
An algebraic definition of attributed transformations 
B y M . BARTHA 

1. Magmoids and rational theories 

The concept of magmoid was introduced in [1]. A magmoid M=({Ms\seS\, 
•, <g>, e, e0), is a many sorted algebra with sorting set S, the set of all pairs of non-
negative integers. Further on we shall write instead of M(AS). Binary operations 
• and <g> are called composition and tensor product, respectively. The following axioms 
must be valid in M: 

(i) • : M%XM?-~Mj! is associative. 
(ii) <g> : MP

Q\x MLL is associative. 
(iii) (fl1-Z»1)®(a8-62)=(ai®fl2)"(^i®^2) f ° r all composable pairs (a1, Aj), 

(a2, b2. 
(iv) and if en denotes then for each p=0, 

n times 
q^O, a£M£: ep-a = a-eq = a<g>e0=e0<g>a=a. 

An element a€M9
p will often be denoted by a:p—q if M is understood. 

Let Z= 1J Z„ be a finite ranked alphabet, and define the structure T(Z)= 

= ({T(iyq P,ihO}, ®,e,e0) as follows: 
For arbitrary p^O and q^O, T(Z)%= {{q; tx, ..., tp)\ for each l^i^p, tt 

is a finite I-tree over the variables ..., xq}. (q;)zT(Z)° will be denoted by 0q. 

(q; tj_, ..., tp)-{r \ ult ..., uq) = (r; ..., uq], ..., tp[ult ..., «,]>, 

where [...] denotes the composition of trees; 

<<7i; h, tpi)®(q2; "i, ..., mP2> = {qx+q2, tlt ..., tPl, u{, ..., u'Pi), 

where u'l-ui[xqi+1, ..., xqi+q2\; e = (l; e0 = 00. 
We shall omit the component q of (q\t1,..., tp) if it is understood. Moreover, 

we leave (...) if p= 1 • It is known that T(Z) is a magmoid. f ( Z ) is a submagmoid of 
T(Z) such that t = (q\ t1, ..., tp)iT(Z)^ if and only if the sequence of variables 
labeling the leaves of tlt ..., tp, read from left to the right, is exactly xlt ...,xq. 
f(Z) is the free magmoid generated by Z, that is, every ranked alphabet map 
h: Z-*MX into a magmoid M has a unique homomorphic extension h: T(Z)->-M. 
(Viewing oiZn as <n; a(xlt ..., x„))ef(Z)j;). 
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Another important magmoid is 0, in which is the set of all mappings of 
[/>]={!, ...,p} into [q\. Composition is that of mappings, and for z'=l, 2 

e and e0 are the unique elements of Q{ and 0", respectively. e„ will be denoted by id„ 
if « s i . The elements of 0 are usually called torsions or base moprhisms. 

A magmoid is called projective if it contains a submagmoid isomorphic to 0 
and every a:p—q is uniquely determined by its "projections", i.e. by the sequence 
(np-a\\^i^p). n'p denotes the isomorphic image of the map nl

p-. [\]—[p] that 
picks out the integer / of [p]. T(Z) is projective, and it is the free projective magmoid 
generated by Z. PFT(Z) will denote the magmoid in which (PFT(Z))%={q; Alt ..., 
..., Ap)| for each /€[/?], A{ is a finite set of Z-trees over the variables x, , ..., xq}. 
(For the interpritation of the operations see [2].) PFT(Z) is also projective. Let M 
be a projective magmoid, ..., ap£M\. «fc^, ..., ap> will denote the unique 
element of whose sequence of projections is (alt ..., ap). This source-tupling 
can be viewed as a derived operation in M, and it can be extended as follows. Let 
«i '-Pi-*q,a2: p2-q. Then <f:ax,a21t> = •a1, ..., np

p\-ax, nl
P2-a2, ..., np

p\-a2>. 
Rational theories were introduced in [3], based on the concept of algebraic 

theory. However, the only difference between nondegenerate algebraic theories and 
projective magmoids is that in algebraic theories source-tupling is a basic operation 
(and tensor product is a derived one). So, if we introduce rational theories by means 
of projective magmoids, we get a definition equivalent to the original one excluding 
the trivial degenerate rational theory. 

A rational theory is also a many sorted algebra R = {{R"q\p, <7^0}, •, ®,e, e0, +), 
where, apart from + , R is a projective magmoid, the sets are partially ordered, 
and + :R p

p + q —Rv is a-new operation. For / : p-»p + q, f+ is the least fixpoint of 
/ , and some further conditions must hold concerning the ordering and the opera-
tions, that we do not list here. 

Add a new symbol _L wi"h rank 0 to Z, to get the ranked alphabet Z±. There 
exists a rational theory T„(Z) for which Tm(Z)^= {{q\ tx, ..., i„)| for each 
ii[p], t is a possibly infinite Z±-tree over the variables ..., xq). For the inter-
pretation of the operations, see [3]. It is known that R(Z), the free rational theory 
generated by Z, is the smallest subtheory of T^(Z) that contains T(Z) as a submag-
moid. 

Let q^O, X 9 ={x 1 ; I - ( I U A ; ) * such that for each 
length (z,(ff))=n. An infinite tree teR(Z)% is called local of type yq if the follow-
ing holds. If an interior node of t is labeled by creZ„, then its direct descendants are 
labeled by y.q(o). If so, we will denote t by (co, yq), where co=root ( ? ) e (ZUXq)p. 
R e c ( I ) will denote the smallest rational theory in PT(Z) that contains PFT(Z) 
as a submagmoid. 
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2. The magmoid R(k, / ) 

Definition 2.1. Let i be a rational theory, k ^ l , / ^ 0 integers. Define 
R(k,l)=({R(k, l)p

q\p, q^O}, e, e0) to be the following structure: 

(i) R(k, l)p
q = Rk'.qttp; 

(ii) if azR(k,iyq, b£R(k,l)% then 

a-b= <£nk",vl.r> • ^a-9Piq<r,b'\]/Piitr>+, 
where 

li"m(=Hn if m is understood) = id„(g)Om€0„+m, 

m̂ (— vm if » is understood) = O„<g)idm€0™+m, 

tfW = 0 t . p ® < A i & + ( * + „ . r * ® 0 , . p . 

See also Fig. 1. 
(iii) if a€R(k,l)%,beR(k,I)>;, then 

a®b = < ixlfrttn'iV, > -(a®b)-* /if.^®^:», v£«i®v£« > 

. (iv) e = id t + J , e0 = 00. 
(We shall never add any distinctive mark to the sign of the operations when working 
in different magmoids in the same time, because only one interpretation is reason-
able anywhere in the context.) 

k-q l-p 

Fig. 1 

Theorem 2.2. R(k, I) is a magmoid. 

Proof. All the requirements can be proved by the same method, so we only show 
the associativity of composition. Let 

a = <fc alt ...,qk.p,â1, ...,ât.q * £R(k, l)p
q, 

b =<b1,,~,bk.t,B1,...,Bl.r>£R(k, /)?, (1) 

c - < cly •••,£k.r, cx, ..., Cf., > £R(k, /);. 



412 M. Bartha 

We must prove that (a • b) • c—a • (b • c). Both sides of this equation can be considered 
as a polynomial in R over the variables a,, dj , ..., c ;, Cj. Since R is arbitrary, we have 
to show that these polynomials are identical. Let I be the smallest finite ranked al-
phabet satisfying the following conditions: 

(i) for arbitrary i£[k-p] and j£[l-q], Ah Ajilk.q+l.p, 
(ii) for arbitrary ii[k-q] and ji[l-r], Bt, Bj£Zk.r+i.q, 

(iii) for arbitrary i£[k-r] and /€[/• J], C,, C,€ Zk.5+t.r-

Change the small letters to capital ones in (1), to obtain the elements A, B, C of 
R(£). Clearly, it is enough to show that (A • B) • C=A -(B- C) holds in R(Z)(k, /). 
However, it is easy to check that (A • B) • C=A •(/?• C)=(co, •/„), where n=k-s+l-p 
and _ _ 

co = (A_x, ..., Ak.p, C1 ; ..., C/.s), 

Zn(Ai) = Xn(Aj) = ( f i j , •••,Bk.q, xk.s+1, ..., xk.s+,.p), 

Xn(Md = Xn(Bj) = (Cu ..., Ck.„ Au ..., A,.q\ 

Xn(C.i) = Xn(Cj) — •••> xk.s, 5l5 ..., Bl r> 

for any appropriate choise of the integers i and j. 
Let £: R—R' be a homomorphism between rational theories. Clearly, £ defines 

a homomorphism ^(k, I): R(k, l)—R'{k, /), and so the operator (k, I) becomes a 
functor. 

3. Attributed transformations 

Definition 3.1. An attributed transducer is a 6-tuple 91—(E,R ,k , l , h ,S ) , 
where 

(i) I is a finite ranked alphabet, I ; 
(ii) R is a rational theory, are integers; 

(iii) h: Zs — R(k,l) is a ranked alphabet map, where Xs— I U {5} with S 
having rank 1, and /r(S)=a<g>0( for some azRk

+l. We say that h{S) is a synthesizer. 

t v T{Z)\—R}„ the transformation induced by 91, is the following function: 
T A ( 0 = A , where n\-h (S( / ) )= t f®0, . It is clear that T41(/) is uniquely determined 
by this imlicit form. (As it is usual, we denoted the unique homomorphic extension 
of h also by h.) 

Definition 3.2. An attributed tree transducer is a 6-tuple = A, k, I, h, S), 
where I , k, / and S are as in the previous definition, A is a finite ranked alphabet, 
h: ZS-~PFT(A) is such that h((Zs)n)QPFT(A)k

k
+

n'+n
l and h{S)aPFT(A)\+l. To 

define the transformation TS(, consider the attributed transducer 23 = ( I , Rec (A), 
k,l,h, S). S is correct, since PF 7 ,(zl)gRec {A) and h(S) is a synthesizer. Now 

tar = { < i , M > | i € f ( I ) J , t /STsO)} . 

21 is called deterministic if for arbitrary and tr€(Zs)„ all the components of 
h(a) contain at most one element. 
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Example 3.3. Let k = l= 2, 

Z=Z0UZ1, r0={5}, £i={/}, A=A0UA1, A0={a}, A^{f,g), 

h ( f ) = (4;J(xl),f(x2), g(x3), g(-v4)>, h(a) = {2; x2), h(S) = (4; a, x2, a). 

(Braces enclosing singletons are omitted.) Then = (Z, A, k, /, h, S) is a deter-
ministic attributed tree transducer, and it is easy to see that for all «ÈsO 

h (/"(xO) = (4;/n(x1), f"(x2), g"(x3), g"(xj). 

Hence, h {f" (a)) = (2- fg" (x,), f"g" (x2)), and 

Ta = {(f"{â),f"g"f"g"(à))\" = U}-
Definition 3.2 might be interpreted as follows. Let teT(Z)1, oc a node in / 

having some label o£Zn . A component of h (a) describes how to compute the value 
of a synthesized attribute of a (the first k components), or an inherited attribute of 
an immediate descendant of a (the last I • n components) as a function (polynomial) 
of the synthesized attributes of the immediate descendants (the variables xlf ..., xk.q) 
and the inherited attributes of a itself (the variables xk.q+i, ..., xk.q+l). The role of 
the synthesizer h(S) is to produce the final result of the computation. 

It will be convenient to identify the nodes of a tree tiT(Z)x
q with the set 

n d s ( O ^ N * X ( I W g ) , and the leaves of t with lvs ( 0 X q as follows: 
(i) if i=xu then n d s ( 0 = l v s ( 0 = {(A,*i>}; 

(ii) if / = ••.,*a)®id9- J I) with t0dî(Z)\,q^\,p<i[q\, « ê 0 , 
5 

oÇ.Zn, then nds (f) — U where 
i=1 

Vi={(w,Xj)\ji[p-l] and (w,.X;><Elvs (/„)}, 
V2— {<W, Xj)\j*sp + n and <vv, xJ-_„+1>elvs (i0)}, 
V3= {(wj, xp+j^)\jf[n] and <w, xp>€lvs (/„)}, 
K4 = nds (i0)\lvs (i0), 

where <>, xp>elvs (i0). 
lvs (t)=V1UV2UV3. 

It is easy to verify that nds (?) and lvs (t) are uniquely defined by the above con-
struction, and for each w€N* there exists at most one a€nds (/) having w as its 
first component. Clearly, ||nds (Oil =r(t), the number of nodes in t. 

Let SI = ( r , A, k, l, h, S) be an attributed tree transducer, fixed in the rest of 
the paper, t€T(Zfq, 

Zt = {x(a, i), y(a, m)|a£nds (/), '€[£], më[/]} 

a set of variable symbols. Construct a system Eth of nondeterministic /1-equations 
over the variables Z, as follows 

Et,h={Ex,h(oi, Olaends ( i ) \ lvs (i), /€[£]} U 
'U {Ey>h(a, w)|aends (i)\{<^, root (?)>}, me[/]}, 

where 

(i) if a = {w,a) with o£Zn and 

h{a)=(T1,...,Tk,Q1,...,Ql.n), (2) 
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then the equation Ex(a, /') is of the form 

x(cc, i) = Ti[xk.ir-1) + P - x(ar, p), xk.tt+s - y{a, s ) |p£[ /c] , r6[n] , s £[ / ] ] , 

where -— denotes variable substitution, a r€nds (t) is the unique node having wr 
as first component. (We omitted the index h, whi:h is fixed.) 

(ii) If a = (wj,a) with a£ZUXq, then consider the unique node a = (vv, a), 
where a£l„,n and the nodes ccr, /*e[/7]. (Naturally ccj — of.) Let h(<j) be as (2) 
above. Then the equation Ey{a, m) looks as 

y(ct, m) = Qi.a-n + m[xk.(r-1)+p - x(«.r, p), xk.n+s - y(a, s) |p€[fc], r£[n], s6 [ / ] ] . 

The variables 

Z,1 = {*(«, Olaelvs (0 , ¿€[fc]}U M<A, root (i)>, m)\mi[l]} 

do not occur on the left-hand side of these equations, so they are considered as para-
meters. On the other hand, the variables 

Zf = root (r)>, O l ' W U M a , m)|a€lvs (/), me[l]} 

do not occur on the right-hand side of the equations. If we identify the elements of 
Z, with the variables xx, ..., x(k+i).r{t) by a bijection et: Z,-*[(k+l)-r{t)] so that 
the variables Z) get the highest and Z,2 the lowest indices, we get an (o'(t, e(): 
{k + l)-r(t)-(k-q+l)-(k + l)-r(t)<iRec(A) for which co'{t, e,) — 0k+l.q®co(t, e,) 
and (co (t, e,))+=E,+ (with respect to e(). £ (

+ denotes the solution of Et. 

Lemma 3.4. Let R be a rational theory, k^l, / ^ 0 , q = l, pt[q] integers, 
aiR{k,l)\,biR{k,l)l. Then 

a- ( e ^ b Q e ^ j = ^ ' - « - n - » ) . ( 0 t + K9_1+n)® 

®(eq,P,n- <a-*lq,P,n, b-tq,p,n>))+, (3) 
where 

Qq,P,n = < lik+l ( p ~ 1 \ v,.„, 0k+l.p®n'-«-» + k , 0 i + l . ( p _ 1 ) ®/i ' > : 

k + l ' ( p - l ) + l-n + l-(q-p) + k + l — k + l ' ( p - i ) + l+l'(q-p)+k+l'n, 

k - ( p - l ) + k + k-(q-p) + l k+l + k - ( p - l ) + k-n + k-(q-p) + l, 

k-ti + l - k + l + k - ( p - l ) + k-n + k-(q-p) + l. 

(The left-hand side of (3) is a polynomial in R(k, I), while the right-hand side is a 
polynomial in R.) 

Instead of presenting a complete proof we only remark that it would be enough 
to prove the lemma for one special free rational theory, analogously to the proof of 
Theorem 2.2. Then the proof reduces to an easy computation that we do not preform 
here. The following lemma can be proved in the same way 
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Lemma 3.5. Let i l be a rational theory; n1,n2,n3,px,p2,p3,m,r,s nonnega-
tive integers, 

f . n1 + m + n3+ss+p1 + r+p3£R, 
g: r+n2—p2 + m£R. 

Then 

= /i»i+».+»..(0ni+„2+n3®(gs- *f-is,g'i;s*))+, (4) 
where 

q = ¡ I "v„ 2 , 0„1+ra(gi/i"3+r, Q,h®iim > : fu + nz + n s + r + m — ni + m + na + r + na, 

B, = < y f r , V,,, 0 „ i + , „ ( 8 ) ^ + s + r , O^O/i™ > •• 

ni + n8 + n3 + s+r- l-m — nj + m + n3-|-s + r-f n2, 

il ^<Vp
+

1
m, nr

m+Pl p1 + r + p3-r + m + p1 + p2+p3, ns = 

Ç = 0 r® * JJ™+p, * <8>0P3: p2 + m - r + m + pi + pa + pg, Cs = 0S®£. 

Lemma 3.6. Let q~^Q,1ZT(Z)\,t7ix l . There exists a bijection e(: Z ( — 
-[(*: + / ) -KO] such that 

(/1) for arbitrary ii[k], j£[q],.mi[l] and appropriate w€N* 

£,(*«/ , root (t )), /•)) = /', 
et(y((w,Xj),m)) = k + l - ( j - i ) + m, 
e,(x«w, Xj), i)) = r(t)-(k-q+l)+k-(j-1) + i, 
s,(y((X, root (0) , m)) = r(t)-l+m; 
(B) nk+lq-{0k+l.q®co(t,e,))+=h(t). 

Proof. If t = a(x1, ..'., xq) for some aeZq, then e, is completely determined 
by (A). Obviusly, oj(t, £,)=/?(/), so (B) is trivially satisfied. Now let i = /0-(idp_ 
®a(xx, <g> id, _„), where q^l,p£[q], t0£T(Z)\, t^x^ nÈ0 , oiZ„, and sup-
pose the lemma is true for /„. Let s = (k + l) • ||nds ( i 0 ) \ lvs (i„)|| — (k + l). Using 
the sets Vx, ..., V5 introduced in the construction of nds (t), we define e, as follows. 
If a S K ^ a = (w,Xj), then for arbitrary /€[&] and w€[/] 

e,(x(a,i))-k + l-(p-\) + l-n + l- (q-p) + s + k + l+k-(J-l) + i, 
s,(y(a, m)) = k + l-(J-l) + m. 

If tx€F2,a = (w, Xj), then 

e,(x(a, /')) = 
= k + l-(p-l) + l-n + t-(q-p)+s + k + l+k-(p-l) + k-n + k - ( j - l ) + i, 
e,(y(a, m)) = k + l-(p—\) + l-n + l-{j—l) + m. 

If oc€V3,a = (wj,xp+j_1), then 

e.t(x(a,i)) = k + l-(p-\) + l-n + l-(q-p) + s + k + l+k-(p-\) + k - ( j - \ ) + i, 
e,(y(oc, m))=k+l• (p—!) + /•(./— \) + m. 
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If a€ K4 and a = (A, root (/)>, then 

e,(y(a, m)) = 
= k + I-(p-l) + l-n + l-(q-p)+s+k + l+k-(p-l) + k-n + k-(q-p)+m, 

else 
e, (x (a, / )) = e,0(x (a, i) )+ / • n -1, 
e,(y(a, m))=e,ay(a, m)) + l-n-l. 

If a€K5 , then a=(u>, a ) and 

e,(x(a,i)) = k + l-(p-l)+l-n + l-(q-p)+s + i, 
s,(y(a, m)) = k+l-(p-l) + l-n + l-(q-p)+s+k + m, 

It is easy to see that s, is a bijection and satisfies (A). To prove (B), apply Lemma 
3.6 for R = Rec(A),f=co(t0, e,0), g=h(o), n1 = k + l-(p-1), n2 = l-n, ns=l-(q-p), 
m = l, r=k, Pi-k-(p—{), p2=k-n, p3 = k-(q—p), (and S=J). Observe that 
Qs' <f-fls> g 'Cs^ =oj(t, et), and the right-hand side of (4) equals to ^ + ' (9-1+"). 
•(0*+/•(<I-i+n)®C0(A £,))+- So we must prove that the left-hand side of (4) equals 

to h(t). By the inductive hypothesis / i n i + m + n 3 - (0„ 1 + m + „ 3 ®/) + =A(/ o ) , so we have 
to see that 

h(t) = /?(/0)-(>p-i®/!(ff) «><?,,_„) = 

= / + ' • ( » - ! + " ) . ( 0 4 + J . ( , _ 1 + I l ) ® ( e . < h i t 0 ) ^ , h ( a ) . i » ) + . 

This is exactly the statement of Lemma 3.5, so we are through. 
Replacing I by I s we get 

Corollary 3.7. For each t£T(I)l, t a ( i ) equals to the x((A, S), 1) component 
of £•/(,). 

This result links our work to [4], where the same technic was used to define the 
semantics of attribute grammars. 

Now we turn our attention to the domain of T<H, that is the set Dx^— {7€r(X)J| 
for some u£T(A)l(t, W)€T<H}. Let G(k,l) be the following finite set 

G(k, / )={((?; VLTL, V12, F2I1, V2I2)\G=(V, E) is a directed acyclic bipartite 
graph, and 

(i) V=V1UV2, V=[k + l], V1 = [k], Vt = V\Vlt E=E1UE2, dom (EJQV^ 
dom (E2)QV2; 

Hi) V1=VL<1UVLI2, V H I n r i > 2 = 0 ; K 2 = F 2 i 1 U K 2 > 2 , K M i l K 2 , 2 = 0 ; 
(iii) for each j£V21 there exists an / € K l t such that (i,j)£E1 and the vertices 

VH2UV2,2 a r e i s o l a t e d . } 

(A vertex is called isolated if there are no edges entering or leaving it.) 
We construct a finite state top-down tree automaton S that operates nondeter-

ministically on T(Z)1 with states A = G(k,l). Let t£Dz<u, a a node in t and suppose 
that S passes through a in state iG;V11, ...,V2 2). The synthesized (inherited) 
attributes of a are represented as the nodes in V1 (V2, respectively). F l t l U K 2 1 
will contain the indices of those attributes that take part in the computation of 
T a(0- The edges of G will show how these "useful" attributes depend on each other. 
A similar construction was used in [5] for testing circularity of attribute grammars. 
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The fact that, starting from state a0, $ is able to reach the vector of states ~ * 
<fl1; ..., aq) on input tiT(Z)\ will be denoted by aQtl-ifo, ..., aq). If for some 

a 
* 

<siZq, t = o(xx, ..., xq), we simply write a^aV-a(ax, ..., aq). 

Let ae(Z s )„ , h(a) = (Tj, ..., Tk+I.„), /„={/€[* + /• /01^ = 0}. The set of alter-
natives of a is 

A[o]={{h, ...,tk+l.n)\ if ian, then ti=±, else t^T,}. 

We say that c€>4[S] realizes the initial state a=(Gc\ ViA, ..., if the following 
conditions are satisfied: 

(a) If jiViA, then (./, i')e££ if and only if x ; occurs in t}. 
(b) V i A ^ Q = { i i [ k ] \ x i occurs in ij}, and for each i€Vi tC\Q there exists an 

+ + 
i'eQ such that / ' ( - / • I- denotes the transitive closure of \-=Ec. 

(c) vi^{j>khaG
s). 

Define the set of initial states of © as A0={aiA\a is realized by some c€/4[5]}. 
Let n^O,o£Zn,a{1,...,an<LA,anl=(Gm-,V?A,...,V^ for each 0 S m ^ n , 

and c^=(t1, ..., tk+,.„)iA[(r]. Construct the graph G[c, a0, ..., an] by adding the 
edges E[c, a0, ..., a„] to the disjoint union of graphs Gm, O^m^n. An edge ((/', Wj), 
0"> m2))££[c> ao> • ••> fl»] 'f only if one of the following conditions is satisfied: 

{i) m1 = m i = 0 , i £ V l 1 , j ^ k , and xk n + 0 _ t ) occurs in <{; 
(ii) » ^ = 0 , w 2 S l , itVhJmk and xk.(m^1)+j occurs in rf; 

(iii) m^l, m2 = 0, i£V£\J>k and xk.„+(j_k) occurs in * t + / . ( m i_1 ) + ( i_ f t , ; 
(iv) and xk.(mi_1)+j occurs in tk+l.(mi_1)+(i_k). 

G'[c, a0, ..., an] can be obtained from G[c, a0, ..., an] by leaving the edges 

£ ? u i U £'2'). We say that c realizes the transition a0a\-a(al, ..., an) if the follow-
ing! ) » 

ing conditions are satisfied. (The mark [c, a0, ..., a„] will be omitted from the right 
of G, G' and E.) 

(A) Let /€/ f f. If i ^ k , then i£V°2> else if for some w£[n] and k < j ^ k + l, 
i=l.(m-l)+j, then 

(B) For each me[n], izVfh if and only if there exists an i ' t V ^ i such that 

</', 0 > H < / , m ) . 
G + + 

(C) For each O^m^n, l - | G m = l - . 
B' om 

Now for each cr€ a0a\-a(al, ...,«„) if and only if this transition is realized » 
by some c€A[a 

Let q=0, tiT{Z)\. A deterministic part of £ s ( l ) can be chosen as follows. 
Replace the equations of the form z = 0 by z=z , then for each z£Zs(l)\Zs(t) 
replace the right-hand side of the equation z = Tz by an arbitrary t.iTz. Further 
on DES(0 will always denote a deterministic part of ES(L). For each z € Z s ( ( ) \ Z j ( ( ) , 
n(z) • £s

+
(0 ^ 0 if and only if there exists a DES(0 such that n(z) • DES

+
(L)^0. (n(z). 

means the selection of the component z.) Let f- ¿>ESM denote the dependence rela-
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tion among the variables Z s ( ( ) in a deterministic part of £S(I), that is, zxhDEs(()z2 
if and only if z2 occurs in t:r It is clear that n(z) • if and only if 

* + 

z\-DEs(() z' implies z'y-DEsli)z . 
For each n €[/] take a new symbol y„, and construct the ranked alphabet 

r = U rn with r„ = {y„}. Let q^0, i€? ( I ) J , ax, aqíA, aj = {G,; V{A, .... V{2) 
n = 1 

for each j£[q\. By E,[ax, aq] we mean the following system of equations 

E,K, •••> aq] = {x((w, Xj), 0 = y„(j'((iv, Xj), mx), ..., >'«u>, Xj), m j ) | 
_/€[#], <w, *,-> € lvs (0 , '€[&] and m1, ..., m„ are all the possible 
values of such an m for which (i, k + m)€E{}. 

Lemma 3.8. Let q^O, t e f ( I ) q , a l t ..., aqeA and for each j£[q], aj = 
* 

= (Gjl VJi,i> •••> VÍ, a)- There exists an aeA0 for which at \- t(alt ...,aq) if and only 
<8 

if a DEsit) can be chosen such that 
(i) n(x((l, S), l ) ) . (Z)£ s ( ( )U£,[ a i , ..., + 

+ 
(ii) for each j£[q], (w, Xj) 6 lvs (5(0) , i£[k], *«/, S), 1) h x((w, Xj), i) holds 

in DESU)\JEt[«!,..., aq] if and only if i£V{tl; 
+ + 

(iii) for each m + kzVJ
2 y((w, x}), m) h- x«w, Xj), z) if and only if m + k \- i. 

Gj 

Proof. Only if: If t—x1, then a=a1£A0. In this case Es{t) is the same as h(S), 
written in the form of equations, so (i), (ii) and (iii) follow from the conditions (a), 
(b) and (c) that must hold for aeA0. Let qS;i,pe[q], nS0 , (r€l„, t0€T(Z)* and 

+ 
i=?0.(idP_1(8)ff(x1, ...,x„)<g>id9_p). If atht(a\ ..., ap~\ ax, ...,Ű„,Öp+1, ...,af>), 

» 
* 

then there exists an a0íA such that at0 \- t^a1, ..., ö p _ 1 , a0, ap+1, ..., cfi) and 
» 

a0a H o(aL, ..., an). Suppose the Only if part is true for t0 and states a1,..., ö p - 1 , 
SB 

a 0 , a p + 1 , ..., a9, and the transition a0a\-a(ax, ...,a„) is realized by c—{tx, ..., tk+i.n) 
s 

eA[a], Then there exists an appropriate D E S M satisfying the three conditions. 
For all it\k] and »?€[/], replace the variables X«H>, xp), i) and y((w, xp), m) 
in DESM by x((w, a), i) and >'((w, a), m), respectively, and add the set of 
equations 

{x«w, a), i) = ti[xk.u.n+r - x((wj, +„_!>, r), 
y((w, <x>, s), j_ - x((w, o), 0|j€[n], reiki s€[J]]|i€[fc]}U 

U{j«wj , xJ+p_!>, m) = tk + l.a_1)+m[xk<u_1)+r - x((wu, x„+ p_i), r), 
xk.n+s *- ^«vv, <T),S), ± x J + p - j > , m)|«€[n], r£[k], s€[/]]|M«], m£[l]} 

to obtain DES(I). For O ^ m ^ n let am€nds (S(i)) such that cr.m = (w, a) if 
m = 0, else <xm = (wm, xm+p_1). If /€[&+/], then z((i,m)) will denote the 
following variable of Z s ( 0 

NX Í x , 0 if 
z((i,m))=\ . . 

I y(«m,i-k) jf i > / c . 
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By the inductive hypothesis and conditions (A), (B), (C) imposed on the transitions 
of © we have 

(*) (h,m1)^(i2,m2) if and only if for ./'= 1,2, ij€(V"'{ UV"'{) and 
a 

*(<»i. m ^ ^ D E s ^ H E . i a 1 , . . . . a ' - 1 , eh, . . . ,«„ , a p + 1 , . . . , a?) z« / 2 , m2>) are both sat-
isfied (G=G[c,a0, ...,«„]). 

* + 
To prove (i) suppose that x ( ( / , S), 1)1-z and z h z hold in DES{0 U 

\jEf\a1, ..., a p _ 1 , ..., a„, ap+1, ..., a9] for some zeZ s ( ( ) . By the inductive hy-
pothesis we can assume that z=z((i,m)) for some ie[k+l], O^mSn. Using 
(*) and (C) we conclude that Gm contains a cycle, which is a contradiction. 

Let a=(u, Xj)elvs (S(t)). By (B) and (*), ¡ ( ^ i if and only if there exists 
a / ' e [q] and an / ' € V{'A such that 

x(ar, i') h DESU) U E,[a\ alt ...,an, ap+1, ..., a«]*(a, i), 

where a j . = (w,o) if j'=p, else aj, = a. Let dj.=(w, xp) if j'=p, else 

ay=OL. By the inductive hypothesis i'€V£i if and only if 5), 1 )\-x(<ij,, i') 
holds in D f j u o j U ^ J f l 1 , . . . , f l p " 1 , f l 0 , f l p + 1 , which is equivalent to 

x({)., S)) H DESU)UE,[a\ ...,a'-\au an, ap+1, ..., x(*r, V). 

+ 
Thus, if and only if x((A, S), l ) | - x ( a , /), which proves (ii). 

Let us remark that (iii) is already proved for p ^ j < p + n as a special case of 
(*). It is easy to prove it for other values of j, too. 

I f : The case t=x1 is again trivial. Let i = i 0 - ( i d p _ 1 ® a ( x 1 , . . . , xn)<g)id8_p) 
as above, and suppose the If part is true for tn and any appropriate states b1}..., bq. 
Let DESk,) and the states a1, . . . , a?~x, at, ..., a„, ap+1, ..., cfl satisfy (i), (ii) and (iii). 
Split DEsit) into DEs(to) and a part that can be derived from c=(t1, ..., 
eA[a]. Let a0 = (G0;V£1, ...,Vl2) be the following state 

+ 
itVh if and only if x«A, S), l)|-x(<iv, a), i) holds in DEmU 

U ..., ap~1, alt ..., an, ap+1, ..., aq], where wis the first component of the node 
(w, xp) in /„; 

+ 
{i,j)iEl if and only if ieV? x and x((w, a), i)\-y((w, a), j—k), 

V-l i = 01 for some ¿ i , .;>€£'/}; + 
<./,/>€£§ if and only if jiV^ and y({w, a), j-k)\-x({w, a),i). 

It is clear that DEsito) and states a1, ..., ap~l, a0, ap+1, ..., aq satisfy (i), (ii) and (iii), 
* 

hence, by the inductive hypothesis at0\-t^a1, .:., ap_1, a0, ap+1, ..., aq) for some 
a 

a£A0. On the other hand it can easily be checked that a0a f- a(a1, . . . , a„) is realized » 
by c, so we are through. 

Taking q=0 in the lemma we get 
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Theorem 3.9. The domain of attributed tree transformations is a regular tree 
language. 

However, Lemma 3.8 is worth some further considerations. It can be seen that 
Lemma 3.8 remains valid if we require the states of S not contain any redundant 
edges. (An adge (i,j") is redundant if there is another path from i to j containing 
more than one edge.) Let 91 be deterministic, and suppose the states of 33 satisfy 
the above additional requirement. The following statement can be proved by a bot-
tom-up type induction combined with Lemma 3.8. 

Proposition 3.10. Let t(.Drm, t — t0- и with /0€ Г(1)}. There exists a unique 
* + 

a£A such that for some a0£A0 we have a0t0\-t0(a) and au\-u. This unique 
В SB 

a=(G; V l t l , ..., F2 ,2) is the following: F 1 ; 1 U K 2 1 = Z a = {z€Z s ( I ) | the "node" 
+ + + 

index of z is a=roo t (w) and S), 1) \-DEs^t)z}, and 1- = \-DESU)\Zx. 
G 

(Obviously, DES(t) is unique in this case.) 
As an application of Proposition 3.10 we finally show how to decide the AT-visit 

property for deterministic attributed tree transducers. (Alternative proofs can be 
derived from [6] and [7].) Let t^Dx^, aends (t). Proposition 3.10 shows that the 
state a=(Gx; Vx>1, ..., F | ; 2 ) in which © passes through a during the recognition 
of t is uniquely determined, and it describes the dependence relation among the use-
ful attributes of a. If p is a path in Ga (p€path (GJ) , then let vp=\\ {i£VlA\p passes 
through z'}||, u a = m a x {i;p|/)€path (Ga)}. va shows how many times we must "enter" 
the subtree having root a to ask for the value of certain attributes. (Supposing an 
optimal, maximally paralleled evaluation of the useful attributes.) Define 

v<u — max {ujaends (/) for some teDтя}. 

Since this set is finite, it is easy to give an algorithm that computes and obvi-
ously, 21 is isT-visit if and only if v<a = K. Moreover, it follows from the con-
struction that 

if / < k, then ищ ^ / + 1 , else 1><и k. 

A trivial consequence of this statement is the known fact that every deterministic 
attributed tree transducer is A-visit for some K. 

Abstract 

A general concept of attributed transformation is introduced by means of magmoids and ration-
al theories. It is shown that the domain of attributed tree transformations is a regular tree language, 
and an alternative proof is given for the decidability of the X-visit property of deterministic attrib-
uted tree-transducers. 
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