Maximal families of restricted subsets of a finite set

By H.-D. O. F. Gronau and Chr. Proske

1. Introduction

Let R be the set of the first r natural numbers, i.e. $R=\{1,2, \ldots, r\}$. Furthermore, let a and b be integers with $0 \leqq a \leqq b \leqq r, a \neq r, b \neq 0^{1)}$. Finally let \mathscr{F} be an n-tuple ($X_{1}, X_{2}, \ldots, X_{n}$) of subsets of R satisfying $a \leqq\left|X_{i}\right| \leqq b(i=1,2, \ldots, n)$.

An ordered pair (X, Y) of subsets of R has the property

- A: if and only if there is a $v \in R: v \notin X, v \in Y$,
- B: if and only if there is a $v \in R: v \in X, v \notin Y$,
- C: if and only if there is a $v \in R: v \notin X, v \nsubseteq Y$,
- \mathbf{D} : if and only if there is a $v \in R: v \in X, v \in Y$.

Let $\mathbf{P}=\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ be an arbitrary Boolean expression of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} . \mathscr{F}$ is said to be a P-family if and only if all ordered pairs (X_{i}, X_{j}), $1 \leqq i<j \leqq n$, satisfy the condition \mathbf{P}. If there is a maximal value of n, we will denote this by $n_{a, b}(\mathbf{P}, r)$. Many well-known results in extremal set theory can be expressed in our concept. We will only mention the following two classical theorems.

1) Sperner's theorem [13]:

$$
\begin{aligned}
n_{0, r}(\mathbf{A B}, r) & =\binom{r}{[r / 2]}, 2 \\
n_{0, k}(\mathbf{A B D}, r) & =\binom{r-1}{k-1} \text { if } k \leqq r / 2
\end{aligned}
$$

In [5] the first-named author considered all 2^{16} possible Boolean expressions \mathbf{P}, found those \mathbf{P}^{\prime} s for which $n_{0, r}(\mathbf{P}, r)^{3)}$ eixsts, and determined in all these cases $n_{0, r}(\mathbf{P}, r)$ exactly ${ }^{4}$. In the present paper we consider the same problem for all $\mathbf{P}^{\prime} \mathbf{s}$ and $n_{a, b}(\mathbf{P}, r)$.

The results in Sections 2 and 3 are close to the corresponding results for $n(\mathbf{P}, r)$. Thus, the proofs are sketched only or are omitted.

[^0]
2. Existence of $n_{a, b}(\mathbf{P}, r)$

We set $n_{a, b}(0, r)=1$ for all a, b, where $\mathbf{0}$ denotes the empty condition. In all what follows let \mathbf{P} 丰 0 .

Then there is a nonempty canonical alternative normal form $\operatorname{CANF}(\mathbf{P})$ of \mathbf{P}. If \mathbf{A}^{\prime} is an elementary conjunction of $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$, then $\mathbf{A}^{\prime} \in \operatorname{CANF}(\mathbf{P})$ means that \mathbf{A}^{\prime} is one of the conjunctions of $\operatorname{CANF}(\mathbf{P})$.

Since no pair (X, Y) satisfies $\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{D}}$ and the only pairs satisfying $\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} \mathbf{D}$ or $\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathrm{D}}$ are (R, R) or ($0, \emptyset$), respectively, it follows

Lemma 1.
(i) $n_{a, b}(\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} \overline{\mathbf{D}}, r)=1$,
$n_{a, b}(\mathbf{P} \vee \overline{\mathbf{A B}} \overline{\mathbf{C}} \overline{\mathrm{D}}, r)=n_{a, b}(\mathbf{P}, r)$,
(ii) $n_{a, b}(\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}, r)=1 \quad$ if $b<r$,
$n_{a, b}(\mathbf{P} \vee \overline{\mathrm{~A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}, r)=n_{a, b}(\mathbf{P}, r)$,
$\begin{aligned} \text { (iii) } & n_{a, b}(\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \bar{D}, r)=1 \\ & n_{a, b}(\mathbf{P} \vee \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{D}}, r)=n_{a, b}(\mathbf{P}, r) .\end{aligned}$
Theorem 1. $n_{a, b}(\mathbf{P}, r)$ does, not exist if and only if
(i) $\overline{\mathbf{A}} \overline{\mathrm{BD}} \in \operatorname{CANF}(\mathbf{P})$ or

(iii) $\overline{\mathbf{A}} \overline{\mathrm{B}} \overline{\mathrm{D}} \in C A N F(\mathbf{P})$ and $a=0$.

Hence, if $n_{a, b}(\mathbf{P}, r)$ exists, $\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}, \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}$, and $\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \overline{\mathrm{D}}$ can be omitted in CANF(P).

3. Some reductions

The following table gives an equivalent description of some conditions \mathbf{P} in terms of ordered pairs (X, Y).

\mathbf{P}	\leftrightarrow
$\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \overline{\mathbf{D}}$	(X, Y)
$\overline{\mathbf{A} \mathbf{B}} \overline{\mathbf{C}}$	(\emptyset, R)
$\mathbf{A} \overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}}$	(R, \emptyset)
$\overline{\mathbf{A} \mathbf{B} \mathbf{C}}$	(\emptyset, Z)
$\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \mathbf{D}$	(Z, \emptyset)
$\overline{\mathbf{A} \mathbf{B} \mathbf{C}}$	(Z, R)
	(R, Z)

where $Z \subseteq R, Z \neq \emptyset, Z \neq R$. The remaining 6 conditions $\mathbf{A B C D}, \mathbf{A B C} \overline{\mathbf{D}}, \mathbf{A B} \overline{\mathbf{C}} \mathbf{D}, \mathbf{A} \overline{\mathbf{B}} \mathbf{C D}$, $\overline{\mathrm{A}} \mathbf{B C D}, \mathbf{A B} \bar{C} \bar{D}$ are conditions for pairs (X, Y) with $\{X, Y\} \cap\{\emptyset, R\}=\emptyset$.

If $a=0$ and $b=r$ we refer to [5]. Let $a>0$ or $b<r$.
Then no pair (X, Y) can satisfy $\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \overline{\mathrm{D}}$ or $\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}} \bar{D}$ and we may omit these conjunctions in \mathbf{P}. Let $\mathbf{P}=\mathbf{P}^{\prime} \vee \mathbf{P}^{\prime \prime}$, where $\mathbf{P}^{\prime \prime}$ contains exactly those conjunctions which are in (1).

Theorem 2.

	$\mathbf{P}^{\prime} \equiv 0$	$\mathbf{P}^{\prime} \neq 0$
$\begin{aligned} & a>0 \\ & b=r \end{aligned}$	$n_{a, r}(\mathbf{P}, r)=\left\{\begin{array}{l} 2^{(*)} \\ 1 \text { other- } \\ \text { wise } \end{array}\right.$	$n_{a, r}(\mathbf{P}, r)=\left\{\begin{array}{lc} n_{a, r-1}\left(\mathbf{P}^{\prime}, r\right)+1 & \text { if } \overline{\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \mathbf{D} \in \operatorname{CANF}\left(\mathbf{P}^{\prime \prime}\right) \text { or }} \begin{array}{ll} \overline{\mathbf{A}} \overline{\mathbf{C}} \mathbf{D} \in \operatorname{CANF}\left(\mathbf{P}^{\prime \prime}\right) \end{array} \\ n_{a, r-1}\left(\mathbf{P}^{\prime}, r\right) & \text { otherwise } \end{array}\right.$
$\begin{aligned} & b<r \\ & a=0 \end{aligned}$	$n_{0, b}(\mathbf{P}, r)=\left\{\begin{array}{l} 2^{(* *)} \\ \text { wise } \text { other } \end{array}\right.$	$n_{0 . b}(\mathbf{P}, r)=\left\{\begin{array}{lc} n_{1, b}\left(\mathbf{P}^{\prime}, r\right)+1 & \text { if } \overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}} \in \operatorname{CANF}\left(\mathbf{P}^{\prime \prime}\right) \text { or } \\ n_{1, b}\left(\mathbf{P}^{\prime}, r\right) & \text { otherwise } \end{array}\right.$
$\begin{aligned} & a>0 \\ & b<r \end{aligned}$	$\boldsymbol{n}_{\text {a,b }}(\mathbf{P}, r)=1$	$n_{a, b}(\mathbf{P}, r)=n_{a, b}\left(\mathbf{P}^{\prime}, r\right)$

(*) if $\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \mathbf{D} \in C A N F\left(\mathbf{P}^{\prime \prime}\right)$ or $\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}} \mathrm{D} \in C A N F\left(\mathbf{P}^{\prime \prime}\right)$;
${ }^{(* *)}$ if $\mathbf{A} \overline{\mathbf{B}} \mathbf{C} \bar{D} \in C A N F\left(\mathbf{P}^{\prime \prime}\right)$ or $\overline{\mathrm{A} B C} \overline{\mathrm{D}} \in C A N F\left(\mathbf{P}^{\prime \prime}\right)$.

Hence, we have to consider only alternatives \mathbf{P} over $\{\mathbf{A B C D}, \mathbf{A B C D}, \mathbf{A B} \overline{\mathrm{C}}$, $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D}, \overline{\mathrm{A}} \mathbf{B C D}, \mathbf{A B} \overline{\mathbf{C}} \overline{\mathrm{D}}\}$ and we may assume $a>0, b<r$.

Lemma 2.

(i) $n_{a, b}(\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}), r)=n_{a ; b}(\mathbf{P}(\mathbf{B}, \mathbf{A}, \mathbf{C}, \mathbf{D}), r)$,
(ii) $n_{a, b}(\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}), r)=n_{r-b, r-a}(\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{C}), r)$,
(iii) $n_{a, b}\left((\mathbf{A} \overline{\mathbf{B}} \vee \overline{\mathbf{A}} \mathbf{B}) \mathbf{P}^{\prime}(\mathbf{C}, \mathbf{D}), r\right)=n_{a, b}\left(\mathbf{A} \overline{\mathbf{B}} \mathbf{P}^{\prime}(\mathbf{C}, \mathbf{D}), r\right)$,
(iv) $n_{a, b}\left((\mathbf{A} \vee \mathbf{B}) \mathbf{P}^{\prime}(\mathbf{C}, \mathbf{D}), r\right)=n_{a, b}\left(\mathbf{A P}^{\prime}(\mathbf{C}, \mathbf{D}), r\right)$,
(v) $n_{a, b}\left(\mathbf{P}^{\prime \prime} \vee \mathbf{A B C D} \vee \overline{\mathbf{A} B C D}, r\right)=n_{a, b}\left(\mathbf{P}^{\prime \prime} \vee \mathbf{A} \overline{\mathrm{B}} \mathbf{C D}, r\right)$,
(vi) $n_{a, b}\left(\mathbf{P}^{\prime \prime} \vee \overline{\mathbf{A} B C D}, r\right)=n_{a, b}\left(\mathbf{P}^{\prime \prime} \vee \mathbf{A B} \mathbf{C D}, r\right)$,
(vii) $n_{a, b}\left(\mathbf{P}^{\prime \prime \prime}, r\right)=n_{r-b, r-a}\left(\mathbf{P}^{\prime \prime \prime}, r\right)$,
(viii) $n_{a, b}\left(\mathbf{P}^{\prime \prime \prime} \vee \mathbf{A B} \bar{C} D, r\right)=n_{r-b, r-a}\left(\mathbf{P}^{\prime \prime \prime} \vee \mathbf{A B C D}, r\right)$,
(ix) $n_{a, b}\left(\mathbf{P}^{\prime \prime \prime} \vee \mathbf{A B} \overline{\mathbf{C}} \mathbf{D} \vee \mathbf{A B C} \overline{\mathbf{D}}, r\right)=n_{r-b, r-a}\left(\mathbf{P}^{\prime \prime \prime} \vee \mathbf{A B} \overline{\mathbf{C}} \mathbf{D} \vee \mathbf{A B C} \overline{\mathbf{D}}, r\right)$,
where \mathbf{P}^{\prime} is an arbitrary Boolean function in 2 arguments,
$\mathbf{P}^{\prime \prime}$ is any alternative over $\{\mathbf{A B C D}, \mathbf{A B} \overline{\bar{C} D}, \mathbf{A B C D}, \mathbf{A B} \bar{C} \bar{D}\}$, and $\mathbf{P}^{\prime \prime \prime}$ is any alternative over $\{\mathbf{A B C D}, \mathbf{A B} \overline{\mathbf{C}} \overline{\mathrm{D}}, \mathbf{A} \overline{\mathrm{B}} \mathbf{C D}\}$.
4. $n_{a, b}(P, r)$ for the reduced P 's

For simplification we use $\mathbf{M N} \vee \mathbf{M} \overline{\mathbf{N}}=\mathbf{M}$ and $\mathbf{M} \vee \mathbf{M N}=\mathbf{M}$. Now we consider the three general cases:

1) $a \leqq b<r / 2$,
2) $a \leqq r / 2 \leqq b$,
3) $r / 2<a \leqq b$,

The third case may be reduced to the first one using Lemma 2, (ii). If $a \leqq b<r / 2$, then obviously no pair (X, Y) of \mathscr{F} can satisfy $\mathbf{A B} \bar{C} D$ or $\mathbf{A B} \bar{C} \bar{D}$, i.e., these two conjunctions may be omitted, or if $\operatorname{CANF}(\mathbf{P})$ has only conjunctions of these ones, $n_{a, b}(\mathbf{P}, r)=1$ follows immediately.

Case 1. $a \leqq b<r / 2$. $C A N F(\mathbf{P})$ contains only conjunctions of $\{\mathbf{A B C D}, \mathbf{A B C D}$, $\mathrm{ABCD}\}$. Thus, only 7 P 's are possible ($\mathbf{P} \equiv 0$ was excluded at the beginning).

No.	P	$n_{a, b}(\mathrm{P}, r)$	reference/remark
1.1	A $\overline{\mathbf{B}} \mathbf{C D}$	$b-a+1$	\mathscr{F} forms a chain.
1.2	ABCD	$\binom{r-1}{b-1}$	Erdös, Ko, Rado [3] or Greene, Katona, Kleitman [4].
1.3	ABCD	$\left[\frac{r}{a}\right]$	The sets of \mathscr{F} have to be disjoint.
1.4	ACD	$\sum_{i=a}^{b}\binom{r-1}{i-1}$	Hilton [7].
1.5	$\begin{aligned} & \mathrm{A} \overline{\mathrm{~B}} \mathbf{C D} \vee \\ & V \mathrm{ABC} \overline{\mathrm{D}} \end{aligned}$	$\begin{array}{rr} 2 r-] r / b[1] r / b[& \text { if } a=1 \\ r-(a-1) a \geqq 2, \\ a \leq r-b(\xi r / b[-1) \\ (b-a+1)(r / b[-1) \text { if } a \geqq 2, \\ a>r-b(r) b[-1) \end{array}$	see Section 5.
1.6	ABC	$\binom{r}{b}$	Lubell [9], Meshalkin [10], Yamamoto [14].
1.7	$\begin{aligned} & \mathrm{ABC} \vee \\ & \vee \mathrm{ACD} \end{aligned}$	$\sum_{i=a}^{b}\binom{r}{i}$	Every pair (X, Y), $a \leqq\|X\| \leqq\|Y\| \leqq b$, satisfies the condition.

Case 2. $a \leqq r / 2 \leqq b$.
Using the statements of Lemma 2 we may reduce all possible conditions to 23 types. More precisely, by Lemma 2 (v) and (vi), we may omit $\overline{\mathbf{A} B C D}$ if $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \in$ $\in C A N F(\mathbf{P})$ or replace $\overline{\mathbf{A} B C D}$ by $\mathbf{A B C D}$ if $\mathbf{A B C D} \nsubseteq C A N F(\mathbf{P})$. Furthermore, if $\mathbf{A B} \bar{C} \mathbf{D} \in C A N F(\mathbf{P})$ and $\mathbf{A B C D} \notin C A N F(\mathbf{P}), \mathbf{A B} \bar{C} D$ can be replaced by $\mathbf{A B C D}$ according to Lemma 2 (viii). This procedure is the same as in [5]. We also use this notation. Many results are well-known, others are very simple. But there are some really new problems.

Most of them have been solved. The proofs are given in Sections 5 and 6. Finally some open problems are presented in Section 7.

No.	\mathbf{P}	$n_{a, b}(\mathbf{P}, r)$	reference/remark
2.1	ACD	?	see Section 7.
2.2	AB	$\binom{r}{[r / 2]}$	Sperner [13], Lubell [9], Meshalkin [10], or Yamamoto [14].
2.3	ABC	$\binom{r}{[(r-1) / 2]}$	Milner [11] or Greene, Katona, Kleitman [4].
2.4	ABCD	$\binom{r-1}{[(r-2) / 2]}$	Katona [8], Schönheim [12], or Gronau [6].
2.5	$\begin{aligned} & \mathbf{A B C} \vee \\ & \vee \mathbf{A B D} \end{aligned}$	$\binom{r-1}{[(r-1) / 2]}$	Clements, Gronau [1].
2.6	$\begin{aligned} & \mathbf{A B C V} \\ & \vee \mathbf{A C D} V \\ & \vee \mathbf{A B D} \end{aligned}$	$\begin{aligned} & \left\{\begin{array}{l} \begin{array}{c} \sum_{i=a}^{r / 2}\binom{r}{i} \text { if } r \text { is even } \\ (r-1) / 2 \\ \sum_{i=a}^{(2)} \end{array}\binom{r}{i}+\binom{r-1}{\text { if } r \text { is odd }) / 2} \end{array}\right. \\ & ? \quad \begin{array}{ll} \text { if } a \leqq r-b \\ ? & \text { if } a>r-b \end{array} \end{aligned}$	see Section 6. see Section 7.
2.7	$\mathrm{AB}^{\bar{C}} \overline{\mathbf{D}}$	2	clear.
2.8	$\overline{A B C D}$	$b-a+1$	\mathscr{F} forms a chain.
2.9	$\begin{aligned} & \mathbf{A B} \mathbf{C D} \vee \\ & \vee \mathbf{A B} \overline{\mathrm{C}} \overline{\mathrm{D}} \end{aligned}$	$\left\{\begin{array}{cl} 2 & \text { if } a=b=r / 2 \\ b-a+1 & \text { otherwise } \end{array}\right.$	It follows by 2.7 and 2.8 .
2.10	$\mathbf{A B} \overline{\mathbf{D}}$	$[r / a]$	
2.11	ABCD	$\left\{\begin{array}{cc}{[r / a]} & \text { if } a \neq r / 2 \\ 1 & \text { if } a=r / 2\end{array}\right.$	
2.12	$\begin{aligned} & \mathbf{A B} \overline{\mathbf{C}} V \\ & \vee \mathbf{A B} \overline{\mathbf{D}} \end{aligned}$	$[r / c], c=\min (a, r-b)$	In [5] it was proved that \mathscr{F} satisfies $\mathbf{A B} \overline{\mathbf{C}}(\mathbf{A B} \overline{\mathbf{C}} \mathbf{D})$ or \mathscr{F}
2.13	$\begin{aligned} & \mathbf{A B} \overline{\mathbf{C}} \mathbf{D} \vee \\ & \vee \mathbf{A B C} \overline{\mathbf{D}} \end{aligned}$	$\left\{\begin{array}{l} 1 \text { if } a=b=r / 2 \\ {[r / c], c=\min (a, r-b) \text { otherwise }} \end{array}\right.$	2.10 resp. 2.11 implies the result.
2.14	$\begin{aligned} & \mathbf{A B C V} \\ & V A B D V \\ & \vee \mathbf{A C D} \end{aligned}$	$\left\{\begin{array}{r} \sum_{i=a}^{r-b-1}\binom{r}{i}+\frac{1}{2} \sum_{i=r-b}^{b}\binom{r}{i} \\ \text { if } a \leqq r-b \\ \frac{1}{2} \sum_{i=a}^{r-a}\binom{r}{i}+\sum_{i=r=a+1}^{b}\binom{r}{i} \\ \text { if } a>r-b \end{array}\right.$	\mathscr{F} contains no set and its complement.

No.	\mathbf{P}	$n_{a, b}(\mathbf{P}, r)$	reference/remark
2.15	$\begin{aligned} & \mathbf{A B C V} \\ & V \mathbf{A C D} \end{aligned}$	$\left\{\begin{array}{l} {\left[\begin{array}{l} \left.\frac{r-1}{2}\right] \\ \sum_{i=a}^{r}\binom{r}{i}+\left\{\begin{array}{l} 0 \text { if } r \text { is odd } \\ \binom{r-1}{r / 2-1} \\ \text { if } r \text { is even } \end{array}\right. \\ \sum_{i=a}^{b}\binom{r-1}{i} \end{array}\right.} \end{array}\right.$	see Section 6. Hilton [7].
2.16	$\begin{gathered} \mathbf{A B} \vee \\ \vee \mathbf{A C D} \end{gathered}$	$\sum_{i=a}^{b}\binom{r}{i}$	Every pair satisfies this condition.
2.17	$\begin{aligned} & A B C V \\ & V A B \bar{D} \end{aligned}$	$\binom{r}{[r / 2]}$	\mathscr{F} satisfies AB too. Indeed, $\mathscr{F}=\{X: X \subseteq R$, $\|X\|=[r / 2]\}$ has that cardinality.
2.18	$\begin{aligned} & \mathbf{A B C D} V \\ & \vee \mathbf{A B C} \bar{D} \end{aligned}$	$2\binom{r-1}{\left[\left(r^{\prime}-2\right) / 2\right]}$	Omitting complements \mathscr{F} satisfies ABCD (see 2.4). $\begin{aligned} & \mathscr{F}=\{X: X \subseteq R, v \in X, \\ & \|X\|=[r / 2]\} \cup\{X: X \subseteq R, \\ & v \oplus X,\|X\|=\{[(r+1) / 2]\}, \end{aligned}$ where $v \in R$ is fixed, has the desired cardinality.
2.19	$\begin{aligned} & \mathrm{A} \overline{\mathbf{B}} \mathbf{C D} \vee \\ & \vee \mathbf{A B} \overline{\mathbf{D}} \end{aligned}$	$\begin{array}{ll} 2 r-2 & \text { if } a=1 \\ r-2 a+2 & \text { if } 2 \leqq a \leqq r-b \\ b-a+1 & \text { if } 2 \leqq a>r-b \end{array}$	see Section 5.
2.20	$\begin{aligned} & \mathbf{A} \bar{B} C D V \\ & \vee A B C \bar{D} \end{aligned}$	$\begin{array}{ll} 2 r-3 & \text { if } a=1 \\ r-2 a+1 & \text { if } 2 \leqq a<r-b \\ b-a+1 & \text { if } 2 \leqq a \geqq r-b . \end{array}$	see Section 5.
2.21	$\begin{aligned} & \mathbf{A} \bar{B} C D \vee \\ & \vee A B \bar{C} D \vee \\ & \vee A B C \bar{D} \end{aligned}$	$\begin{array}{lll} 2 r-3 & \text { if } a=1 \text { or } b=r-1 \\ r-2 a+1 & \text { if } a \geqq 2, & b \leqq r-2, \\ 2 b-r+1 \text { if } a \geqq 2, & \begin{array}{ll} & b \leqq r-b \\ & a \geqq r-b \end{array} & \\ & a \geqq r \end{array}$	see Sestion 5.
2.22	$\begin{aligned} & \mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \\ & \vee \mathbf{A B} \overline{\mathbf{C}} \vee \\ & \vee \mathbf{A B} \overline{\mathbf{D}} \end{aligned}$	$\begin{array}{ll} 4 r-6 & \text { if } a=1, b=r-1 \\ r+2 b-2 & \text { if } a=1, b<r-1 \\ 3 r-2 a-2 & \text { if } a>1, b=r-1 \\ 2(b-a+1) & \text { if } a>1, b<r-1 \end{array}$	see Section 5.
2.23	$\begin{gathered} \operatorname{ACD} \vee \\ \vee A B \bar{C} D \end{gathered}$?	see Section 7.

5. Proofs of $\mathbf{1 . 5}, \mathbf{2 . 1 9 , ~ 2 . 2 0 , ~ 2 . 2 1 , ~} 2.22$

In order to give examples of maximal families we use the following notations

$$
\begin{aligned}
& \mathscr{D}_{1}=\{X: X=\{t\}, 1 \leqq t \leqq r\}, \\
& \mathscr{D}_{2}=\left\{X: R \backslash X \in \mathscr{D}_{1}\right\}, \\
& \mathscr{D}_{3}(p, q, s)=\{X: X=\{p+1, p+2, \ldots, p+t\}, q \leqq t \leqq s, p+t \leqq r\}, \\
& \mathscr{D}_{4}(p, q)=\{X: X=\{t+1, t+2, \ldots, r\}, t=p, p-1, p-2, \ldots, q\} .
\end{aligned}
$$

For all these conditions we have

$$
\begin{equation*}
n_{1, b}(\mathbf{P}, r) \leqq n_{2, b}(\mathbf{P}, r)+r . \tag{2}
\end{equation*}
$$

Thus, $n_{a, b}(\mathbf{P}, r), a \geqq 2$, implies an upper bound for $n_{1, b}(\mathbf{P}, r)$.
5.1. Let $\mathbf{P}=\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}(2.19,1.5)$.

Denote by \mathscr{F} a maximal ($\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}$)-family with $a \leqq|X| \leqq b$ for all $X \in \mathscr{F}$. Then for every pair (X, Y) of \mathscr{F} we have $X \subset Y$ or $X \cap Y=\emptyset$. Hence, there is a unique subfamily $\mathscr{G}(\mathscr{F}) \subseteq \mathscr{F}$ satisfying

- $X \cap Y=\emptyset$ for all pairs (X, Y) with $X, Y \in \mathscr{G}(\mathscr{F})$,
- for all $X \in \mathscr{F} \backslash \mathscr{G}(\mathscr{F})$ there is an element $Y \in \mathscr{G}(\mathscr{F})$ with $X \subset Y$.

If $X \in \mathscr{G}(\mathscr{F})$, then $\mathscr{H}(X)=\{Y: Y \in \mathscr{F}, Y \subset X\}$. Thus,
$-\mathscr{F}=\mathscr{G}(\mathscr{F}) \cup \bigcup_{X \in \mathscr{H}(\mathscr{F})} \mathscr{H}(X)$,

- $\mathscr{H}(X)$ satisfies $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}$, and
- all $Y \in \mathscr{H}(X)$ satisfy $a \leqq|Y| \leqq|X|-1$.

Then

$$
\begin{equation*}
|\mathscr{F}| \leqq|\mathscr{G}(\mathscr{F})|+\sum_{X \in \mathscr{G}(\mathscr{F})} n_{a,|X|-1}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}},|X|) . \tag{3}
\end{equation*}
$$

Now we prove
Lemma 3. $n_{a, r-1}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}, r)=r-a$ for $3 \leqq a+1 \leqq r$.
Proof. The proof is given by induction on r for arbitrary, but fixed $a, r \geqq a+1$.

1. $r=a+1$. The statement is true, clearly.
2. We obtain for every maximal family \mathscr{F}, by (3),

$$
|\mathscr{F}| \leqq|\mathscr{G}(\mathscr{F})|+\sum_{X \in \mathscr{G}(\mathscr{F})}(|X|-a)
$$

If $|\mathscr{G}(\mathscr{F})|=1, \quad$ then $\quad \sum_{x \in \mathscr{G}(\mathscr{F})}|X| \leqq r-1 \quad$ and $\quad|\mathscr{F}| \leqq r-a$.
If $|\mathscr{G}(\mathscr{F})| \geqq 2$, then $\sum_{x \in \mathscr{\mathscr { G }}(\mathscr{F})}|X| \leqq r$ and

$$
|\mathscr{F}| \leqq r-(a-1)|\mathscr{G}(\mathscr{F})| \leqq r-2(a-1) \leqq r-a .
$$

Indeed, $\mathscr{D}_{3}(0, a, r-1)$ is a $(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathrm{AB} \overline{\mathrm{D}})$-family with the desired cardinality.
Now we return to the general a, b-case.
Lemma 3 and (3) yield for a maximal ($\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}$)-family \mathscr{F}

$$
|\mathscr{F}|=\sum_{x \in \mathscr{G}(\mathscr{F})}|X|-(a-1)|\mathscr{G}(\mathscr{F})| .
$$

If $|\mathscr{G}(\mathscr{F})| \leqq] r / b[-1$, then $|X| \leqq b$ implies

$$
\begin{equation*}
|\mathscr{F}| \leqq(b-a+1)|\mathscr{G}(\mathscr{F})| \leqq(b-a+1)(] r / b[-1) . \tag{4}
\end{equation*}
$$

If $|\mathscr{G}(\mathscr{F})| \geqq] r, b[, \quad$ then

$$
\sum_{x \in \mathscr{G}(\mathscr{F})}|X|=\left|\bigcup_{x \in \mathscr{G}(\mathscr{F})} X\right| \leqq r
$$ and

$$
\begin{equation*}
|\mathscr{F}| \leqq r-(a-1)|\mathscr{G}(\mathscr{F})| \leqq r-(a-1)] r / b[. \tag{5}
\end{equation*}
$$

Simple verification shows that the upper estimation of (4) is not smaller than that one of (5) iff

$$
a>r-b(] r / b[-1)
$$

Indeed, $\mathscr{D}_{5}(a, b)=\bigcup_{t=0,1, \ldots} \mathscr{D}_{3}(b t, a, b)$ confirms in both cases that these upper bounds are the desired results. Thus, 1.5 is proven if $a \geqq 2$ remarking that \mathbf{C} is always satisfied. The case $a=1$ follows by (2) and the example $\mathscr{D}_{1} \cup \mathscr{D}_{5}(1, b)$. Moreover, 2.19 is proven, note $] r / b[=2$ for $b \geqq r / 2$. Also here the case $a=1$ follows by (2) and the example $\mathscr{D}_{1} \cup \mathscr{D}_{5}(1, b)$.
5.2. Let $\mathbf{P}=\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathrm{ABC} \overline{\mathrm{D}}$ (2.20).

In analogy to the preceding case a special subfamily $\mathscr{G}(\mathscr{F})$ exists and we obtain for a maximal family \mathscr{F}

$$
\begin{equation*}
|\mathscr{F}| \leqq|\mathscr{G}(\mathscr{F})|+\sum_{X \in \mathscr{\mathscr { F } (\mathscr { F })}} n_{a,|X|-1}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathrm{D}},|X|) \tag{6}
\end{equation*}
$$

We remark that $\mathscr{H}(X)$ satisfies $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{D}}$, not necessarily $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B C} \overline{\mathbf{D}}$. Lemma 3 implies

$$
|\mathscr{F}| \leqq \sum_{x \in \mathscr{G}(\mathscr{F})}|X|-(a-1)|\mathscr{G}(\mathscr{F})|
$$

If $|\mathscr{G}(\mathscr{F})|=1$, then $\sum_{x \in \mathscr{G}(\mathscr{F})}|X| \leqq b$ and $|\mathscr{F}| \leqq b-a+1$.
If $|\mathscr{G}(\mathscr{F})|=2$, then $\sum_{x \in \mathscr{G}(\mathscr{F})}|X| \leqq r-1 \quad$ (since $\mathscr{G}(\mathscr{F})$ contains no complementary sets) and $|\mathscr{F}| \leqq r-1-2(a-1)=r-2 a+1$.
If $|\mathscr{G}(\mathscr{F})| \geqq 3$, then $\sum_{X \in \mathscr{G}(\mathscr{F})}|X| \leqq r$ and

$$
|\mathscr{F}| \leqq r-3(a-1) \leqq r-2 a+1
$$

Hence,

$$
|\mathscr{F}| \leqq \max (b-a+1, r-2 a+1)= \begin{cases}b-a+1 & \text { if } a \geqq r-b, \\ r-2 a+1 & \text { if } a<r-b .\end{cases}
$$

Indeed,

$$
\mathscr{D}_{6}(a, b)= \begin{cases}\mathscr{D}_{3}(0, a, b) & \text { if } a \geqq 2, a \geqq r-b, \\ \mathscr{D}_{3}(0, a, b) \cup \mathscr{D}_{3}(b, a, r-b-1) & \text { if } a \geqq 2, a<r-b\end{cases}
$$

is an example which confirms that the upper bound is the desired result for $a \geqq 2$. (2) and $\mathscr{D}_{1} \cup \mathscr{D}_{6}(1, b)$ yield the result for $a=1$.

5.3. Let $\mathbf{P}=\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \bar{C} \mathbf{D} \vee \mathbf{A B C} \bar{D}$ (2.21).

5.3.1. $a \leqq r-b$.

If \mathscr{F} is a maximal family, consider

$$
\mathscr{F}^{\prime}=\left\{X:\left\{\begin{array}{ll}
X & \text { if } X \in \mathscr{F},|X|<r / 2, \\
X & \text { if } X \in \mathscr{F},|X|=r / 2,1 \notin X, \\
R \backslash X & \text { if } X \in \mathscr{F},|X|=r / 2,1 \in X, \\
R \backslash X & \text { if } X \in \mathscr{F},|X|>r / 2
\end{array}\right\}\right\}
$$

Since \mathscr{F} contains no complementary sets, $\left|\mathscr{F}{ }^{\prime}\right|=|\mathscr{F}|=n_{a, b}(\mathbf{P}, r)$. Obviously, \mathscr{F}^{\prime} satisfies $\overline{\mathbf{A} B C D} \vee \mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \vee \mathbf{A B C D}$. No pair of \mathscr{F}^{\prime} satisfies $\mathbf{A B} \bar{C} D$. By Lemma 2 (v), we have now that \mathscr{F}^{\prime} satisfies $\mathbf{A} \overline{\mathbf{B} C D} \vee \mathbf{A B C D}$. Thus a maximal family of 2.20 is also a maximal family here. Hence, 2.21 follows by 2.20 if $a \leqq r-b, a=1$ or $a \geqq 2$.
5.3.2. $a>r-b$. Then $r-b<r-(r-a)$.

We apply Lemma 2 (ix) and the results of 5.3.1, and get

$$
\begin{aligned}
& \quad n_{a, b}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \vee \mathbf{A B C} \overline{\mathbf{D}}, r)= \\
& =n_{r-b, r-a}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B C} \overline{\mathbf{D}}, r)= \begin{cases}2 r-3 & \text { if } r-b=1, \\
r-2(r-b)+1 & \text { if } r-b \geqq 2 .\end{cases}
\end{aligned}
$$

5.4. Let $\mathbf{P}=\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \vee \mathbf{A B} \overline{\mathbf{D}}$ (2.22).

If \mathscr{F} is a maximal family, we split \mathscr{F} into two subfamilies \mathscr{F}_{1} and \mathscr{F}_{2} by
if $X \in \mathscr{F}, R \backslash X \notin \mathscr{F}$, then $X \in \mathscr{F}_{1}$,
if $X \in \mathscr{F}, R \backslash X \in \mathscr{F}$, then $X \in \mathscr{F}_{1}, R \backslash X \in \mathscr{F}_{2}$ or $X \in \mathscr{F}_{2}, R \backslash X \in \mathscr{F}_{1}$.
Then \mathscr{F}_{1} and \mathscr{F}_{2}, respectively, satisfy $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \vee \mathrm{ABC} \overline{\mathrm{D}}$. Since $X \in \mathscr{F}$, $R \backslash X \in \mathscr{F}$ can hold only if $c \leqq|X| \leqq r-c, c=\max (a, r-b)$. We obtain immediately

$$
\left|\mathscr{F}_{1}\right| \leqq n_{a, b}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \mathbf{D} \vee \mathbf{A B C} \overline{\mathbf{D}}, r)
$$

and

$$
\left|\mathscr{F}_{2}\right| \leqq n_{c, r-c}(\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \mathbf{D} \vee \mathbf{A B C} \overline{\mathrm{D}}, r)
$$

Hence,

$$
|\mathscr{F}| \leqq \begin{cases}r-2 a+1+r-2(r-b)+1 & \text { if } a \leqq r-b \\ 2 b-r+1+r-2 a+1 & \text { if } a>r-b,\end{cases}
$$

i.e.

$$
|\mathscr{F}| \leqq 2(b-a+1)
$$

Similarly, it follows by (2)

$$
|\mathscr{F}| \leqq\left\{\begin{array}{lll}
r+2 b-2 & \text { if } a=1, \quad b \leqq r-2 \\
3 r-2 a-2 & \text { if } a \geqq 2, \quad b=r-1 \\
4 r-6 & \text { if } a=1, \quad b=r-1
\end{array}\right.
$$

Finally, we complete the proof by following examples

$$
\begin{array}{ll}
\mathscr{D}_{7}(a, b)=\mathscr{D}_{3}(0, a, b) \cup \mathscr{D}_{4}(r-a, r-b) & \text { if } a \geqq 2, b \leqq r-2, \\
\mathscr{D}_{1} \cup \mathscr{D}_{7}(1, b) & \text { if } a=1, b \leqq r-2, \\
\mathscr{D}_{7}(a, r-1) \cup \mathscr{D}_{2} & \text { if } a \geqq 2, b=r-1, \\
\mathscr{D}_{1} \cup \mathscr{D}_{7}(1, r-1) \cup \mathscr{D}_{2} & \text { if } a=1, b=r-1 .
\end{array}
$$

Remark. A family satisfying $\mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B} \overline{\mathbf{C}} \vee \mathbf{A B} \overline{\mathbf{D}}$ may be interpreted as a family without qualitatively independent sets (see also Katona [8]).

6. Proofs of 2.6 and 2.15

6.1. Let $\mathbf{P}=\mathrm{ABC} \vee \mathrm{ACD}$ (2.15) and let $a \leqq r-b$.

Let \mathscr{F} be an arbitrary maximal family. Then \mathscr{F} contains no complementary sets, i.e.

$$
|\mathscr{F}| \leqq \sum_{i=a}^{r-b-1}\binom{r}{i}+\frac{1}{2} \sum_{i=r-b}^{b}\binom{r}{i} .
$$

An example for a maximal family is

$$
\{X: X \leqq R, a \leqq|X|<r / 2 \quad \text { or } \quad(|X|=r / 2 \quad \text { and } \quad 1 \notin X)\} .
$$

6.2. Let $\mathbf{P}=\mathrm{ABC} \vee \mathrm{ACD} \vee \mathrm{AB} \overline{\mathrm{D}}$ (2.6) and let $a \leqq r-b$.

If \mathscr{F} is a maximal family, then we split \mathscr{F} into two subfamilies \mathscr{F}_{1} and \mathscr{F}_{2} by the same procedure as in Section 5, 4. Thus, \mathscr{F}_{1} satisfies $\mathrm{ABC} \vee \mathrm{ACD}$, i.e.

$$
\left|\mathscr{F}_{1}\right| \leqq n_{a, b}(\mathbf{A B C \vee A C D}, r)
$$

\mathscr{F}_{2} satisfies ABCVACD. Moreover, for arbitrary sets $X, Y \in \mathscr{F}_{2}$ also $(R \backslash X, Y)$, $(X, R \backslash Y)$, and ($R \backslash X, R \backslash Y$) satisfy $\mathbf{A B C} \vee \mathbf{A C D}=\mathbf{A B C D} \vee \mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B C} \overline{\mathbf{D}}$. Hence, (X, Y) satisfies $\mathbf{A B C D} \vee \mathbf{A} \overline{\mathbf{B}} \mathbf{C D} \vee \mathbf{A B C} \bar{D}$ as well as $\mathbf{A B C D} \vee \bar{A} B C D \vee \mathbf{A B} \bar{C} D$, i.e. ABCD. 2.15 implies

$$
n_{a, b}(\mathbf{A B C} \vee \mathbf{A C D} \vee \mathbf{A B} \overline{\mathbf{D}}, r)=\left[\begin{array}{c}
\left.\frac{r-1}{2}\right] \\
i=a
\end{array}\binom{r}{i}+\binom{r-1}{[r / 2]-1}+ \begin{cases}0 & \text { if } r \text { is odd }, \\
\binom{r-1}{r / 2} & \text { if } r \text { is even. }\end{cases}\right.
$$

Indeed, $\{X: X \subseteq R, a \leqq|X| \leqq r / 2$ and, if r is odd, $|X|=[r / 2]+1,1 \notin X\}$ is a maximal family.

7. Open problems

In this section we give explicitely the open problems in usual notation. Also some estimations are presented.

1. Problem (2.1) $n_{a, b}(\mathbf{A C D}, r)=$?

Remember that ACD means $(X \cap Y \neq \emptyset) \wedge(X \cup Y \neq R)$ for all $X, Y \in \mathscr{F}$. It is known only that

$$
\sum_{i=a}^{b}\binom{r-2}{i-1} \leqq n_{a, b}(\mathbf{A C D}, r) \leqq\left\{\begin{array}{cll}
\sum_{i=a}^{b}\binom{r-1}{i} & \text { if } & a \leqq r-b \\
\sum_{i=a}^{b}\binom{r-1}{i-1} & \text { if } & a>r-b
\end{array}\right.
$$

by 2.15 and Lemma 2 (viii).
Equality occurs, for example, in the left hand side if $a=r-b=1$, and in the right hand side if $a=b=r / 2$.
2. Problem (2.6, $a>r-b) n_{a, b}(\mathbf{A B C} \vee \mathbf{A C D} \vee \mathbf{A B} \overline{\mathbf{D}}, r)=$? if $a>r-b$.

Remember that this condition means that \mathscr{F} contains no not-complementary sets with union R. The investigations in the case $a \leqq r-b$ yield immediately

$$
\begin{aligned}
n_{a, b}(\mathbf{A B C} \vee \mathbf{A C D}, r) & \leqq n_{a, b}(\mathbf{A B C} \vee \mathbf{A C D} \vee \mathbf{A B} \overline{\mathbf{D}}, r) \\
& \leqq n_{a, b}(\mathbf{A B C} \vee \mathbf{A C D}, r)+\binom{r-1}{[r / 2]-1}
\end{aligned}
$$

3. Problem (2.23) $n_{a, b}(\mathbf{A B C} \vee \mathbf{A B} \overline{\mathbf{C}} \overline{\mathrm{D}}, r)=$?

In this case also $n_{1, r-1}(\mathbf{P}, r)$ is unknown. Bounds are in analogy to [5] given by

$$
n_{a, b}(\mathbf{A C D}, r) \leqq n_{a, b}(\mathbf{A C D} \vee \mathbf{A B} \overline{\mathbf{C}} \overline{\mathbf{D}}, r) \leqq n_{a, b}(\mathbf{A C D}, r)+\binom{r-1}{[r / 2]-1}
$$

WILHELM-PIECK-UNIVERSITÄT
SEKTION MIATHEMATIK
DDR-25 ROSTOCK
UNIVERSITÃTSPLATZ 1

References

[1] Clements, G. F. and H.-D. O. F. Gronau, On maximal antichains containing no set and its complement, Discrete Math., v. 33, 1981, pp. 239-247.
[2] Daykin, D. E. and L. Lovász, The number of values of a Boolean function, J. London Math. Soc. (2), v. 12, 1976, pp. 225-230.
[3] Erdós, P., Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), v. 12, 1961, pp. 313-320.
[4] Greene, C., G. O. H. Katona and D. J. Kleitman, Extensions of the Erdős-Ko-Rado theorem, Stud. Appl. Math., v. 55, 1976, pp. 1-8.
[5] Gronau, H.-D. O. F., On maximal families of subsets of a finite set, Discrete Math., v. 34, 1981, pp. 119-130.
[6] Gronau, H.-D. O. F., Sperner type theorems and complexity of minimal disjunctive normal forms of monotone Boolean functions, Period. Math. Hungar., v. 12, 1981, to appear.
[7] Hilton, A. J. W., Analogues of a theorem of Erdős-Ko-Rado on a family of finite sets, Quart. J. Math. Oxford Ser. (2), v. 25, 1974, pp. 19-28.
[8] Katona, G. O. H., Two applications of Sperner type theorems (for search theory and truth functions), Period. Math. Hungar., v. 3, 1973, pp. 19-26.
[9] Lubell, D., A short proof of Sperner's lemma, J. Combin, Theory Ser. A, v. 1, 1966, pp. 299.
[10] Meshalkin, L. D., A generalization of Sperner's theorem on the number of subsets of a finite set, Teor. Verojatnost. i Primenen., v. 8, 1963, pp. 219-220 (in Russian).
[11] Milner, E. C., A combinatorial theorem on systems of sets, J. London Math. Soc., v. 43, 1968, pp. 204-206.
[12] Schönheim, J., On a problem of Purdy related to Sperner systems, Canad. Math. Bull., v. 17, 1974, pp. 135-136.
[13] Sperner, E., Ein Satz über Untermengen einer endlichen Menge, Math., Z, v. 27, 1928, pp. 544-548.
[14] Yamamoto, K., Logarithmic order of free distributive lattices, J. Math. Soc. Japan, v. 6, 1954, pp. 343-353.

[^0]: ${ }^{1)}$ For simplification we exclude the pathological cases $a=r$ resp. $b=0$.
 ${ }^{2)} \mathbf{A B}$ will be used in place of $\mathbf{A} \wedge \mathbf{B}$ and $\overline{\mathbf{A}}$ denotes non \mathbf{A}.
 ${ }^{\text {3) }}$ In [5] the notation $n(\mathbf{P}, r)$ is used for $n_{0, r}(\mathbf{P}, r)$.
 4) With exception of only one case, where bounds and the asymptotic are found.

