Deterministic ascending tree automata 11

By J. VIRAGH

To the memory of my Mother

In [12] we started a systematic study of deterministic ascending (called also
root-to-frontier or top-down) tree automata. The present second part is entirely
devoted to the investigation of the product of such automata. We generalize the
notion of the product of ordinary automata due to Gluskov [cf. 7] and that of the
special products defined by Gécseg in [3]. Some other generalizations can be found
in [9], [10] and [11] for the case of bottom-up (known also as frontier-to-root) tree
automata.

1. Preliminaries

_ The reader is assumed to be familiar with the fundamental concepts concerning
tree automata and tree transducers. To keep the size of the paper within reasonable
limits we give only a brief account on notions defined elsewhere but used in our
treatment, too. For terminology not defined here, see [1], [S] and/or [6}].

The concepts of a type F, a deterministic ascending F-algebra W=(A, F),
a deterministic ascending F-automaton A=(, a’,a) and the forest T(A)S Ty x,
recognized by A are used in the same sense as in [12]. In the sequel F-algebra
(F-automaton) means a deterministic ascending F-algebra (F-automaton). When
F is not specified we speak simply about algebra and automaton. Furthermore,
all algebras and automata are assumed to be finite and have no nullary operations.

Now we shall introduce some additional terminology. |4| denotes the cardi-
nality of the set 4. A rank type R is a finite nonvoid subset of the set N={1, 2, ...}
of natural numbers. The type F has rank type R(F)={n|F,= &}.

Let A=(U,d’,a), a=(4D, .., A™) and B=(B,d,b), b=(BY, ..., Bm)
be two F-automata with the associated algebras W=(4, F) and B=(B, F).
Then B is called a subalgebra of W if BE& A and for all keR(F), f¢ F, and
beB, f¥(b)=f?(b)€ B* holds. The automaton A is connected if all states ac A are
reachable from the initial state a’ by suitable operations. (For a formal description
see [5].)

Next we recall some concepts and results from [5].
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A homomorphism of the algebra U into B is a mapping ¢: A—B such that

(i) for all k€R(F), fcF, and acd, f*(¢(@)=(¢(a);...; ¢(a), where
(ay, ..., a)=f%(a). If, in addition

(ii) ¢(@)=>b" and

(Gii) for all i=1, ..., n; e(4)=B; and ¢ 1(B)=A4; hold, then ¢ is a homo-
morphism of the automaton A into B. In case of ¢(4)=B we call B a homo-
morphic image of . If ¢ is also bijective then it is called an isomorphism. We say
that 9 and B are isomorphic and write A=B if there exists an isomorphism
¢: A—~B. The same terminology is used for automata.

A congruence relation of the algebra U is defined as an equivalence relation
@ on A such that

(i) for all k€R(F), feF, and a, a’€A, aga’ implies a;ga; where

i=1, ..,k fa)=(ay, ..., a) and f¥(a")=(ai, ..., ap).

Moreover, ¢ is a congruence relation of the automaton A if the additional condition

(i) for all i=1, ...,n and a€A4, acA? implies g(a) S AD
holds.

NoraTiON. The two trivial congruences of 2 will be denoted by 1=4XA4
and w={(a, a)lac A}, respectively. U is simple if it has only trivial congruences.

For any state acA let A(a) denote the automaton (%, a,a). The state
a is called a O-state if T(A(a))=@. We say that A is normalized if, for all
k€R(F), f¢F, and a€A, either all of the components of f¥(a) are O-states or
none of them is a O-state. The automaton A is minimal if |A|=|B| whenever
T(A)=T(B).

The following results are from [5].

Proposition 1.1. If B is a homomorphic image of A, then T(A)=T(B).

Proposition 1.2. If the minimal automaton A is equivalent to the normalized
and connected automaton B then A is a homomorphic image of B.

In the rest of this paper we consider only algebras belonging to the class K(R)
of all finite algebras of the fixed rank type R. Let F, F%, ..., F* be ranked alphabets
of rank type R and consider the Fi-algebras U;=(4;, F’) (i=1, ..., k). Further-
more, let

Y Ay X . XAXF ~ F1X... X F*
be an arity-preserving mapping, i.e., for every mé€R, f€F,, and ac ]] A, y(a, )=

=(f, ..., f*) implies fi€¢FL (i=1, ..., k). Then by the general product or, shortly
G-product of Ay, ..., N, with respect to the feedback function ¥ we mean the
k

k
F-algebra A=(4, Fy= ][] W,[F, y] with A= J[ A; and for arbitrary me€R,
i=1 i=1

f€F, and ac4
@) = (m( (m@), -, (@), ...

M EA A CY) IS MG A A CY)N
where (fY, ...,/)= ¢(a,f) and =, denotes the /' projection.



Deterministic ascending tree automata II 293

To define special types of products let us write ¥ in the form =W, ..., y®),
where for arbitrary acA4 and f¢F,, ¥(a,f)= (zp(l)(a s Y9 (a, ) We say
that A is an a;~product (i=0,1, ...) "if for arbitrary j (1= Sk) tp(f) is independent

of its u® component if i4+j=u=k. If ¢ is independent of [] A;, le., Y is
i=1

k
a mapping of F into ][ F i then U is a quasidirect-product (shortly Q-product).

i=1

Let 6-product mean any of the a;-products, the Q-product or the G-product.
Now take a class K of algebras. Then H,(K) denotes the class of all algebras
which can be given as homomorphic images of subalgebras of 6-products of algebras
from K. Similarly, I,(K) stands for the class consisting of all algebras which are
isomorphic to subalgebras of #-products of algebras from K. The class K is
homomorphically (isomorphically) complete with respect to the 8-product if H,(K)=
=K(R) (I,(K)=K(R)) holds. Finally, K is forest complete with respect to the
6-product if for every forest TS Ty y, recognizable by deterministic ascending
automata there exists a f-product A={(4, F y of algebras from K and an auto-
maton A=(%, a’, a) satisfying T(A)=T.

2. Some general properties of the products
It is obvious that every isomorphically 8-complete system is homomorphically
O-complete as well. For the converse we note

Remark 2.1. For every 0 there exists a homomorphically -complete system
MC K(R) which is not isomorphically 6-complete.

To verify this statement take an arbitrary isomorphically 8-complete system M.
Since I,(M) contains the one-element algebras there is an A={4, G)é M and
an a€A such that

(l*) for all r¢r(G) thereis a gcG,
satisfying g(a) = (aq, ..., @)
holds. Now take the system M*={U*|AcM} where
=(4AUB,G), B={a*|lacA and a satisfies (¥)}.

The operations of A* are defined for all g€G, a4 and a*¢B in the following
way: g% (a*)=g%(a) and
. g% if g%@#(a,..,a)
() =
g" (@) {(a*, a*) otherwise.

Evidently, M* cannot be isomorphically 8-complete but it will turn out to be
homomorphlcally f-complete.
Let €=(C, H) be an arbltrary algebra Assume that @ is isomorphic to

a subalgebra D of the 8-product ]] W, [H, ] from M. Constructing the 8-product
i=1

k
J[ Wi [H, y*] from M* it is not difficult to prove that € is a homomorphic
i=1

5‘
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image of a subalgebra ©* of this product. Here y* is defined by ¢*(a, l)=y/(&, h)
where 4 can be obtained ‘by removing the stars’, i.e., if m;(a)€A4 then =;(3)=
=n;(a) else if m;(a)=a*¢B then m(@)=a forall i=1, .., k.

For ordmary automata the notion of the completeness with respect to the
automaton mappings have been introduced. (See, e.g. [4]) Now we shall define
a similar concept concerning ‘tree automaton mappings’, i.e., top-down tree trans-
formations.

In the sequel we shall use the general terms such as top-down tree transducers
and top-down tree transformations induced by them, deterministic, connected or
minimal transducers in their usual meaning (c.f. [1], [2] or [6]).

A top-down tree transducer #=(Tf x,, 4, TG, y,, A, La) is uniform i
each rule af—»p(aéA fE€F,, I€R(F), p€Tq,y,u4z) can be written in the form
af+q(a¢,, ..., ¢¢) for some g€Tg,y, = In this section by a transducer o/ we
shall mean a deterministic uniform top-down tree transducer having exactly one
rule af—p for every (a,f)€A4AXF. Moreover, all transducers are assumed to have
the fixed input rank type R.

Let o= <Tpx,A TGym,a Zd> and %= <TFX’B TGY ,b ng> be
transducers and take a mapping ¢: A—B. If the followmg three conditions are
satisfied for arbitrary af—q(a, &y, ..., ;&) and ax;—~t€ X4 then ¢ is called a homo-
morphism of & into &

(i) if af_’q(aléla sevy alél)e Zd then
bf+q(bi&,, ..., bE)EZg where
b=(p(a), bj=(p(aj) (_]= 11 ey l)a
(i) if ax;—~t€ X, then
bx;—~tc Ly where
_ b=0¢(a),
(i) p@)=0®).
If ¢ is surjective then # is a homomorphic image of .
The following result has been obtained in [2].

Proposition 2.2, If there is a homomorphism from & into # then ty=14.

The n-ary F-automaton A={(4, F),a’,a) belongs to the transducer /=
—<TFX » A4, Tg v, 2@, Ty i

() for all @€ 4, kER(F) and feF, f*(a)=(a, ..., @) implies

af-p(a &y, ..., a,6)E Ly for some p€Tgy, yz, and

(i) for 1=i=n, aeA(‘) iff ax;—g€Z,4 for some q€Tg y, .

Aut (/) denotes the class of all automata belonging to &. Now we can
introduce the class Alg («f) of all algebras belonging to .:

A=(4, F)cAlg () iff there is an automaton A=(%, a’, a)c Aut ().

A system MCK(R) is complete with respect to the f-product if for every
tree transformation 7: Tp x —Tg,y, there is a transducer & and a 6-product
A of algebras from M such that 1=1, and WcAlg (&) hold.

In the proof of the following theorem we need the concept of the paths of
atree p. For arbitrary type F, n¢N and p€Ty x,, path(p) stands for the smallest
subset of (FXN)* satisfying

(i) if p=x; (1=i=n) then path (p) consist of the empty word e, and
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(i) if p=f(p1,k.--,pk), kER, fE€Fy, p1, ..., k€T x, then
path (p)= _L_Jl (f; i) path (p).

Moreover, for arbitrary set TS Ty x, define path(T)=U(path (¢){t€T). The
realization of the path v€path (Tp y) in the F-algebra U=(4, F) is the mapping
v¥: A—~A given by
(i) ae®=a for all ac A4 and
() av¥=c iff v=u(f, i), au*=>b and m,(f(b))=c holds for
ucpath (Tp x,), kER, fEF,, 1=i=k and bcA.

Theorem 2.3. With respect to arbitrary 6-product the homomorphic complete-
ness, the completeness and the forest completeness are equivalent to each other.

Proof. (1) Let the system MCK(R) be homomorphically complete with
respect to the f-product. Further, let = be an arbitrary transformation induced by
the connected transducer &f/=(Ty x,A4,Tsy,,a, Zs) and let A=(U, d, a)€
€Aut ().

As M is homomorphically f-complete there exist a -product €=(C, F)=

= JI §,[F,y] from M and a subalgebra € of € such that U is a homomorphic
i=1

image of € under some homomorphism ¢. Taking the subalgebra C€* of T
generated by a ¢’€p~1(a’) it follows easily that A is a homomorphic image of the
connected automaton C*=(€*, ¢’,c¢) under ¢. (The final state vector ¢ of C*
can be given using the inverse of ¢.) Let us consider the transducer
G*=(Tr,x,, C*, Tg,y,» ¢’y Zgxy satisfying )
(@) ef=pleilss - al)eZer f @()=a, ¢(c)=a; (i=1,...,k) and
af—p(aly, - )€ 2,
(i) cx;—>q€ Zer iff o(c)=b and
bx;~q€ Xy
for all f¢F, ceC* and 1=i=n.
This construction ensures that ¢: @*—of is a homomorphism. Hence, by Pro-
position 2.2, Tg¢«=Ty. But taking the transducer ¥ ={(Tfx,, C, Tg,v,, ¢’ Z¢)
where

2‘6’ = E?*U(cf»qc,f(clél, vers ckék)lce C*,fEF,fG(C) = (cls very ck))9

and ¢, is an arbitrary tree from Tg y UZ,) it is obvious that t4=t¢+=7 and
€cAlg (¥) which proves the 8-completeness of M.

(2) Now let M be a f-complete system. Take an arbitrary algebra U={4, F)
with A=(a,, a4y, ..., a,—1). Without loss of generality we may assume n>1. Choose
a jéR and construct the algebra §I:<A, G) with G;=F; if i#j and G;=F;U{h}
where £ is a new operational symbol. For all g€G and g;€ 4 realize g such that

n (ai+1(m0dn)’ (RS ] ai+1(modn)) if g = h and
gQI (ai) = Jj times
g%(a;) otherwise.

Define the associated transducer .522=(TG, x» A4, Tg,y,» 9, Z4) by the following
rules for all g€G and g;€A4
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() aig—g(@y, .., ql)e2s iff
_ gMa)=(ay, ..., a,) and
(1) ax;~yi1€24 .
The 6-completeness of M ensures that there exists a @-product B= [] B;[G, ¥]

from M and a transducer #=(T; x,, B, T;,v,, bo, Ega} equlvalent to o such
that BcAlg (B). Take the connected subtransducer &* =(T; x,, B*, TG y" > bos Zae)
of # and the correspondmg connected subalgebra B*=(B*, G) of B. Now we
are going to prove that A isa homomorphic image of this B*.

To this end define the correspondence @:B*~A4 by ¢ (bou®)= aouQI for

every u€path (TG x,)- Since B* and 91 are connected ® is defined for all bcB*
and @(B*)=A4. We claim that ¢ is a well defined mapping, i.e. b=b,u®* =b,v%*
implies aou¥=ayv¥ for all u, veépath (Tg,x,)- Assume to the contrary that there
are u, vEpath (Tg x,) such that b=bou®=b,v®" and a—au”#aov"—al
_ The realization of # ensures the existence of trees p, g€ T x, with the follow-
ing properties

(i) u€path (p), vepath (g),

(i) if z¢path (p) then a,z¥=a; and

if wepath (g) then a,w¥=a;.

Then we have

(iii) fr ("-'.d (P))E {y.+1}* fr (Td (Q))E {y]'i'l}*
Taking two arbitrary trees p,q€Tg x, with u€path(p) and vé€path(g) we can
construct the trees p, g satisfying (n) by substituting the leaves of p and q by
suitable trees from T, x,-

From the equivalence of &/ and #* it follows easily that the transducer
" #* is nondeleting. This, by property (iii) means that during the translation of
p in #* we have to apply some production bx,—t where fr ()€ {y;+1}". On
the other hand, the translation of ¢ requires a production bx,—~i with fr (7)€
€{y;+1)". Hence, by the assumption a;#a; the contradiction bx,—~t, bx; 7€ Zp«
and t7 follows.

At last, by the definttion of ¢

o) = flags™ = (aw(f; DY, ..., ago (£, b)¥) =
= ((bov (f; D), ..., 9 (b (f, ™) = @ (f(b)) holds

for all v€path (Tq x,), b=b,v®'€B*, k€R and f¢F, proving that ¢ is a homo-
morphism. Now it 1s evident that 2 is a homomorphic image under ¢ of the

subalgebra B*=(B*, F) of the 8-product B= [] B,[F, y] where ¥ is the restric-
i=1

tion of ¥ to ]]BXF

Gy Itis qulte obvious that every homomorphically f-complete system M is
forest complete with respect to the 8-product as well (cf. Proposition 1.1).

(4) At last, assume that M 1s a forest complete system with respect to the
G-product. Take an arbitrary algebra U={4, F) with A={ay, ..., a,_1}. Choosing

14

2.
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anew operatlonal symbol /4 and proceeding in the same way as in case (2) construct
the algebra A=(4, G). The definition of h ensures that the automaton A=
=(U, ay, {a,}) is connected and normalized. Moreover, by the proof of Theorem 8

in [5] A is a minimal automaton since it has no two different equivalent states.
The forest completeness of M implies the existence of an automaton C=

N t
=(€, ¢’,¢) equivalent to A where €= JJC,[G, ] is a 8-product from M. As
i=1

the realization of /s results that every connected automaton equivalent to A is
normalized and, even more, it has no O-states, the connected subautomaton C*=
=(C*, ¢/, ¢*) of C is normalized, too. Therefore, by Proposition 1.2 the minimal
automaton A is a homomorphic image of C*. Now it is trivial that omitting / the
algebra A=(4, F) is a homomorphic image of the subalgebra &*=(C*, F)

t
of the f-product €= J] C,[F, ], where ¢ is the restriction of the feedback func-
i=1

t
tion ¥ to JIC;XF. O

i=1

3. Compiete systems with respect to some special types of products

In this section we shall investigate the isomorphically 6-complete systems if
0=0Q, o, and G, and derive some properties of the homomorphically G-complete
systems as well.

For the sake of brevity let u$ introduce the relation A <,B iff A can be iso-
morphically embedded into a #-product of B with a single factor. When =0
we have .

Theorem 3.1. A system KCS K(R) is isomorphically complete with respect
to the quasidirect product iff for every simple algebra U there is a- B€K such that
A< B holds.

Proof. The sufficiency of the condition can easily be derived from the transitivity
of the relation <, and from the following assumption
(%) For an arbltrary algebra € a simple algebra A satisfying (S<Q‘2I can be

constructed.

To verify (%), take the algebra €=(C, F), C=/{c,, ..., ¢,}. We define the algebra
U= (4, G) as follows. The base set of 2 is the disjoint union A=CU{cr+1,--5Cp-1}>
where p is an arbitrary prlme number with p—1>k. Suppose that j€R. In this
case let G;=F; for all ij and G,=F;U{h} where h is a new operational
symbol. The realization of the operations i’ U is given by

g%(c;) if geF and 0=i=k,
{¢;s...,c) if neR, g€F, and k<i=p-1,
g(c) ={ nims
(Cis1tmodpys> +++» Cit1modpy) if g=h and 0=i=p-1.

Jj times
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The introduction of the new operation / guarantees the simplicity of UA. €<, A
follows evidently by considering the product U[F, ] with the feedback function
Y(f)=f for every f€F.

Conversely, let X be isomorphically Q-complete. Hence for arbitrary simple
k

algebra A=(4, F) there is a Q-product B= ][] B;[F, y] from K such that A is
i=1

isomorphic to a subalgebra of B. Let ¢ denote a suitable isomorphism. Now
we can introduce the relations ¢; (1=i=k) on A in the following manner:

ag;b iff m(e(a)=n;(p) foral 1=j=i
The fact that B is a Q-product yields that all the g, are congruence relations and
120 2...24=0.

As U is simple, all this relations are trivial, i.e., there is a natural number m
(1=m=k) such that

On =

holds. Now we proceed to show that in this case U< ,B,,. Take the Q-product
€=(B,, F)=%,,[F, £] with the feedback function &(f)=m,(¢(f)) for all fcF.
It can immediately be shown that the mapping n: 4—B,, defined by n(a)=m,(¢(a))
for all a€ A is an isomorphic embedding of A into B,,. The choice of m ensures
the injectivity of 5. On the other hand, 5 is the composition of the m™ projection
with the isomorphism ¢, hence # must be a homomorphism.

Corollary 3.2. There exists no minimal isomorphically Q-complete system of
algebras.

Proof. Take an isomorphically Q-complete system M S K(R) and an arbitrary
€ from M. We shall verify that the system M,=M—{C} satisfies the conditions
of Theorem 3.1 as well. Let B be a simple algebra. From the isomorphic complete-
ness of M it follows that B <, holds for some AUcM. Now we claim that
B<,A holds for some W€ M,, too. We distinguish the following two cases

(1) If A=E, then we put A=A.

(2) In the case of A=CE we can, by assumption (%), construct a simple
algebra ® with [€|<|D| and €<,D. But M is isomorphically Q-complete thus
it contains an algebra € satisfying D<,E. Of course, A=E hence €cM,; and
the transitivity of <, implies B<,E O

In the case of ay-products we can state similar results.

Theorem 3.3. A system KZK(R) is isomorphically complete with respect
to the a,-product iff for every simple algebra 2 thereisa BEK satisfying A<, B.

Proof. The equivalence U<,B iff A<, B combined with Theorem 3.1
obviously implies the sufficiency of the condition.

The proof of the necessity can be performed as in Theorem 3.1 so it will be
omitted. O

Inspecting Theorems 3.1, 3.2 and 3.3 we can infer that there exist no minimal
isomorphically o,-complete systems. Moreover, a system KCK(R) is iso-
morphically Q-complete iff it is isomorphically «,-complete.

For isomorphic G-completeness we have
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Theorem 3.4. A system KESK(R) is isomorphically complete with respect
to the general product iff K contains an algebra W =(4, F) having two distinct
elements @, and a, such that for arbitrary r€R, a€{a;, a;} and a€{a,, a,}" there
exists an f¢F, satisfying f%(a)=a.

Proof. Suppose that K is isomorphically G-complete. Let B=({b,, b,}, G)
be an algebra such that for all r¢R, b€B and be{b,, b,) there exists a g¢G,
with g3(b)=b. Because of the G-completeness of K there is a G-product A=

k

= JTW[G, y] from K and a subalgebra W of A satisfying ¢(B)=W under
i=1

a suitable isomorphism ¢. Let (ai, ..., a;) and (af, ..., a;) be the @-image of b,
and b,, respectively. Because of b;#b, an index j satisfying aj=aj can be
selected. We shall prove that in this case the algebra ¥U; fulfils the conditions of
the Theorem. To this end take an r€R, a€{a}, aj}, and ac{aj, aj}. The algebra
B satisfies the requirements of the Theorem as well. Hence it can be given a g€G,,
beB and beB' with the properties g®(b)=b, n;(¢(®))=a and (n;(¢()), ...
.., T;(@(b,)))=a. From these equalities we can conclude that the operation f=
=y (p(d), g)€F} satisfies fM(a)=a.

Now assume that the elements a,, a, of the algebra A=(4, F)€K meet the
requirements of the Theorem. Take an arbitrary algebra B=(B, G). Choose an
injective mapping ¢: B—{a,, a,}* for a suitable k€N, and construct the G-product

k

€= JT (G, y] where A=A (i=1,...,k). For all e=(cy, ..., ¢ )€A* reéR and
i=1

g€G, let Y(c,g)=(f% ..., f*) be defined for all i=1, ...,k by

- - -{an fcF, satisfying f¥%(c)={(cl, ..., D),
fi= if c=¢®), g20b)=(b,....h) and () =(c,...,cl)
for j=1,..,r, :
an arbitrary element from F, otherwise.

By virtue of this definition of the feedback function Y an easy computation shows
that ¢ is an isomorphic embedding of B into the product €. O
By Theorem 3.4, there exists an algorithm to decide for arbitrary finite KC K(R)
whether K is isomorphically complete with respect to the general product.
Turning to the problem of homomorphic G-completeness we give a rephrased
version of the known result from [8] for the case R={1} i.e., for unoids.

Proposition 3.5. A system KS K({1}) is homomorphically complete with respect
to the general product iff K contains a unoid A=(4, F) having an element a, two
operational symbols f;, f; and two polynomials p,, p, satisfying

a, = f1(a) # f2(@) = a,

(@) = pa(a) = a.

and

This proposition implies that every minimal homomorphically G-complete
system in K({l}) is a singleton. The subsequent constructions show that this situa-
tion is bounded to the case R={l}.
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Let R={ry,...,r;}#{1} be an arbitrary rank type. For every réR and
1=j=r take a two-element algebra U,;=({a};, a%;}, F¥) having for every (m, n)¢
€ {1, 2)? exactly one r-ary operational symbol f,,,€ F¥/ such that

-

jth
@) Sun(at) =17, ..., a), ...,af) if k=m
(ak;, ..., ak)) otherwise
and
** g(a™) = (ay, ..., ay) for all am€A,;, gE€F¥ and g¢ F//
hold.

Lemma 3.6. The system K={¥,;rcR, 1=j=r} is homomorphically G-
complcw and minimal,

Proof. Let €=({1, 2}, F)éK(R) be an algebra satisfying
F = U({fals€{1, 2}, te{l, 2}}iri€R)

and
t if s=k
J(k) = 1(s, ..., s) otherwise
r; times

for all r,€R and f«€F,.

Since the system {@} is isomorphically G-complete to prove our lemma it is
enough to show G€¢H;(K). To this end take the G-product U={4, F)=
= ]] U,;[F, ). If acA then let v(a) denote the sum of the upper indices oc-

ISJSr

curring in a. For all r€R, f4€F,, U,;€K and acA, np corresponds to f;, the
operation f, €F, ’ where

— { ;) if rp=r and (—1)'®=(-1),
s otherwise.

Define the mapping ¢: A—{1, 2} in the following way:

1 if v(a) is an odd number,
2 otherwise.

¢(a) = {
Now, using the previous definition of ¥, it can be proved that ¢:UA—-C is
a homomorphism.

Take an arbitrary algebra A,€M. By virtue of the construction of M it is
evident that %;;¢ M and (s, ))#(r, i) implies for all f€ F3/ and acdy;, m; (f@)=a.
From this assumption it follows directly that the system K—{2,;} is not homo-
morphically G-complete. [

By similar methods one can prove
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Theorem 3.7. Let s be an arbitrary natural number satisfying 1=s= >'r,.
. r;€R
Then a minimal homomorphically G-complete system K consisting of s algébras
can effectively be constructed.
Finally we would like to remark that in the proof of Lemma 3.1 in [12] there is
a mistake. Its correction can be found in [6].
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