
On the complexity of graph grammars 

B y G Y . T U R A N 

1. Introduction 
S 

Graph grammars generalize "usual" word grammars by considering graphs 
as basic objects instead of words. A derivation step consists of the replacement of 
a subgraph by another graph. The delicate part of the definition of graph grammars is 
the way the embedding of the new graph is specified (in the string case this problem 
does not appear). 

This generalization appears to be quite natural and it has applications, too 
(Nagl [4]). However "nice" results of formal language theory characterizing classes 
of "languages from different aspects (grammars, automata, algebraic and logical 
descriptions) does not seem to generalize for the case of graphs. (There are two 
possible explanations: either the right definitions are not found yet and one should 
not only try to generalize notions of string grammars, or the situation is indeed 
different.) 

Another problematic aspect of graph grammars is the parsing of graph grammars 
(this is the topic we are going to discuss so we return to it later). 

There are several theorems in graph theory describing a class of graphs as the 
class obtainable from a set of start graphs applying a finite set of operations 
(e.g. the theorem of Tutte on 3-connected graphs [7]). These theorems can actually 
be considered as positive results about graph grammars. Understanding the power 
of these operations could be of interest for graph theory as well. To return the 
problem of right definitions we remark that interesting operations of graph theory 
(e.g. Hajos' operations to generate non-A>colourable graphs [1]) quite often do not 
fit into the present framework of graph grammars. 
f As to our knowledge there are few results about the parsing of graph grammars. 
Grammars investigated are usually generalizations of context-free grammars, thus 
it is natural to try to generalize context-free parsing for the case of graphs. In the 
paper of Vigna—Ghezzi [8] it is shown that a certain parsing technique is exponen-
tial for their class of grammars and polynomial if further restrictions are imposed. 
Slisenko [6] gives a rather restricted class of grammars that can be parsed in poly-
nomial time by a similar method (in fact he shows more: Hamiltonian cycles can be 
found in polynomial time when restricted to a context-free graph language). Results 

i 



272 Gy. Túrán 

of Janssens and Rozenberg [2] show that parsing their node label controlled (NLC) 
grammars is as hard as context-sensitive recognition. 

One can ask the following questions about the parsing of graph grammars: 
— what general parsing techniques exist? 
— where is the borderline between "easy" and "hard" classes of grammars? 
The theorem proved in this paper gives a step towards answering the second 

question. We introduce a natural restriction of NLC grammars by requiring graphs 
on the right-hand side of productions to consist of more than one vertex. Languages 
generated by these grammars are always in NP. We show that these grammars are 
strong enough to generate NP-complete languages. Thus no efficient parsing 
technique can be expected that is applicable for monotone NLC grammars. 

2. Monotone node label controlled grammars 

Following Janssens and Rozenberg [2] we define node label controlled (NLC) 
graph grammars as follows. 

Definition. An NLC grammar ^ is a quintuple 

where Z is the (finite, nonempty) nonterminal alphabet; A is the (finite, nonempty) 
terminal alphabet (disjoint from Z); G0 is the start graph; SP is the set of produc-
tions: a production P is a pair (ah G,) where I , Gt is a graph; ^ is the 
connection relation: % ^(ZUA)X(ZUA). 

REMARK. Graphs considered are undirected, without loops and multiple 
edges. Edges are unlabeled, vertices are labeled with labels from ZUA. 

Derivations and the language L(IS) generated by ^ are only described in-
formally (see [2] for exact definitions). When applying a production P=(a;, Gt) 
to a graph G, we replace a vertex vt labeled with at by a graph isomorphic 
to G;. If v2 is a neighbour of vL in G labeled a2 and v3 is a vertex of Gt labeled 
a3 then in the new graph G' v2 and i?3 will be connected if and only if (a3, 
(see Fig. 1). Thus the embedding is controlled by the node labels only. L (^ ) consists 
of graphs derivable from G0 with all vertex labels belonging to A. 

Definition. A monotone NCL grammar is an NLC grammar satisfying the fol-
lowing condition: 

For every production P—(ahGi) the number of vertices of G, is more 
than one. 

This is the class of graph grammars we consider from the point of view of the 
complexity of languages generated. 



On the complexity of graph grammars 273 

3. The complexity of monotone NLC grammars 

Proposition. If ^ is a monotone NLC grammar, than L(^) is in NP (where, 
as usual, NP denotes the class of languages recognizable by nondeterministic 
Turing-machines in polynomial time). 

Proof. As for every production P={at, Gt) Gi consists of more than one 
vertex, if a graph G has a derivation in (S then the length of the derivation is at 
most n — 1 where n is the number of vertices of G. Thus the derivation can be 
guessed and checked in polynomial time. • 

Theorem. There exists a monotone NLC grammar ^ such that L(&) is 
NP-complete. 

Before turning to the proof we describe a property of graphs that will be used 
later on. 

A graph G=(V, E) has cyclic bandwidth S.k if there exists a cyclic ordering 
(t;1; ..., v„) of the vertices s.t. if (vhVj)£E then the cyclic distance of vi and Vj 
is at most k. (The cyclic distance of vt and Vj (/< j) is mm (j—i, n+i—j).) 

The class of graphs with cyclic bandwidth is denoted by CBt (here graphs 
are considered without vertex labels). The following result is mentioned in Johnson [3]. 

Theorem (Leung—Vornberger—Withoff). CB2 is NP-complete. • 
This result can be compared with the complexity of bandwidth (i.e. considering 

orders instead of cyclic orders): for any fixed k it can be decided in polynomial 
time whether the bandwidth of a graph is ^ k (Saxe [5]). 

Now we give an informal description of our construction. By G„ we denote 
the graph on n vertices consisting of a cycle of length n and edges connecting-
vertices of distance 2 on the cycle. G7 is shown on Fig. 2. 

Every graph G on n vertices with cyclic bandwidth S 2 is a subgraph of G„. 
Thus G can be constructed by building G„ and then deleting the edges of G„ not 
belonging to G. Gn can be constructed by building a chain (shown on Fig. 3) and 
then closing the chain. 

However, in order to be able to close the chain generated by an NLC grammar 
the edges connecting the "open" end of the chain with the "beginning" of the chain 
must always be present during the derivation and edges unnecessary after closing 
the chain must be forced to be deleted. These requirements can be fulfilled by 
defining the connection relation appropriately. 

We remark that the grammar G used to prove the theorem is a rather large 
one, we did not try to make it as small as possible. Instead, we tried to make it 
easy to describe and analyze. 

Proof of the theorem. First we describe the grammar ^ generating an NP-
complete language. 

The description of H. 
1) The nonterminal alphabet. 

e 
I = {S, A1,A2, A3, A4, A[, A'2, A3, A'4}U IJ 

i = l 
where 

^ = C„ D„ £,}U{C/\ £){>"», £/*"»: 0 ^ k,l,m S 1}. 



274 Gy. Túrán 

2) The terminal alphabet. A = (x, y, zj. 
3) The start graph. G0=S. 
4) The productions. There are five groups of productions each playing dif-

ferent roles in the construction. 
4.a) Starting productions. These productions can be applied at most once in 

every derivation and exactly one of them must be used in every derivation as a 
first step. 

Consider the graph of Fig. 4 with 5 marked edges. Deleting all different sub-
sets of these edges we get 32 graphs / /1 ; ..., H32. The starting productions are 
of the form 

S 
o =>Hi for i = 1, ...,32. 

4.b) Chain-constructing productions. 

Bi Ci Bi+1 
o =• O O for i = 1, ..., 6. 

Here and everywhere else in the construction addition and subtraction is meant 
cyclically, e.g. 6 + 1 = 1. Using the productions belonging to this group a chain 
of arbitrary length can be generated. We use the following terminology : such a pro-
duction relabels the vertex labeled Bt by Ci and adds a new vertex labeled Bi+1. 

4.c) Chain-closing productions. 

Bt Di Ei+1 
O => O O for i = l, ..., 6. 

The role of these productions is to close the chain generated by applying pro-
ductions belonging to the previous group. Informally such a production relabels 
the vertex labeled Bt by Dt and adds a new vertex labeled Ei+1 that becomes 
the last'vertex of the chain. 

4.d) Edge-deleting productions. 

Ci Ci" y 
o =• o o 
Dt D{km y 
O => O o 
Ei E{klm y 
O =• O O for i= 1, . . . , 6, 

The role of these productions is to realize the deletion of edges. Vertex labeled 
Ci (resp. Du E^ is relabeled C{k (resp. D{km, E{klm) and a new vertex labeled 
y is added. The binary vector (J, k, I, m) indicates the set of edges to be deleted 
(in G„ every vertex has degree 4). 

Ai A'i -fy 
O => O O for i = 1, 2, 3, 4. 

The role of these productions is to. force the deletion of unnecessary edges if 
vertices labeled At "become terminal vertices too soon". 



On the complexity of graph grammars 275 

4.e) Terminal productions. 

Cf x 
O => O- •o 

z 

Djkm x 

o =»• o o 
z 

E{Um x 
O =• O O for i = l , . . . ,6 , O g j,k,l,m^\\ 

z 

X z 
O =» O O for i = 1, 2, 3, 4. 

5. The connection relation. As it is remarked already, the main regulating role 
in the derivation is played by the connection relation. Pairs belonging to the rela-
tion are divided into four groups. 

5.a) Pairs regulating the construction of the chain. 

(Q,Q-i), (Q>Q-2), i.Ci,Aj), (C„AJ, 

(Bt, C;_2), (Bt, Ax), (Bt, AJ for i = 1, ..., 6. 

5.b) Pairs regulating the closure of the chain. 

( A , C U ) , (Z>„ C,_2), (Pi, A^, (Du A2) 

(E„ Ci_2), (Ei, Ax), (Ei, AJ for i = 1, ..., 6. 

5.c) Pairs regulating the deletion of edges. 

(C{\Ni+s) for every Ni+i£jrl+s 

if ( j = 1 and S=-2) or (k = 1 and ¿ = - 1 ) , or (¿ = 1), or (5 = 2); 

(D{km, Ni+s) for every Ni+s^fi+i 

if ( j = 1 and 8=-2) or (k = 1 and ¿ = - 1 ) , or (5 = 1); 

(E{klm, Ni+i) for every Ni+i^i+s 

if 0 = 1 and 5 = - 2 ) or (fc = 1 and < 5 = - l ) ; 

(Ci\ A3), (C(\ AO if J = 1 

(Ci\ Ad, (C{\ Ai) if k = 1 

(C{\ At\ (IC(k, Ai) if j = 1 

(D{km, Ax), (D{km, Ax) if m = 1 

(Ejklm, Ax), (E{klm, Ai) if I = 1 

(E(klm, Ad, (E{klm, A2) if m = 1. 

4 Acta Cyberneiica VI/3 



276 Gy. Túrán 

5.d) Additional pairs 

(N, x) for every N€ (J 
i=1 

(x, M) for every M ç r U / 4 ; 

04,', x) for ¿ = 1 ,2 ,3 ,4 ; 

(A!,Aj) for l = s i , 

Let G be an arbitrary graph without vertex labels. Define a graph G* with 
vertices labeled x, y, z as follows : 

1) label the vertices of G with x, 
2) join two different vertices to each vertex of G and label them y and z 

respectively. 
(An example is shown on Fig. 5.) 

The theorem will be proved if we prove the following claim. 

Claim. L(&) = {G*: G£CB2 and G has s 8 vertices}. 
First we show the 2 part of the claim. 
Let G£CB2 be a graph on s 8 vertices. We describe a derivation of G*. 
Take a suitable circular order (i;1; ..., un) of the vertices of G having circular 

bandwidth ^ 2 . Consider vertices v1,...,v7 and label them A1, Ai,C1,C2,B3. 
Take the subgraph spanned by vlt ..., v7 and add edges 

(p5,vj), (vs, v2), (ve, v j , (v e , v 2 ) , ( v 7 , v j , (v7,v2), 

(v5,v6), (v5,v7), (v6, v7) 
if they are not present yet. 

The derivation of G*. 
1) Apply a suitable starting production to obtain the labeled graph on vertices 

v1,...,v7 described above. 
2) Apply chain-constructing productions «—8 times. (The applicable pro-

duction is always unique.) 
3) Apply a chain-closing production. (The applicable production is unique.) 
4) For each vertex vk, 5^kSn define the binary vectors ¡}k), i^ky) ; 

ri:=(i% i!?î) where i f = l *> (vk, vk+j)eE. For k=n, 
n — 1, ..., 5 apply 

y 
O => o — — o if Vk is labeled 

D. D> I I y 
O =• O — o if vk is labeled Z>,; 

c , C f y 
o =• o — — o if vk 

is labeled C,. 

5) Apply terminal productions for each vertex labeled 

E>, № or C>. • ' I I 



On the complexity of graph grammars 277 

6) For k=4, 3, 2, 1 apply 

A, 
O =* 

A'i 
o-

y •o 
7) Apply terminal productions for each vertex labeled A[. 
After steps 1), 2), 3) we generated a labeled graph G' shown on Fig. 6, where 

k =n (mod 6). Vertices labeled Alt A2 are connected to every other vertex labeled 
Q , Dt or Ei. 

In step 4) unnecessary edges are deleted from vertices labeled C{k, D{km, E{kIm 

and pendant vertices labeled y are added. As A ^ ^ and A ' ^ ^ , all edges 
connecting A-l and A2 to vertices labeled C{k disappear and only the necessary 
edges connecting Ax and A2 to vertices labeled D{km, E{klm remain in the graph. 
In step 5) vertices labeled C{k, Djkm, Ejklm are relabeled x and their adjacencies are not 
changed. In step 6) vertices labeled At are relabeled A\ and pendant vertices labeled y are 
added. No change is made in this step in the edges, as edges between vertices 
labeled At and vertices outside the set of vertices labeled A-t are already disposed 
of, and internal edges are chosen correctly by the choice of the starting production. 
Finally in step 7) vertices labeled Ai originally get label x and pendant vertices 
labeled z are added. 

Now we turn to the c part of the claim. 
Let G be a graph belonging to L(G). We use the "relabeling" terminology 

introduced at the description of the productions. By the history of a vertex v we 
mean the sequence of labels appearing on v. The histories^ possible are the following. 

(The exceptional case 2 refers to the vertices labeled C1; C2 of the graph 
generated by the starting production.) 

The graph generated (not considering vertex labels) will always be a subgraph 
of of Fig. 7 for some n. 

(The nonterminal label Bt can be replaced by C; or Dh and a new nonter-
minal Bi+1 will appear in the graph unless B{ is replaced by Dt. Thus the gene-
ration of new vertices labeled Bit Ch Dt or Ei must end with a chain-closing 
production. Edge-deleting and terminal productions can be applied to nonterminals 
already present in the graph, thus making progress in the histories of each vertex, 
but these productions do not introduce new edges as (y, . ) and (z,.) is not in 
the connection relation.) 

1) Bi, C,-, Cyk, x for some i,j, k; 

2) C,-, Cjk, x for i = 1, 2 and some j, k; 

3) B^ Di, D{km, x for some i,j, k, m; 

4) Ei, Ei
JkIm, x for some i,j, k,l,m; 

5) Ai, A'{, x for some i; 

6) y; 

7) z. 

4* 



278 Gy. Turin 

The last point we have to check is that forbidden edges connecting vertices 
labeled originally AX,A2 and vertices ever labeled Cf do actually disappear. 
This can be shown considering the histories (Cf, Cjk, x) and (As, A'„, x) (s=l, 2). 
There are no pairs (C{k, A„) or (A's, C,) in the connection relation so the edge 
(Cf, A,) disappears whichever of the two histories makes progress first. The same 
holds for the pair (A2, Dt). 

Thus the second half of the claim is proved. 
Finally it is obvious that CB2 can be reduced to L(^) in polynomial time by 

forming graphs G*. • 

a,-
o 

G G' 

Fig. 1 

Fig. 2 

Fig. 3 



On the complexity of graph grammars 279 

Fig. 6 Fig. 7 



280 Gy. Túrán: On the complexity of graph grammars 

Abstract 

A problem in the theory of graph grammars is the following: for what classes of grammars 
can the languages generated be parsed in polynomial time? It is shown that a grammar belonging 
to a rather restricted class, the monotone node label controlled grammars can be strong enough 
to generate an NP-complete language. 

R E S E A R C H G R O U P O N T H E O R Y O F A U T O M A T A 
H U N G A R I A N A C A D E M Y O F SCIENCES 
SOMOGYI U. 7 
SZEGED, H U N G A R Y 
H-6720 

References 

[1] HAJÓS, G., Über ein Konstruktion nicht n-färbbarer Graphen, tViss. Z. Martin-Luther Univ. 
Halle—Wittenberg Math.-Natur. Reihe, v. 10, 1961, pp. 116—117. 

[2] JANSSENS, D., G. ROZENBERG, Decision problems for node label controlled graph grammars, 
J. Comput. System Sei., v. 22, 1981, pp. 147—¡77. 

[3] JOHNSON, D. S., The NP-completeness column: an ongoing guide, J. Algorithms, v. 3, 1982, pp. 
288—300. 

[4] NAGL, M . , Graph-Grammatiken, Theorie, Implementierung, Anwendungen, Vieweg, 1 9 7 9 . 
[5] SAXE, J. B., Dynamic programming algorithms for recognizing small-bandwidth graphs in 

polynomial time, SI AM J. Algebraic Discrete Methods, v. 1, 1980, pp. 363—369. 
[6] SLISENKO, A . O . , Context-free grammars as a tool for describing polynomial-time subclasses 

of hard problems, Inform. Process. Lett., v. 14, 1982, pp. 52—56. 
[7] TUTTE, W. T., A theory of 3-connected graphs, Indag. Math., v. 23, 1961, pp. 441—455. 
[8] VIGNA, P . D., C. GHEZZI , Context-free graph grammars, Inform, and Control., v. 3 7 , 1 9 7 8 , 

p p . 2 0 7 — 2 3 3 . 

(Received Oct. 21, 1982) 


