*}} \mathbf{t}_{\mathbf{3}}
\end{aligned}
$$

exist where $s_{1} \in \hat{T}_{G, n_{1}}, \mathbf{t}_{1} \in \hat{T}_{G, m_{1}}^{k-1}, \mathbf{s}_{2} \in \hat{T}_{G, n_{2}}^{n_{1}}, \mathbf{t}_{2} \in \hat{T}_{G, m_{2}}^{m_{1}}, \mathbf{s}_{3} \in T_{G}^{n_{2}}, \mathbf{t}_{3} \in T_{G}^{m_{2}}$ and $\mathbf{c}_{i} \in A^{n_{i}}$, $\mathbf{d}_{i} \in A^{m_{i}} \quad(i=1,2)$.

Since $1,2 \in D_{i_{1}}$ we have that both \mathbf{s}_{2} and \mathbf{t}_{2} contain an occurence of a symbol from G. Furthermore, as the sets $S_{i_{1}}, S_{i_{2}}, T_{i_{1}}$ and $T_{i_{2}}$ coincide with the set of components of c_{1}, c_{2}, d_{1} and d_{2}, respectively, it follows that c_{1} and d_{1} have the same set of components as \mathbf{c}_{2} and \mathbf{d}_{2}.

By

$$
\begin{aligned}
& a_{0} r\left(r_{1}\right) \stackrel{*}{\underset{A}{\Rightarrow}} r^{\prime}\left(s_{1}\left(\mathbf{c}_{1} \mathbf{x}_{1}^{n_{1}}\right), \quad \mathbf{t}_{1}\left(\mathrm{~d}_{1} \mathbf{x}_{1}^{m_{1}}\right)\right), \\
& \mathbf{c}_{1} \mathbf{r}_{2}^{n_{1}} \stackrel{*}{\vec{A}} \mathbf{s}_{2}\left(\mathbf{c}_{2} \mathbf{x}_{1}^{n_{2}}\right), \quad \mathbf{d}_{1} \mathbf{r}_{2}^{m_{1}} \stackrel{*}{\vec{A}} \mathbf{t}_{\mathbf{2}}\left(\mathbf{d}_{2} \mathbf{x}_{1}^{m_{\mathbf{2}}}\right), \\
& \mathbf{c}_{2} \mathbf{r}_{3}^{n_{2}} \stackrel{*}{\underset{\mathbf{A}}{*}} \mathbf{s}_{3}, \quad \mathbf{d}_{2} \mathbf{r}_{\mathbf{3}}^{m_{2}} \underset{\mathbf{A}}{*} \mathbf{t}_{3}
\end{aligned}
$$

this yields that \mathbf{A} satisfies condition (*), which is a contradiction.
Lemma 4. Let $\mathrm{a} \in A^{k}(k \geqq 0)$ be arbitrary. Put $B=\left\{a_{i} \mid i \in[k]\right\}$ and assume that

$$
\begin{aligned}
& \mathbf{a} p_{0} \stackrel{*}{\stackrel{*}{\Rightarrow}} p_{0}\left(\mathbf{u}\left(x_{1}, \ldots, x_{n}\right)\right), \quad \mathbf{a} p_{0}^{\prime} \stackrel{*}{\Rightarrow} p_{0}^{\prime}\left(\mathbf{u}^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \quad \mathbf{u p} \stackrel{*}{\Rightarrow} \mathbf{q}, \quad \mathbf{u}^{\prime} \mathbf{p}^{\prime} \stackrel{*}{\Rightarrow} \mathbf{q}^{\prime} \\
& \operatorname{rt}(\mathbf{q})=\operatorname{rt}\left(\mathbf{q}^{\prime}\right) \in \bar{F}^{n}
\end{aligned}
$$

where $n \geqq 0, p_{0}, p_{0}^{\prime} \in \tilde{T}_{F, n}, \mathbf{p}, \mathbf{p}^{\prime} \in T_{F}^{n}, \mathbf{q}, \mathbf{q}^{\prime} \in T_{F^{\prime \prime}}^{n}, \mathbf{u}, \mathbf{u}^{\prime} \in U^{n}$.
Then $n \leqq|A|$ and $\tau_{b}\left(p_{0}(\mathbf{p})\right)=\tau_{b}\left(p_{0}^{\prime}(\mathbf{p})\right)$ for any $b \in B$.

Proof. Suppose that $\mathrm{rt}\left(q_{i}\right)=\left(f_{i}, C_{i}, \varphi_{i}, \psi_{i}\right)(i \in[n])$. It is not difficult to see by the definition of \mathbf{U} that for any $i \in[n]$ there is a state $b \in B$ with $\psi_{i}(b)$ being defined and $b p_{0} \stackrel{\text { A }}{\stackrel{*}{\Rightarrow}} \psi_{i}(b) x_{i}$. Therefore, $n \leqq|B|$ and also $n \leqq|A|$. Similarly, for each $b \in B$ there is an integer $i \in[n]$ such that $\psi_{i}(b)$ is defined and $b p_{0} \underset{\mathrm{~A}}{*} \psi_{i}(b) x_{i}, b p_{0}^{\prime} \underset{\mathrm{A}}{*} \psi_{i}(b) x_{i}$. From this $\tau_{b}\left(p_{0}(\mathbf{p})\right)=\tau_{b}\left(p_{0}^{\prime}(\mathbf{p})\right)$ follows immediately.

Lemma 5. Let $\mathbf{a} \in A^{k}(k>0)$ and define the set B as previously. Set $B^{\prime}=$ $=\left\{a_{i} \mid i \in[k], \exists j \in[k] i \neq j, a_{i}=a_{j}\right\}$ and assume that

$$
\begin{aligned}
& \mathbf{a} p_{0}\left(f\left(p_{1}, \ldots, p_{i-1}, x_{1}, p_{i+1}, \ldots, p_{n}\right)\right) \underset{\mathbf{u}}{\underset{\Rightarrow}{*}} r_{0}\left(f\left(r_{1}, \ldots, r_{i-1}, u x_{1}, r_{i+1}, \ldots, r_{n}\right)\right), \\
& \mathbf{a} p_{0}^{\prime}\left(f\left(p_{1}^{\prime}, \ldots, p_{i-1}^{\prime}, x_{1}, p_{i+1}^{\prime}, \ldots, p_{n}^{\prime}\right)\right) \stackrel{*}{\Rightarrow} r_{0}^{\prime}\left(f\left(r_{1}^{\prime}, \ldots, r_{i-1}^{\prime}, u x_{1}, r_{i+1}^{\prime}, \ldots, r_{n}^{\prime}\right)\right), \\
& u q_{0} \underset{\mathbf{u}}{\stackrel{*}{\Rightarrow}} q_{0}\left(\mathbf{v}\left(x_{1}, \ldots, x_{m}\right)\right), \quad u q_{0}^{\prime} \underset{\mathbf{u}}{\Rightarrow} q_{0}^{\prime}\left(\mathbf{v}^{\prime}\left(x_{1}, \ldots, x_{m}\right)\right), \\
& \mathbf{v q} \underset{\mathbf{a}}{\stackrel{*}{\Rightarrow}} \mathbf{s}, \quad \mathbf{v}^{\prime} \mathbf{q}^{\prime} \underset{\mathbf{u}}{\stackrel{*}{\Rightarrow}} \mathbf{s}^{\prime}, \\
& \operatorname{rt}(\mathbf{s})=\operatorname{rt}\left(\mathbf{s}^{\prime}\right) \in \bar{F}^{m},
\end{aligned}
$$

where $n>0, m \geqq 0 ; i \in[n], p_{0}, p_{0}^{\prime} \in \hat{T}_{F, 1}, f \in F_{n}, f=(f, C, \varphi, \psi) \in \bar{F}_{n}, p_{j}, p_{j}^{\prime} \in T_{F}, r_{0}, r_{0}^{\prime} \in \hat{T}_{F^{\prime \prime}, 1}$, $r_{j}, r_{j}^{\prime} \in T_{F^{\prime \prime}}(j \in[n]-\{i\}), q_{0}, q_{0}^{\prime} \in \tilde{T}_{F, m}, \mathbf{q}, \mathbf{q}^{\prime} \in T_{F}^{m}, \mathbf{s}, \mathbf{s}^{\prime} \in T_{F^{\prime \prime}}^{m}, u \in U, \mathbf{v}, \mathbf{v}^{\prime} \in U^{m}$.

If $|C| \geqq 2$ or $C \cap B^{\prime} \neq \varnothing$ then $\tau_{b}\left(p_{0}\left(f\left(p_{1}, \ldots, p_{i-1}, q_{0}(\mathbf{q}), p_{i+1}, \ldots, p_{n}\right)\right)\right)=$ $=\tau_{b}\left(p_{0}\left(f\left(p_{1}, \ldots, p_{i-1}, q_{0}^{\prime}(\mathbf{q}), p_{i+1}, \ldots, p_{n}\right)\right)\right)$ is valid for any $b \in B$. If $|C|=1$ and $C \cap B^{\prime}=\varnothing$ then we have the same equality for any $b \in B-C$. Furthermore, $m \leqq|A|$.

Proof. Similar to the proof of Lemma 4.

By succesive applications of the previous two lemmata we obtain
Lemma 6. Assume that $\mathbf{a p} \underset{\mathbf{A}}{\stackrel{*}{\Rightarrow}} \mathbf{q}$ where $\mathbf{a} \in A^{k}, \mathbf{p} \in T_{F}^{k}, \mathbf{q} \in T_{G}^{k}, k \geqq 0$. If $\sigma_{\mathbf{a}}\left(p_{1}\right) \sim \ldots$ $\ldots \sim \sigma_{\mathrm{a}}\left(p_{k}\right)$ then there is a tree $p_{0} \in T_{F}$ with $\sigma_{\mathrm{a}}\left(p_{0}\right) \sim \sigma_{\mathrm{a}}\left(p_{1}\right)$ and $\mathbf{a} \mathbf{p}_{0}^{k} \underset{\mathbf{A}}{*} \mathbf{q}$. Furthermore, if $r \in \bigcap_{i=1}^{k} \operatorname{dom} \tau_{a_{i}}$ then $\overline{\mathrm{wd}}\left(\sigma_{\mathrm{a}}(r)\right) \leqq|A|$.

Lemma 7. Let $\mathbf{a} \in A^{k}(k \geqq 0), f \in F_{n}(n \geqq 0), \mathbf{b}_{i j} \in A^{m_{I j}}\left(m_{i j} \geqq 0, i \in[k], j \in[n]\right)$ and $q_{i} \in \hat{T}_{G, m_{i}}\left(i \in[k], m_{i}=\sum_{j=1}^{n} m_{i j}\right) . \quad$ Assume that each of the productions $a_{i} f \rightarrow$ $\rightarrow q_{i}\left(\mathbf{b}_{i 1} \mathbf{x}_{1}^{m_{i 1}}, \ldots, \mathbf{b}_{i n} \mathbf{x}_{n}^{m_{i n}}\right)(i \in[k])$ is in Σ. Furthermore, let $p_{i}, p_{i}^{\prime} \in T_{F}, \mathbf{c}_{i}=\left(\mathbf{b}_{1 i}, \ldots, \mathbf{b}_{k i}\right)$ $(i \in[n])$. Then $\sigma_{\mathrm{c}_{i}}\left(p_{i}\right) \sim \sigma_{\mathrm{c}_{i}}\left(p_{i}^{\prime}\right) \quad(i \in[n])$ implies $\sigma_{\mathrm{a}}\left(f\left(p_{1}, \ldots, p_{n}\right)\right) \sim \sigma_{\mathrm{a}}\left(f\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)\right)$.

Proof. The proof will be carried out in case of $n=1$ only. As $n=1$ we may simplify our notations: put $p=p_{1}, p^{\prime}=p_{1}^{\prime}, \mathbf{b}_{i}=\mathbf{b}_{i 1}(i \in[k]), \mathbf{c}=\mathbf{c}_{1}$. Moreover, let $B=\left\{a_{i} \mid i \in[k]\right\}, \quad B^{\prime}=\left\{a_{i} \mid i \in[k], \quad \exists j \in[k] \quad i \neq j, \quad a_{i}=a_{j}\right\}, \quad C=\left\{c_{i} \mid i \in\left[\sum_{j=1}^{k} m_{j}\right]\right\}, \quad C^{\prime}=$ $=\left\{c_{i} \mid i \in\left[\sum_{j=1}^{k} m_{j}\right], \exists i^{\prime} \in\left[\sum_{j=1}^{k} m_{j}\right] i^{\prime} \neq i, \quad c_{i}=c_{i^{\prime}}\right\}$.

As $p, p^{\prime} \in \bigcap_{i=1}^{k} \bigcap_{j=1}^{m_{i}} \operatorname{dom} \tau_{b_{i j}}$ and the productions above exist also $f(p), f\left(p^{\prime}\right) \in$ $\epsilon \bigcap_{i=1}^{k} \operatorname{dom} \tau_{a_{i}}$. This implies that both $\sigma_{\mathrm{a}}(f(p))$ and $\sigma_{\mathrm{a}}\left(f\left(p^{\prime}\right)\right)$ are defined.

In the remaining part of the proof we shall make some transformations on the trees $f\left(\sigma_{\mathrm{c}}(p)\right)$ and $f\left(\sigma_{\mathrm{c}}\left(p^{\prime}\right)\right)$ by the help of a deterministic top-down tree transducer $V=\left(F^{\prime \prime}, V, F^{\prime \prime}, v_{0}, \Sigma_{\mathrm{V}}\right)$. In this transducer $V=\left\{v_{0}\right\} \cup\{(D, \psi) \mid D \subseteq B$, $\psi: A>\rightarrow A\}$ and Σ_{v} consisits of the following five types of rules:
(i) If $q_{i}=x_{1}$ for every $i \in[k]$ then

$$
v_{0} f \rightarrow f\left((\varnothing, \psi) x_{1}\right) \in \Sigma_{\mathbf{v}}
$$

where $\psi(a)=b$ if and only if $a=a_{i}$ and $b=b_{i 1}$ for an index $i \in[k]$.
(ii) If $D=\left\{a_{i} \mid i \in[k], q_{i} \neq x_{1}\right\}$ is not empty then

$$
v_{0} f \rightarrow(f, D, \varphi, \psi)\left(\left(D, \psi_{1}\right) x_{1}\right) \in \Sigma_{\mathbf{v}}
$$

where $\varphi: B \rightarrow P(A), \varphi(a)=\{a\}(a \in B)$; moreover, $\psi(a)=a$ if $a \in B, \psi(a)$ is undefined if $a \notin B ; \psi_{1}(a)=a$ if $a \in C$, otherwise $\psi_{1}(a)$ is undefined.
(iii) $(D, \psi) g \rightarrow g\left((D, \psi) x_{1}, \ldots,(D, \psi) x_{l}\right) \in \Sigma_{\mathrm{V}}$ for any $(D, \psi) \in V$ and $g \in F_{l}(l \geqq 0)$.
(iv) If $(D, \psi) \in V, D^{\prime} \subseteq C$ and either $|D|>1$ or $D \cap B^{\prime} \neq \varnothing$ or $\left\{a_{i} \mid\left\{b_{i 1}, \ldots, b_{i m_{i}}\right\} \cap D^{\prime} \neq \varnothing\right\} \neq D$ then

$$
(D, \psi)\left(g, D^{\prime}, \varphi^{\prime}, \psi^{\prime}\right) \rightarrow\left(g, D^{\prime \prime}, \varphi^{\prime \prime}, \psi^{\prime \prime}\right)\left(\left(D^{\prime \prime}, \psi_{1}\right) x_{1}, \ldots,\left(D^{\prime \prime}, \psi_{l}\right) x_{l}\right) \in \Sigma_{\mathbf{v}}
$$

for any $\quad\left(g, D^{\prime}, \varphi^{\prime}, \psi^{\prime}\right) \in \bar{F}_{1}(l \geqq 0) \quad$ with $\quad \varphi^{\prime}: C \rightarrow P(A) \quad$ where $\quad D^{\prime \prime}=\left\{a_{i} \mid i \in[k]\right.$, $\left.\left\{b_{i 1}, \ldots, b_{i m_{i}}\right\} \cap D^{\prime} \neq \varnothing\right\} ; \varphi^{\prime \prime}: B \rightarrow P(A) \quad$ and $\quad \varphi^{\prime \prime}\left(a_{i}\right)=\bigcup_{j=1}^{m_{i}} \varphi^{\prime}\left(b_{i j}\right)(i \in[k]) ; \psi^{\prime \prime}=\psi \circ \psi^{\prime}$ and $\psi_{i}(a)=b$ if and only if $a=b$ and a occurs in the right side of a rule $c g \rightarrow s \in \Sigma$ with $c \in \cup \varphi^{\prime}(C)$.
(v) If $(D, \psi) \in V, D^{\prime} \subseteq C$, furthermore $|D|=1, D \cap B^{\prime}=\varnothing$ and $\left\{a_{i} \mid i \in[k]\right.$, $\left.\left\{b_{i 1}, \ldots, b_{i m_{i}}\right\} \cap D^{\prime} \neq \varnothing\right\}=D$ then for every $\left(g, D^{\prime}, \varphi^{\prime}, \psi^{\prime}\right) \in \bar{F}_{l}$ with $\varphi^{\prime}: C \rightarrow P(A)$

$$
(D, \psi)\left(g, D^{\prime}, \varphi^{\prime}, \psi^{\prime}\right) \rightarrow g\left(\left(D, \psi_{1}\right) x_{1}, \ldots,\left(D, \psi_{l}\right) x_{l}\right) \in \Sigma_{\mathbf{v}}
$$

where $\psi_{i}=\psi \circ \eta_{i}$ and $\eta_{i}(a)=b$ if and only if $a g \rightarrow b x_{i} \in \Sigma$.
It can be seen that $\tau_{\mathbf{v}}\left(f\left(\sigma_{\mathrm{c}}(p)\right)\right)=\sigma_{\mathbf{a}}(f(p))$ and $\tau_{\mathrm{v}}\left(f\left(\sigma_{\mathrm{c}}\left(p^{\prime}\right)\right)\right)=\sigma_{\mathbf{a}}\left(f\left(p^{\prime}\right)\right)$. On the other hand, by $\sigma_{\mathrm{c}}(p) \sim \sigma_{\mathrm{c}}\left(p^{\prime}\right)$ it follows that $\tau_{\mathrm{v}}\left(f\left(\sigma_{\mathrm{c}}(p)\right)\right) \sim \tau_{\mathrm{v}}\left(f\left(\sigma_{\mathrm{c}}\left(p^{\prime}\right)\right)\right)$. Therefore, $\sigma_{\mathrm{a}}(f(p)) \sim \sigma_{\mathrm{a}}\left(f\left(p^{\prime}\right)\right)$, as was to be proved.

We now turn to the definition of F^{\prime}. For every integer $i \geqq 1$ let K_{i} denote the maximal number of occurences of the variable x_{i} in the right side of a rule in Σ. Put $K=\max \left\{1, K_{i} \mid i \in[v(F)]\right\}, F_{n K}^{\prime}=F_{n}(n \geqq 0)$ and $F_{m}^{\prime}=\varnothing$ otherwise.

As it was mentioned we introduce two homomorphisms $\varrho \subseteq T_{F} \times T_{F}$, and $\varrho^{\prime} \subseteq T_{F^{\prime}} \times T_{F}$ connecting T_{F} and $T_{F^{\prime}}$. The rules defining ϱ are $\bar{f} \rightarrow f\left(\mathbf{x}_{1}^{K}, \ldots, \mathbf{x}_{n}^{K}\right)$ ($f \in F_{n}, n \geqq 0$), while the rules corresponding to ϱ^{\prime} are $f \rightarrow f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\left(f \in F_{n}\right.$, $n \geqq 0$) with $i_{1} \in[K], \ldots, i_{n} \in[n K]-[(n-1) K]$. Observe that ϱ is deterministic and we have $\varrho^{\prime}(\varrho(p))=\{p\}$ for any $p \in T_{F}$.

We continue by defining the transducer $\mathbf{A}^{\prime}=\left(F^{\prime}, A^{\prime}, G, a_{0}^{\prime}, \Sigma^{\prime}\right)$. In this
system $A^{\prime}=\left\{\left(a, B, B^{\prime}\right) \mid a \in B, B \subseteq A, B^{\prime} \subseteq B\right\}, \quad a_{0}^{\prime}=\left(a_{0},\left\{a_{0}\right\}, \varnothing\right)$ and Σ^{\prime} is the smallest set of rewriting rules with the following property.

Let $l>0, B=\left\{a_{1}, \ldots, a_{i}\right\} \subseteq A, B^{\prime}=\left\{a_{m_{1}}, \ldots, a_{m_{k}}\right\} \quad\left(1 \leqq m_{1}<\ldots<m_{k} \leqq l\right), \quad a=a_{1}$. Assume that the rules $a_{i} f \rightarrow q_{i}\left(\mathbf{a}_{i 1} \mathbf{x}_{1}^{k_{i n}}, \ldots, \mathbf{a}_{i_{n}} \mathbf{x}_{n}^{k_{n}}\right)$ are in Σ where $n \geqq 0, f \in F_{n}$, $k_{i j} \geqq 0, \mathbf{a}_{i j} \in A^{k_{i j}}, q_{i} \in \hat{T}_{G, k_{i 1}+\ldots+k_{i n}}(i \in[l], j \in[n])$. Furthermore, let $r_{j} \in T\left(2|A|^{2}\|A\|^{2},|A|\right)$, and set $R_{j}=\left\{p \in T_{F^{\prime}}, \mid \varrho^{\prime}(p) \leqq \sigma_{b_{j}}^{-1}\left(\left[r_{j}\right]\right)\right\}(j \in[n])$, where $\mathbf{b}_{j}=\left(\mathbf{a}_{1 j}, \ldots, \mathbf{a}_{l_{j}}, \mathbf{a}_{m_{j}}, \ldots, \mathbf{a}_{m_{k}}\right)$. R_{j} is regular by Lemma 2 and some results in [2]. Finally, denote by B_{j} the set of components of \mathbf{b}_{j} and put $B_{j}^{\prime}=\left\{b \in A \mid b\right.$ occurs at least twice in $\left.\mathbf{b}_{j}\right\}(j \in[n])$, $c_{i j}=a_{1 i j}\left(i \in[n], j \in\left[k_{1 i}\right]\right), k_{i}=k_{1 i}(i \in[n])$. Then the rule

$$
\begin{gathered}
\left((a , B , B ^ { \prime }) f \rightarrow q _ { 1 } \left(\left(c_{11}, B_{1}, B_{1}^{\prime}\right) x_{1}, \ldots,\left(c_{1 k_{1}}, B_{1}, B_{1}^{\prime}\right) x_{k_{1}}, \ldots\right.\right. \\
\left.\ldots,\left(c_{n 1}, B_{n}, B_{n}^{\prime}\right) x_{(n-1) K+1}, \ldots,\left(c_{n k_{n}}, B_{n}, B_{n}^{\prime}\right) x_{(n-1) K+k_{n}}\right), \\
\underbrace{R_{1}, \ldots, R_{1}}_{\text {K-imes }}, \ldots, \underbrace{R_{n}, \ldots, R_{n}}_{K-i \text { imis }})
\end{gathered}
$$

is in Σ^{\prime}.
Observe that with the definition above \mathbf{A}^{\prime} becomes a linear deterministic top-down tree transducer with regular look-ahead. Just as in case of $\mathbf{A}^{\prime \prime}$ we may treat any vector $\mathbf{a} \in A^{l}$ - but now with $l>0$ - as an element of A^{\prime} : if $\mathbf{a} \in A^{l}(l>0)$ then identify a with $\left(a_{1}, B, B^{\prime}\right)$ where $B=\left\{a_{i} \mid i \in[l]\right\}, B^{\prime}=\left\{a_{i} \mid i \in[l], J_{j} \in[l] i \neq j, a_{i}=a_{j}\right\}$. Assume that $a \underset{A^{\prime}}{*} q\left(p \in T_{F^{\prime}}, q \in T_{G}\right)$. Then one can easily prove that $\varrho^{\prime}(p) \subseteq$ $\subseteq \bigcap_{i=1}^{l} \operatorname{dom} \tau_{a_{i}}$. However, there is a much more close connection between \mathbf{A} and \mathbf{A}^{\prime}. This is shown by Lemmata 8 and 9. In these Lemmata we shall assume that A does not satisfy condition (*).

Lemma 8. $\tau(\operatorname{dom} \tau) \subseteq \tau^{\prime}\left(\operatorname{dom} \tau^{\prime}\right)$.
Proof. We shall prove that if $a_{0} p_{0} \stackrel{\text { A }}{\Rightarrow} q_{0}\left(\mathbf{a x}_{1}^{k}\right)$ and $\mathbf{a p}{ }^{k} \underset{\mathbf{A}}{*} \mathbf{q}$ where $k>0, p_{0} \in \hat{T}_{F, 1}$, $p \in T_{F}, q_{0} \in \hat{T}_{\mathbf{G}, k}, \mathbf{q} \in T_{G}^{k}, \mathbf{a} \in A^{k}$ then also $\mathbf{a} \varrho(p) \underset{\mathbf{A}^{\prime}}{*} q_{1}$. From this the statement follows by taking $p_{0}=x_{1}$.

If $\mathrm{dp}(p)=0$, i.e. $p \in F_{0}$, then $\mathbf{a} \varrho(p) \underset{\boldsymbol{A}^{\prime}}{\stackrel{*}{\Rightarrow}} q_{1}$ is obviously valid. We proceed by induction on $\mathrm{dp}(p)$. Therefore, suppose that $\mathrm{dp}(p)>0$ and the proof is done for trees with depth less than $\mathrm{dp}(p)$. Then $p=f\left(p_{1}, \ldots, p_{n}\right)$ where $n>0, f \in F_{n}$, $p_{1}, \ldots, p_{n} \in T_{F}$ and $\operatorname{dp}\left(p_{i}\right)<\operatorname{dp}(p)(i \in[n])$. As the generalization to arbitrary n is straigthforward we shall deal with $n=1$ only. Since $\mathbf{a p}^{k} \underset{\mathbf{A}}{\boldsymbol{x}} \mathbf{q}$ there exist rules $a_{i} f \rightarrow r_{i}\left(\mathbf{b}_{i} \mathbf{x}_{1}^{l_{i}}\right) \in \Sigma \quad\left(i \in[k], l_{i} \geqq 0, r_{i} \in \hat{T}_{G, l_{i}}, \mathbf{b}_{i} \in A^{l_{i}}\right)$ such that $\mathbf{b}_{i} \mathbf{p}_{1}^{l_{i}} \stackrel{*}{\underset{A}{*}} \mathbf{s}_{i}$ and $q_{i}=r_{i}\left(\mathbf{s}_{i}\right)$ hold for some $\mathbf{s}_{i} \in T_{G}^{l_{G}}$. Put $l=l_{1}+\ldots+l_{k}, \mathbf{b}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right), B=\{b \mid b$ occurs in $\mathbf{b}\}$, $B^{\prime}=\{b \mid b$ occurs at least twice in $\mathbf{b}\}$. As $a_{0} p_{0}\left(f\left(x_{1}\right)\right) \stackrel{*}{\Rightarrow} q_{0}\left(r_{1}\left(\mathbf{b}_{1} \mathbf{x}_{1}^{l_{1}}\right), \ldots, r_{k}\left(\mathbf{b}_{k} \mathbf{x}_{1}^{l_{k}}\right)\right)$ and $\mathbf{b p}_{1}^{\prime} \underset{\mathrm{A}}{\stackrel{*}{\Rightarrow}}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{k}}\right)$ we have that $\sigma_{\mathrm{b}}\left(p_{1}\right)$ is defined, $\sigma_{\mathrm{b}}\left(p_{1}\right) \in T\left(2|A|^{2}\|A\|^{2},|A|\right)$ (cf. Lemmata 3 and 6). Set $R=\left\{p^{\prime} \in T_{F^{\prime}} \mid \varrho^{\prime}\left(p^{\prime}\right) \cong \sigma_{\mathrm{b}}^{-1}\left(\left[\sigma_{\mathrm{b}}\left(p_{1}\right)\right]\right)\right.$. By the construction of
\mathbf{A}^{\prime} we know that $(a f \rightarrow r_{1}\left(\left(b_{11}, B, B^{\prime}\right) x_{1}, \ldots,\left(b_{1 l_{1}}, B, B^{\prime}\right) x_{l_{1}}\right), \underbrace{R, \ldots, R}_{K \text {-times }})$ is in Σ. Now, if $l_{1}=0$ then we get $\mathbf{a} \varrho(p) \underset{\mathrm{A}}{\stackrel{*}{\Rightarrow}} q_{1}$ immediately. If $l_{1}>0$ then we obtain $\left(b_{11}, B, B^{\prime}\right) \varrho\left(p_{1}\right) \underset{\mathbf{A}^{\prime}}{\stackrel{*}{\Rightarrow}} s_{11}, \ldots,\left(b_{1 l_{1}}, B, B^{\prime}\right) \varrho\left(p_{1}\right) \underset{\mathbf{A}^{\prime}}{*} s_{1 l_{1}}$ by the induction hypothesis. As $\varrho\left(p_{1}\right) \in R$ we again have $\mathfrak{a} \varrho(p) \underset{\mathbf{A}^{\prime}}{\stackrel{*}{\Rightarrow}} q_{1}$.

Lemma 9. $\tau^{\prime}\left(\operatorname{dom} \tau^{\prime}\right) \subseteq \tau(\operatorname{dom} \tau)$.
Proof. We are going to show that if $a p^{\prime} \underset{\mathbf{A}^{\prime}}{\stackrel{*}{\Rightarrow}} q$ where $\mathbf{a} \in A^{l}(l>0) p^{\prime} \in T_{F^{\prime}}, q \in T_{G}$ then there exist trees $r \in T_{F^{\prime \prime}}$ and $p \in \sigma_{\mathrm{a}}^{-1}([r])$ with $\varrho^{\prime}\left(p^{\prime}\right) \leqq \sigma_{\mathrm{a}}^{-1}([r])$ and $a_{1} p \stackrel{\text { a }}{\Rightarrow} q$. If $\mathrm{dp}\left(p^{\prime}\right)=0$ then it is trivial: take $p=p^{\prime}, r=\sigma_{\mathrm{a}}(p)$. Assume now that this statement is valid for trees with depth less than $d p\left(p^{\prime}\right)$ and $d p\left(p^{\prime}\right) \geqq 1$. Then $p^{\prime}=f\left(p_{1}^{\prime}, \ldots, p_{n \mathrm{~K}}^{\prime}\right)(n>0)$ with $\mathrm{dp}\left(p_{1}^{\prime}\right), \ldots, \mathrm{dp}\left(p_{n \mathrm{~K}}^{\prime}\right)<\mathrm{dp}\left(p^{\prime}\right)$. We shall restrict ourselves to the case $n=1$. Since $a p^{\prime} \underset{A^{\prime}}{\Rightarrow} q$ we get

$$
\begin{gathered}
(\mathrm{a} f \rightarrow q_{0}\left(\left(b_{1}, B, B^{\prime}\right) x_{1}, \ldots,\left(b_{k}, B, B^{\prime}\right) x_{k}\right), \underbrace{R, \ldots, R}_{\text {K-times }}) \in \Sigma^{\prime}, \\
\left(b_{i}, B, B^{\prime}\right) p_{i}^{\prime} \stackrel{*}{\Rightarrow} q_{i} \quad(i \in[k]), \quad p_{i}^{\prime} \in R \\
(i \in[K]), \\
q=q_{0}\left(q_{1}, \ldots, q_{k}\right)
\end{gathered}
$$

for some $k(0 \leqq k \leqq K), b_{1}, \ldots, b_{k} \in A, B, B^{\prime} \subseteq A \quad$ with $\quad\left\{b_{1}, \ldots, b_{k}\right\} \subseteq B, B^{\prime} \subseteq B$, $\dot{q}_{0} \in \hat{T}_{G, k}, q_{1}, \ldots, q_{k} \in T_{G}$ and a regular forest $R=\left\{s \in T_{F^{\prime}} \backslash \varrho^{\prime}(s) \subseteq \sigma_{c}^{-1}\left(\left[r_{1}\right]\right)\right\}$ where $r_{1} \in T_{F}$, and \mathbf{c} is an arbitrary vector containing one component c_{i} for each element c_{i} of B and a distinct component c_{j} for each element c_{j} of B^{\prime}. We have by the definition of \mathbf{A}^{\prime} that $a_{1} f \rightarrow q_{0}\left(b_{1} x_{1}, \ldots, b_{k} x_{1}\right) \in \Sigma$. Furthermore, as $\varrho^{\prime}\left(p_{1}^{\prime}\right), \ldots$ $\ldots, \varrho^{\prime}\left(p_{K}^{\prime}\right) \subseteq \sigma_{\mathrm{c}}^{-1}\left(\left[r_{1}\right]\right)$, by Lemma 7 we have $\varrho^{\prime}\left(f\left(p_{1}^{\prime}, \ldots, p_{K}^{\prime}\right)\right) \cong \sigma_{\mathrm{a}}^{-1}([r])$ for a suitable $r \in T_{F^{\prime \prime}}$.
 By $\bar{p} \in \varrho^{\prime}\left(p_{\mathrm{J}}^{\prime}\right)$ also $f(\bar{p}) \in \varrho^{\prime}\left(f\left(p_{1}^{\prime}, \ldots, p_{\mathrm{K}}^{\prime}\right)\right)$. Thus, $p=f(\bar{p}) \in \sigma_{\mathrm{a}}^{-1}([r])$.

If $k>0$ then there are trees $p_{1}, \ldots, p_{k} \in \sigma_{\mathrm{c}}^{-1}\left(\left[r_{1}\right]\right)$ with $b_{1} p_{1} \stackrel{*}{\underset{\mathbf{A}}{\Rightarrow}} q_{1}, \ldots, b_{k} p_{k} \stackrel{*}{\underset{\mathbf{A}}{\Rightarrow}} q_{k}$. From this, by an application of Lemma 6, it follows that there is a tree $\bar{p} \in \sigma_{c}^{-1}\left(\left[r_{1}\right]\right)$ with $b_{1} \bar{p} \underset{\mathbf{A}}{*} q_{1}, \ldots, b_{k} \bar{p} \underset{\mathbf{A}}{\stackrel{*}{\Rightarrow}} q_{k}$. Put $p=f(\bar{p})$. Again, we have $a_{1} p \underset{\mathbf{A}}{\stackrel{*}{\Rightarrow}} q$. On the other hand, $p \in \sigma_{\mathrm{a}}^{-1}([r])$. Indeed, let $\bar{p}_{1} \in \varrho^{\prime}\left(p_{1}^{\prime}\right)$ be arbitrary. Then, as $\sigma_{\mathrm{c}}(\bar{p}) \sim \sigma_{\mathrm{c}}\left(\bar{p}_{\mathrm{i}}\right)$, $\sigma_{\mathrm{a}}(f(\bar{p})) \sim \sigma_{\mathrm{a}}\left(f\left(p_{1}\right)\right)$ follows by Lemma 7. By $f\left(\bar{p}_{1}\right) \in \sigma_{\mathrm{a}}^{-1}([r])$ this means that $f(\bar{p}) \in \sigma_{\mathrm{a}}^{-1}([r])$.

Now we are ready to state the main result of this section:
Theorem 1. A deterministic top-down tree transducer A preserves regularity if and only if (*) is not satisfied by \mathbf{A}. The regularity preserving property of deterministic top-down transducers is decidable.

Proof. The necessity of the first statement of our Theorem is valid by Lemma 1. To prove the converse suppose that $\mathbf{A}=\left(F, A, G, a_{0}, \Sigma\right)$ does not satisfy condition (*), and take a regular forest $R \subseteq T_{F} . \quad R$ is recognizable by a deterministic tree automaton $\mathbf{B}=\left(F, B, B_{0}\right)$. Without loss of generality we may assume that \mathbf{B} is connected, i.e., for any state $b \in B$ there is a tree $p \in T_{F}$ with $(p)_{\mathbf{B}}=b$.

First let B_{0} be a singleton set, say $B_{0}=\left\{b_{0}\right\}$, and take the deterministic topdown tree transducer $\mathbf{A}^{\prime}=\left(H, A \times B, G,\left(a_{0}, b_{0}\right), \Sigma^{\prime}\right)$ where $H_{n}=\left\{\left(f, b_{1}, \ldots, b_{n}\right) \mid\right.$ $\left.\mid f \in F_{n}, b_{1}, \ldots, b_{n} \in B\right\} \quad(n \geqq 0)$

$$
\begin{aligned}
& \Sigma^{\prime}=\left\{(a, b)\left(f, b_{1}, \ldots, b_{n}\right) \rightarrow q\left(\left(a_{1}, b_{i_{1}}\right) x_{i_{1}}, \ldots,\left(a_{m}, b_{i_{m}}\right) x_{i_{m}}\right) \mid\right. \\
& \mid m, n \geqq 0, \quad a, a_{1}, \ldots, a_{m} \in A, \quad b_{1}, \ldots, b_{n} \in B, \quad i_{1}, \ldots, i_{m} \in[n], \\
& \left.\quad a f \rightarrow q\left(a_{1} x_{i_{1}}, \ldots, a_{m} x_{i_{m}}\right) \in \Sigma, \quad b=(f)_{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)\right\} .
\end{aligned}
$$

It is not difficult to see that $\tau_{\mathbf{A}}(R)=\tau_{\mathbf{A}^{\prime}}\left(\operatorname{dom} \tau_{\mathbf{A}^{\prime}}\right)$. On the other hand \mathbf{A}^{\prime} does not satisfy (*). By Lemmata 8 and 9, and the fact that linear top-down transducers with regular look-ahead preserve regularity (cf. [2], [3]), this implies that $\tau_{\mathrm{A}}(R)$ is regular.

The general case, i.e. when B_{0} is arbitrary, is reducible to the previous one. Indeed, if $B=\left\{b_{1}, \ldots, b_{n}\right\}$ then put $\mathbf{B}_{i}=\left(F, B,\left\{b_{i}\right\}\right), R_{i}=T\left(\mathbf{B}_{i}\right)(i \in[n])$. Obviously, $\tau_{\mathrm{A}}(R)=\bigcup_{i=1}^{n} \tau_{\mathrm{A}}\left(R_{i}\right)$. As all the $\tau_{\mathrm{A}}\left(R_{i}\right)$ are regular and regular forests are closed under union, it follows that $\tau_{\mathrm{A}}(R)$ is regular, as well.

The second statement of Theorem 1 is a consequence of the first one because it is decidable whether (*) is satisfied by A.

As every uniform deterministic top-down transducer is equivalent to a nondeterministic bottom-up transducer, by the characterization theorem for regularity preserving bottom-up transducers in [4], it follows that a uniform deterministic top-down transducer preserves regularity if and only if it is equivalent to a linear bottom-up transducer. In general, we do not know any similar characterization for regularity preserving deterministic top-down transducers.

3. Nondeterministic top-down tree transducers

In this section we prove
Theorem 2. The regularity preserving property of nondeterministic top-down tree transducers is undecidable.

Proof. Let H be an arbitrary type containing unary operational symbols only. Take a Post Correspondence Problem ($\alpha, \boldsymbol{\beta}$) $\left(\alpha, \beta \in H^{+m}, m>0\right)$ and choose l in such a way that $\left|\alpha_{i}\right|,\left|\beta_{i}\right|<l(i \in[m])$. Set $F_{0}=\{\#\}, F_{1}=[m]([m] \cap H=\varnothing)$, $F=F_{0} \cup F_{1}, \quad G_{0}=F_{0}, \quad G_{1}=F_{1} \cup H \cup\{f\} \quad\left(f \notin F_{1} \cup H\right), \quad G_{2}=\{g\}, \quad G=G_{0} \cup G_{1} \cup G_{2}$. We shall give a top-down tree transformation $\tau \subseteq T_{F} \times T_{G}$ such that τ preserves regularity if and only if ($\alpha, \boldsymbol{\beta}$) has no solution.

Consider the top-down transducer $\mathbf{A}_{1}=\left(F,\left\{a_{0}, a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}, G, a_{0}, \Sigma\right)$ with Σ consisiting of the rules from (1) to (8) where $i \in[m]$:
(1) $a_{0} i \rightarrow a_{0} x_{1}$,
(2) $a_{0} i \rightarrow g\left(f\left(a_{1} x_{1}\right), \alpha_{i}\left(b_{1} x_{1}\right)\right),{ }^{2}$ $a_{0} i \rightarrow g\left(f\left(a_{1} x_{1}\right), w\left(b_{2} x_{1}\right)\right) \quad\left(w \in H^{*},|w| \leqq\left|\alpha_{i}\right|, w \neq \alpha_{i}\right)$,
(3) $a_{1} i \rightarrow f\left(a_{1} x_{1}\right), \quad a_{1} \# \rightarrow \#$,
(4) $b_{1} i \rightarrow \alpha_{i}\left(b_{1} x_{1}\right), \quad b_{1} i \rightarrow w\left(b_{2} x_{1}\right) \quad\left(w \in H^{*},|w| \leqq \alpha_{i}, w \neq \alpha_{i}\right)$,
(5) $b_{2} i \rightarrow w\left(b_{2} x_{1}\right) \quad\left(w \in H^{*},|w| \leqq \alpha_{i}, w \neq \alpha_{i}\right), \quad b_{2} \# \rightarrow \#$,
(6) $a_{0} i \rightarrow g\left(a_{2} x_{1}, w\left(b_{3} x_{1}\right)\right) \quad\left(w \in H^{*}, 1 \leqq|w| \leqq l\right)$, $a_{0} i \rightarrow g\left(f\left(a_{2} x_{1}\right), w\left(b_{3} x_{1}\right)\right) \quad\left(w \in H^{*},\left|\alpha_{i}\right|<|w| \leqq l\right)$,
(7) $a_{2} i \rightarrow a_{2} x_{1}, \quad a_{2} i \rightarrow f\left(a_{2} x_{1}\right), \quad a_{2} \# \rightarrow \#$,
(8) $b_{3} i \rightarrow w\left(b_{3} x_{1}\right) \quad\left(w \in H^{*},\left|\alpha_{i}\right| \leqq|w| \leqq l\right), b_{3} \# \rightarrow \#$.

Denote $\tau_{\mathrm{A}_{1}}$ by τ_{1}. It can be seen that τ_{1} consists of all pairs ($i_{1} \ldots i_{k}(\#)$, $\left.g\left(f^{k-j}(\#), w(\#)\right)\right)$ where $k \geqq 1,0 \leqq j \leqq k, w \in H^{*}, 0 \leqq|w| \leqq k l$ and $w \neq \alpha_{i_{j+1}} \ldots \alpha_{i_{k}}$. Similarly, a top-down tree transducer \mathbf{A}_{2} inducing τ_{2} can be constructed with τ_{2} containing the same pairs as τ_{1} with the exception that. $w \neq \beta_{i_{+1} \ldots} \ldots \beta_{i_{k}}$. Taking the disjoint sum of \mathbf{A}_{1} and \mathbf{A}_{2} we obtain a top-down transducer \mathbf{A} inducing $\tau=\tau_{1} \cup \tau_{2}$.

Assume that $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ has a solution. Then let $i_{1} \ldots i_{k}$ be a solution to $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ with minimal length. Put $L=\left\{\left(i_{1} \ldots i_{k}\right)^{n}(\neq) \mid n \geqq 0\right\}, w=\alpha_{i_{1}} \ldots \alpha_{i_{k}}\left(=\beta_{i_{1}} \ldots \beta_{i_{k}}\right), T=\overline{\tau(L)} \cap$ $\cap\left\{g\left(f^{r}(\#), \quad v(\#)\right) \mid r \geqq 0, v \in H^{*}\right\}, \quad R=\left\{g\left(f^{k n}(\#), \quad w^{n}(\#)\right) \mid n \geqq 0\right\}$. We are going to show that $T=R$. As the class of regular forests is closed under complementation and meet, furthermore, the forest $\left\{g\left(f^{r}(\#), v(\#)\right) \mid r \geqq 0, v \in H^{*}\right\}$ is regular while R is not, from this follows that $\tau(L)$ is not regular. Since L is regular this implies that τ does not preserve regularity.

Suppose that $g\left(f^{k n}(\#), w^{n}(\#)\right) \in \tau(L)$. Then there exists an integer $r(0 \leqq n \leqq r)$ with $g\left(f^{k n}(\#), w^{n}(\#)\right) \in \tau\left(\left(i_{1} \ldots i_{k}\right)^{n}(\#)\right)$. Therefore, either $w^{n} \neq\left(\alpha_{i_{1}} \ldots \alpha_{i_{k}}\right)^{n}$ or $w^{n} \neq\left(\beta_{i_{1}} \ldots \beta_{i_{k}}\right)^{n}$. As $i_{1} \ldots i_{k}$ is a solution to ($\alpha, \boldsymbol{\beta}$) both cases yield a contradiction. Thus, $R \subseteq T$. To prove the converse suppose that $g\left(f^{\prime}(\#), v(\#)\right) \ddagger\left\{g\left(f^{k n}(\#)\right.\right.$, $\left.\left.w^{n}(\#)\right) \mid n \geqq 0\right\}\left(r \geqq 0, v \in H^{*}\right)$. Let $n \geqq \max \{r,|v| / l\}$ be the least integer divisible by $k, j_{1} \ldots j_{n}=\left(i_{1} \ldots i_{k}\right)^{n / k}$. If r is a multiple of k, say $r=k t$, then $v \neq w^{t}$, i.e. $v \neq \alpha_{j_{r+1}} \ldots \alpha_{j_{n}}$. If r is not a multiple of k then, as $i_{1} \ldots i_{k}$ was a minimal solution to $(\alpha, \beta), j_{r+1} \ldots j_{n}$ is not a solution to ($\alpha, \boldsymbol{\beta}$). Therefore, either $v \neq \alpha_{j_{r+1} \ldots} \ldots \alpha_{j_{n}}$ or

[^0]$v \neq \beta_{j_{r+1} \ldots} \ldots \beta_{j_{n}}$. Moreover, as $n \geqq|v| / l$, in both cases $|v| \leqq l n$. This together with $n>0$ means that $g\left(f^{f}(\#), v(\#)\right) \in \tau\left(j_{1} \ldots j_{n}(\#)\right) \subseteq \tau(L)$, as was to be proved.

Next assume that ($\alpha, \beta)$ has no solution. Then $\tau(L)=\left\{g\left(f^{\prime}(\#), v(\#)\right) \mid r \geqq 0\right.$, $\left.v \in H^{*}\right\}-\{g(\#, \#)\}$ holds for any infinite $L \subseteq T_{F}$. Consequently, A preserves regularity.

DEPT. OF COMPUTER SCIENCE
A. JOZZSEF UNIVERSITY

ARADI VÉRTANÚK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Ésik, Z., Decidability results concerning tree transducers I., Acta Cybernet., v. 5, 1980, pp. 1-20.
[21 Engelfriet, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
[3] Engelfriet, J., Top-down tree transducers with regnlar lookahead, Math. Systems Theory, v. 10, 1977, pp. 289-303.
[4] GÉcseg, F., Tree transformations preserving recognizability, Proc., Finite algebra and multiplevalued logic, North Holland, 1981, pp. 251-273.

[^0]: ${ }^{2}$ If F is a unary type and $v=f_{1} \ldots f_{k} \in F^{*}$ then we denote by v the tree $f_{1}\left(\ldots\left(f_{k}\left(x_{1}\right)\right) \ldots\right) \in T_{F, 1}$ as well.

